organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[4-(4-pyrid­yl)pyrimidin-2-ylsulfan­yl]propane

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 8 April 2008; accepted 18 April 2008; online 23 April 2008)

In the title compound, C21H18N6S2, the dihedral angles between the aromatic rings in the two 4-(4-pyrid­yl)pyrimidine residues are 23.45 (13) and 2.67 (14)°. Whereas one of the C—S—C—C torsion angles corresponds to a staggered conformation, the other is gauche.

Related literature

For related structures, see: Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833-7845.]); Xie et al. (2005[Xie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des. 5, 1743-1749.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N6S2

  • Mr = 418.55

  • Triclinic, [P \overline 1]

  • a = 9.986 (3) Å

  • b = 10.057 (3) Å

  • c = 10.645 (3) Å

  • α = 98.972 (5)°

  • β = 90.688 (5)°

  • γ = 112.632 (5)°

  • V = 971.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.943

  • 5163 measured reflections

  • 3720 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.156

  • S = 1.02

  • 3720 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, the dihedral angles between the aromatic rings in the two(4-pyridyl)-pyrimidine residues are 23.45 (13)° and 2.67 (14)°. Whereas one of the C-S-C-C torsion angles adopts a staggered conformation [-176.74 (17)°], the other one is gauche [87.6 (2)°].

Related literature top

For related structures, see: Awaleh et al. (2005); Xie et al. (2005).

Experimental top

NaOH (0.80 g, 20 mmol) in ethanol (10 mL) was added with stirring to a solution of 4-(pyridin-4-yl)pyrimidine-2-thiol (3.78 g, 20 mmol) in acetone (30 mL) at ambient temperature for 20 min. A solution of 1,3-dibromopropane (2.00 g, 10.0 mmol) was added slowly over 1 h, and the resulting mixture was further refluxed for 6 h. The solids isolated from the reaction mixture were washed with water and acetone. The yellow products were obtained by vacuum dryness in 91% yield (3.80 g). The filtrate was allowed to evaporate slowly at room temperature. After several days, yellow block shaped crystals suitable for X-ray diffraction analyses were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å for Caromatic and Cmethylene, respectively, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
1,3-Bis[4-(4-pyridyl)pyrimidin-2-ylsulfanyl]propane top
Crystal data top
C21H18N6S2Z = 2
Mr = 418.55F(000) = 436.0
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.986 (3) ÅCell parameters from 765 reflections
b = 10.057 (3) Åθ = 2.5–28.0°
c = 10.645 (3) ŵ = 0.30 mm1
α = 98.972 (5)°T = 291 K
β = 90.688 (5)°Block, yellow
γ = 112.632 (5)°0.30 × 0.20 × 0.20 mm
V = 971.6 (5) Å3
Data collection top
Bruker CCD area-detector
diffractometer
3720 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.915, Tmax = 0.943k = 1210
5163 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1031P)2]
where P = (Fo2 + 2Fc2)/3
3720 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C21H18N6S2γ = 112.632 (5)°
Mr = 418.55V = 971.6 (5) Å3
Triclinic, P1Z = 2
a = 9.986 (3) ÅMo Kα radiation
b = 10.057 (3) ŵ = 0.30 mm1
c = 10.645 (3) ÅT = 291 K
α = 98.972 (5)°0.30 × 0.20 × 0.20 mm
β = 90.688 (5)°
Data collection top
Bruker CCD area-detector
diffractometer
3720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2986 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.943Rint = 0.028
5163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
3720 reflectionsΔρmin = 0.46 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66814 (7)0.18543 (8)0.02844 (6)0.0501 (2)
S20.31122 (8)0.33035 (8)0.24761 (7)0.0551 (2)
N10.9037 (2)0.1412 (2)0.0039 (2)0.0484 (5)
N20.88209 (19)0.3272 (2)0.10815 (17)0.0362 (4)
N31.1505 (2)0.6455 (2)0.4191 (2)0.0517 (6)
N40.1388 (2)0.1026 (2)0.3337 (2)0.0516 (5)
N50.3748 (2)0.1065 (2)0.29548 (17)0.0394 (5)
N60.6716 (3)0.1928 (3)0.3320 (2)0.0558 (6)
C10.8365 (2)0.2254 (3)0.0352 (2)0.0374 (5)
C21.0326 (3)0.1682 (3)0.0486 (2)0.0488 (6)
H21.08590.11580.02700.059*
C31.0916 (3)0.2709 (3)0.1260 (2)0.0449 (6)
H31.18260.28790.15650.054*
C41.0107 (2)0.3474 (2)0.1565 (2)0.0346 (5)
C51.0584 (2)0.4510 (2)0.2471 (2)0.0355 (5)
C61.1556 (3)0.4399 (3)0.3360 (2)0.0438 (6)
H61.19250.36760.33970.053*
C71.1961 (3)0.5387 (3)0.4185 (3)0.0520 (7)
H71.26050.52940.47840.062*
C81.0070 (3)0.5595 (3)0.2489 (2)0.0423 (6)
H80.93920.56870.19280.051*
C91.0560 (3)0.6538 (3)0.3333 (3)0.0504 (6)
H91.02160.72790.33110.061*
C100.6054 (3)0.3160 (3)0.0212 (2)0.0454 (6)
H10A0.67650.41460.00800.055*
H10B0.59200.29980.11350.055*
C110.4614 (3)0.2964 (3)0.0364 (2)0.0475 (6)
H11A0.41090.34120.01010.057*
H11B0.40110.19280.02630.057*
C120.4802 (3)0.3627 (3)0.1758 (2)0.0446 (6)
H12A0.53520.46740.18520.054*
H12B0.53670.32280.22130.054*
C130.2733 (3)0.1608 (3)0.2964 (2)0.0416 (5)
C140.1092 (3)0.0215 (3)0.3770 (2)0.0519 (7)
H140.01680.06730.40370.062*
C150.2062 (3)0.0862 (3)0.3847 (2)0.0464 (6)
H150.18240.17200.41790.056*
C160.3416 (3)0.0181 (2)0.3409 (2)0.0373 (5)
C170.4557 (3)0.0781 (2)0.3402 (2)0.0373 (5)
C180.4364 (3)0.2049 (3)0.3858 (2)0.0491 (6)
H180.35000.25500.42040.059*
C190.5447 (3)0.2568 (3)0.3800 (2)0.0546 (7)
H190.52860.34230.41170.066*
C200.5885 (3)0.0082 (3)0.2938 (2)0.0443 (6)
H200.60920.07980.26500.053*
C210.6903 (3)0.0697 (3)0.2905 (3)0.0536 (7)
H210.77810.02170.25690.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0461 (4)0.0571 (4)0.0600 (4)0.0260 (3)0.0245 (3)0.0303 (3)
S20.0617 (5)0.0605 (4)0.0689 (5)0.0449 (4)0.0295 (4)0.0283 (4)
N10.0516 (13)0.0521 (12)0.0558 (13)0.0287 (10)0.0163 (10)0.0272 (10)
N20.0346 (10)0.0392 (10)0.0392 (10)0.0173 (8)0.0077 (8)0.0118 (8)
N30.0481 (13)0.0537 (13)0.0615 (14)0.0215 (10)0.0138 (10)0.0283 (11)
N40.0447 (12)0.0597 (14)0.0598 (13)0.0287 (11)0.0183 (10)0.0142 (11)
N50.0438 (11)0.0451 (11)0.0400 (10)0.0264 (9)0.0124 (8)0.0134 (8)
N60.0701 (16)0.0584 (13)0.0590 (14)0.0434 (12)0.0147 (12)0.0192 (11)
C10.0389 (12)0.0410 (12)0.0381 (12)0.0193 (10)0.0083 (10)0.0132 (10)
C20.0470 (14)0.0536 (15)0.0620 (16)0.0306 (12)0.0109 (12)0.0270 (12)
C30.0391 (13)0.0505 (14)0.0575 (15)0.0257 (11)0.0139 (11)0.0226 (12)
C40.0326 (11)0.0355 (11)0.0385 (12)0.0148 (9)0.0052 (9)0.0103 (9)
C50.0296 (11)0.0382 (12)0.0414 (12)0.0145 (9)0.0036 (9)0.0113 (9)
C60.0381 (13)0.0482 (14)0.0553 (14)0.0232 (11)0.0144 (11)0.0206 (11)
C70.0458 (15)0.0595 (16)0.0604 (16)0.0242 (13)0.0210 (12)0.0277 (13)
C80.0409 (13)0.0445 (13)0.0485 (13)0.0219 (11)0.0099 (10)0.0139 (11)
C90.0516 (15)0.0439 (14)0.0654 (16)0.0244 (12)0.0104 (13)0.0218 (12)
C100.0450 (14)0.0548 (15)0.0446 (13)0.0251 (12)0.0125 (11)0.0164 (11)
C110.0392 (13)0.0628 (16)0.0494 (14)0.0265 (12)0.0092 (11)0.0172 (12)
C120.0447 (14)0.0477 (13)0.0508 (14)0.0251 (11)0.0122 (11)0.0160 (11)
C130.0477 (14)0.0485 (13)0.0392 (12)0.0294 (11)0.0123 (10)0.0097 (10)
C140.0455 (15)0.0552 (15)0.0556 (15)0.0197 (12)0.0189 (12)0.0098 (12)
C150.0501 (15)0.0438 (13)0.0455 (14)0.0172 (12)0.0153 (11)0.0109 (11)
C160.0441 (13)0.0399 (12)0.0309 (11)0.0200 (10)0.0073 (9)0.0057 (9)
C170.0488 (14)0.0389 (12)0.0299 (11)0.0226 (10)0.0091 (9)0.0077 (9)
C180.0627 (16)0.0483 (14)0.0488 (14)0.0303 (13)0.0199 (12)0.0201 (11)
C190.080 (2)0.0489 (15)0.0537 (15)0.0400 (14)0.0211 (14)0.0233 (12)
C200.0506 (15)0.0425 (13)0.0508 (14)0.0256 (11)0.0134 (11)0.0193 (11)
C210.0560 (16)0.0590 (16)0.0627 (16)0.0353 (14)0.0207 (13)0.0242 (13)
Geometric parameters (Å, º) top
S1—C11.743 (2)C7—H70.9300
S1—C101.799 (3)C8—C91.365 (3)
S2—C131.762 (3)C8—H80.9300
S2—C121.796 (2)C9—H90.9300
N1—C21.320 (3)C10—C111.525 (3)
N1—C11.342 (3)C10—H10A0.9700
N2—C11.325 (3)C10—H10B0.9700
N2—C41.343 (3)C11—C121.507 (3)
N3—C71.320 (3)C11—H11A0.9700
N3—C91.338 (3)C11—H11B0.9700
N4—C141.325 (3)C12—H12A0.9700
N4—C131.336 (3)C12—H12B0.9700
N5—C131.323 (3)C14—C151.367 (4)
N5—C161.337 (3)C14—H140.9300
N6—C211.326 (3)C15—C161.385 (3)
N6—C191.330 (4)C15—H150.9300
C2—C31.379 (3)C16—C171.480 (3)
C2—H20.9300C17—C181.381 (3)
C3—C41.379 (3)C17—C201.380 (3)
C3—H30.9300C18—C191.368 (4)
C4—C51.478 (3)C18—H180.9300
C5—C81.376 (3)C19—H190.9300
C5—C61.386 (3)C20—C211.377 (4)
C6—C71.376 (3)C20—H200.9300
C6—H60.9300C21—H210.9300
C1—S1—C10103.68 (11)H10A—C10—H10B108.4
C13—S2—C12102.41 (11)C12—C11—C10113.0 (2)
C2—N1—C1114.9 (2)C12—C11—H11A109.0
C1—N2—C4115.73 (19)C10—C11—H11A109.0
C7—N3—C9115.9 (2)C12—C11—H11B109.0
C14—N4—C13114.3 (2)C10—C11—H11B109.0
C13—N5—C16116.7 (2)H11A—C11—H11B107.8
C21—N6—C19115.5 (2)C11—C12—S2113.52 (17)
N2—C1—N1127.7 (2)C11—C12—H12A108.9
N2—C1—S1119.77 (17)S2—C12—H12A108.9
N1—C1—S1112.50 (17)C11—C12—H12B108.9
N1—C2—C3122.8 (2)S2—C12—H12B108.9
N1—C2—H2118.6H12A—C12—H12B107.7
C3—C2—H2118.6N5—C13—N4127.3 (2)
C4—C3—C2117.5 (2)N5—C13—S2119.94 (18)
C4—C3—H3121.2N4—C13—S2112.72 (18)
C2—C3—H3121.2N4—C14—C15124.0 (2)
N2—C4—C3121.2 (2)N4—C14—H14118.0
N2—C4—C5116.95 (19)C15—C14—H14118.0
C3—C4—C5121.8 (2)C14—C15—C16116.9 (2)
C8—C5—C6117.4 (2)C14—C15—H15121.6
C8—C5—C4122.0 (2)C16—C15—H15121.6
C6—C5—C4120.6 (2)N5—C16—C15120.7 (2)
C7—C6—C5118.4 (2)N5—C16—C17116.6 (2)
C7—C6—H6120.8C15—C16—C17122.7 (2)
C5—C6—H6120.8C18—C17—C20116.4 (2)
N3—C7—C6124.9 (2)C18—C17—C16122.6 (2)
N3—C7—H7117.6C20—C17—C16121.0 (2)
C6—C7—H7117.6C19—C18—C17119.9 (2)
C9—C8—C5119.8 (2)C19—C18—H18120.1
C9—C8—H8120.1C17—C18—H18120.1
C5—C8—H8120.1N6—C19—C18124.3 (2)
N3—C9—C8123.7 (2)N6—C19—H19117.8
N3—C9—H9118.1C18—C19—H19117.8
C8—C9—H9118.1C21—C20—C17119.5 (2)
C11—C10—S1108.09 (17)C21—C20—H20120.3
C11—C10—H10A110.1C17—C20—H20120.3
S1—C10—H10A110.1N6—C21—C20124.4 (2)
C11—C10—H10B110.1N6—C21—H21117.8
S1—C10—H10B110.1C20—C21—H21117.8

Experimental details

Crystal data
Chemical formulaC21H18N6S2
Mr418.55
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.986 (3), 10.057 (3), 10.645 (3)
α, β, γ (°)98.972 (5), 90.688 (5), 112.632 (5)
V3)971.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.915, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
5163, 3720, 2986
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.02
No. of reflections3720
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Program for Excellent Talents Introduction of Southeast University for financial support.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833–7845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des. 5, 1743–1749.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds