

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-(4-methoxyphenyl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-methoxyphenyl)azetidin-2-yl]-2,3,10,10a-tetrahydro-1H,5H-pyrrolo[1,2-b]isoquinoline-10a-carboxylate

E. Theboral Sugi Kamala,^a S. Nirmala,^a L. Sudha,^b* N. Arumugam^c and R. Raghunathan^c

^aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, ^bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: sudharose18@gmail.com

Received 8 April 2008; accepted 15 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.034; wR factor = 0.108; data-to-parameter ratio = 8.7.

In the molecule of the title compound, $C_{38}H_{37}N_3O_7$, the pyrrolidine ring adopts a twist conformation and the sixmembered heterocyclic ring has a boat conformation. In the crystal structure, molecules are linked into a three-dimensional framework through intermolecular $C-H \cdots O$ hydrogen bonds. One ethyl group is disordered over two positions with occupancies 0.67 (2)/0.33 (2).

Related literature

For related literature, see: Allen et al. (1987); Amal Raj et al. (2003); Borthwick et al. (2003); Brakhage (1998); Cremer & Pople (1975); Fernandes et al. (2004); Kamala et al. (2008); Katritzky et al. (1996); Morin & Gorman (1982); Nardelli (1983); Sundari et al. (2006); Verkman (1990); Weissman et al. (1993); Georg & Ravikumar (1993); LaVoie et al. (1983).

Experimental

Crystal data

C ₃₈ H ₃₇ N ₃ O ₇	V = 3335.4 (2) Å ³
$M_r = 647.71$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 9.0149 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.0865 (4) Å	T = 293 (2) K
c = 33.3731 (11) Å	$0.20 \times 0.20 \times 0.20$ mm

Data collection

Bruker Kappa APEX2	68599 measured reflections
diffractometer	3960 independent reflections
Absorption correction: multi-scan	3318 reflections with $I > 2\sigma(I)$
(Blessing, 1995)	$R_{\rm int} = 0.033$
$T_{\min} = 0.982, \ T_{\max} = 0.982$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	453 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
3960 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6···O2 ⁱ	0.98	2.42	3.260 (3)	143
$C20-H20\cdots O1^{ii}$	0.93	2.47	3.397 (3)	172
C29-H29···O3	0.93	2.59	3.442 (3)	152
C29-H29···N2	0.93	2.50	3.168 (3)	128
С33−Н33…О1	0.93	2.44	3.054 (4)	123

Symmetry codes: (i) x, y + 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2696).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Borthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Welingerten, C. G. & Woolven, J. M. (2003). J. Med. Chem. 46, 4428-4449.
- Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Fernandes, E., Costa, D., Tosta, S. A., Lima, J. L. & Reis, S. (2004). Free Radic. Biol. Med. 37, 1895–1905.
- Georg, G. I. & Ravikumar, V. T. (1993). The Organic Chemistry of Beta-Lactams, pp. 295-368. New York: VCH.
- Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry, Vol. II, ch. 1.18–1.20. New York: Peragmon.
- LaVoie, E. J., Adams, E. A., Shigematsu, A. & Hoffman, D. (1983). Carcinogenesis, 4, P1169–P1173.
- Morin, R. B. & Gorman, M. (1982). Chemistry and Biology of Beta-Lactam Antibiotics, pp. 1–3. New York: Academic Press.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sundari, B., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). *Anal. Sci.* 22, x57–x58.
- Verkman, A. S. (1990). Am. J. Physiol. Cell Physiol. 259, C375-C388.
- Weissman, D., Poli, G., Bousseau, A. & Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537–2541.

supporting information

Acta Cryst. (2008). E64, o887-o888 [doi:10.1107/S1600536808010428]

Ethyl 1-(4-methoxyphenyl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-methoxyphenyl)azetidin-2-yl]-2,3,10,10a-tetrahydro-1*H*,5*H*-pyrrolo[1,2-*b*]isoquinoline-10acarboxylate

E. Theboral Sugi Kamala, S. Nirmala, L. Sudha, N. Arumugam and R. Raghunathan

S1. Comment

Quinoline is a hepatocarcinogen in mice and rats, a mutagen in Salmonella typhimurium and induces unscheduled DNA synthesis in primary cultures of rat hepatocytes (LaVoie *et al.*, 1983). Quinolinium based chloride sensitive flourescent indicators provide a new approach to study chloride transport mechanisms and regulation (Verkman, 1990). Pyrrole derivatives inhibit cytokine-dependent induction of human immunodeficiency virus (HIV) expression in chronically infected promonocytic cells (Weissman *et al.*, 1993). Pyrroles possess anti inflammatory (Fernandes *et al.*, 2004), anti viral (Borthwick *et al.*, 2003), antifungal and antimicrobial activities (Amal Raj *et al.*, 2003). β lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Morin & Gorman, 1982; Georg & Ravikumar, 1993; Katritzky *et al.*, 1996). The most commonly used β lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). Due to these importance the crystal structure determination of the title compound (I) was carried out and the results are presented here.

Fig 1 shows a plot of compound (I). Bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and comparable with those of reported structures (Kamala *et al.*, 2008; Sundari *et al.*, 2006).

In the molecule the pyrrolidine ring exhibits a *twist* conformation with asymetry parameters (Nardelli,1983) $\Delta C_s(C5) = 5.2 (2)$, $\Delta C_2(C6) = 39.6 (2)$ and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.274 (3)Å and $\varphi 2$ =267.5 (5)°. The six membered ring C7/C8/C9/C14/C15/N2 exhibits a *boat* conformation with the puckering parameters Q=0.699 (3) Å, $\Theta = 88.8 (2)^\circ$ and $\varphi = 120.1 (2)^\circ$. The sum of bond angles around N1 [353.59°], and around N3 [359.94°] indicate *sp*², those around atom N2 [338.58°] indicate *sp*³ hybridization. The pyrrolidine ring and the phenyl ring C9—C14 are nearly planar with each other with a dihedral angle of 9.49 (7)° while the phenyl rings are oriented at right angles to each other making an angle of 87.48 (7)°.

In the crystal packing, C—H···O interactions stabilize crystal structure.

S2. Experimental

To a stirring solution of 1 mmol of 5-[1'-N-(p-methoxy)-phenyl)-3'-phenyl- azetidine-2'-one]-4-nitro-3-(p-methoxy)-phenyl-2-ethoxy carbonyl-2-benzyl -pyrrolidine in 20 ml of dry chloroform was added 1 mmol of paraformaldehyde followed by 0.1 mmol of trifluroacetic acid at room temperature. After completion of the reaction the mixture was washed with water and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was subjected to column chromatography with hexane ethylacetate (9:1) to obtain pure cyclized product. The compound was recrystallized from ethylacetae.

S3. Refinement

In the absence of anomalous scatterers, Friedel pairs were merged and the absolute configuration was arbitrarily set. One ethyl group is disordered over two positions (C36A/C37A and C36B/C37B), with refined occupancies of 0.67 (2) and 0.33 (2). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids.

Figure 2

The packing of the molecules viewed along the c axis.

Ethyl 1-(4-methoxyphenyl)-2-nitro-3-[4-oxo-3-phenyl-1-(4-methoxyphenyl)azetidin-2-yl]-2,3,10,10a-tetrahydro-1H,5H-pyrrolo[1,2-b]isoquinoline-10a-carboxylate

F(000) = 1368

 $\theta = 1.2-26.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Prism. colourless

 $0.20 \times 0.20 \times 0.20$ mm

 $\theta_{\rm max} = 26.7^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$

68599 measured reflections

3960 independent reflections 3318 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.033$

 $h = -11 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $l = -42 \rightarrow 42$

 $D_{\rm x} = 1.290 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 68599 reflections

Crystal data

 $C_{38}H_{37}N_{3}O_{7}$ $M_{r} = 647.71$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 9.0149 (3) Å b = 11.0865 (4) Å c = 33.3731 (11) Å V = 3335.4 (2) Å³ Z = 4

Data collection

Bruker KappaAPEX2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.982, T_{\max} = 0.982$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.034$ H-atom parameters constrained $wR(F^2) = 0.107$ $w = 1/[\sigma^2(F_0^2) + (0.0606P)^2 + 0.4467P]$ *S* = 1.06 where $P = (F_o^2 + 2F_c^2)/3$ 3960 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 453 parameters $\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0035 (7) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5650 (3)	0.1895 (2)	0.11810 (7)	0.0428 (5)	
H1	0.6078	0.1997	0.1449	0.051*	

C2	0.6846 (3)	0.2110 (2)	0.08439 (7)	0.0465 (5)
H2	0.7811	0.2300	0.0964	0.056*
C3	0.6714 (3)	0.0759 (2)	0.07673 (7)	0.0518 (6)
C4	0.4217 (3)	0.26005 (18)	0.11375 (6)	0.0392 (5)
H4	0.3956	0.2613	0.0853	0.047*
C5	0.4352 (3)	0.3919 (2)	0.12799 (7)	0.0441 (5)
Н5	0.4661	0.4435	0.1057	0.053*
C6	0.2805 (3)	0.4279 (2)	0.14202 (7)	0.0452 (5)
H6	0.2911	0.4792	0.1658	0.054*
C7	0.2091 (3)	0.3061 (2)	0.15540 (6)	0.0418 (5)
C8	0.0419 (3)	0.2946 (2)	0.14583 (8)	0.0509 (6)
H8A	-0.0144	0.3490	0.1628	0.061*
H8B	0.0240	0.3164	0.1181	0.061*
C9	-0.0065(3)	0.1674 (2)	0.15306 (7)	0.0481 (6)
C10	-0.1225(3)	0.1330(3)	0.17775 (8)	0.0601(7)
H10	-0.1790	0.1911	0.1908	0.072*
C11	-0.1538(4)	0.0124(3)	0.18292 (9)	0.0702(8)
H11	-0.2323	-0.0106	0.1993	0.084*
C12	-0.0702(4)	-0.0739(3)	0 16414 (10)	0.0740(9)
H12	-0.0926	-0.1551	0.1677	0.089*
C13	0.0469 (4)	-0.0409(3)	0 13991 (9)	0.069
H13	0.1039	-0.0996	0.1273	0.077*
C14	0.0792(3)	0.0797(2)	0.13448 (7)	0.0505 (6)
C15	0.0792(3)	0.0797(2) 0.1248(2)	0.13440(7) 0.11103(7)	0.0303(0)
H15A	0.2017	0.0576	0.1032	0.058*
H15R	0.1752	0.1650	0.0869	0.058*
C16	0.1960 (3)	0.1030 0.4982(2)	0.11054 (7)	0.036
C17	0.1900(3)	0.4902(2) 0.5824(2)	0.11054(7) 0.12263(8)	0.0409(3)
H17	0.0744	0.5938	0.12205 (0)	0.0001 (7)
C18	0.0744 0.0110 (4)	0.5930	0.09578 (9)	0.072
H18	-0.0600	0.7033	0.1048	0.0058(7)
C19	0.0000	0.7033 0.6354 (2)	0.05499 (8)	0.079
C20	0.0338(3) 0.1387(3)	0.0534(2) 0.5535(3)	0.03499(8)	0.0592(7)
H20	0.1563	0.5437	0.04207 (0)	0.0598(7)
C21	0.1303 0.2168 (3)	0.3437 0.4850 (2)	0.0148 0.06968 (7)	0.072
H21	0.2108 (3)	0.4386	0.00908(7)	0.0550 (0)
C22	0.2052	0.4280 0.2965 (2)	0.0005	0.000
C22	0.0310(3) 0.7102(4)	0.2903(2) 0.4110(3)	0.05039(7)	0.0434(3)
U23	0.7102 (4)	0.4110 (3)	0.03080 (9)	0.0028(7)
C24	0.7770	0.4333 0.4031 (3)	0.0707 0.02130(11)	0.075°
U24	0.0704(4)	0.4931 (3)	0.02139(11)	0.0822 (10)
C25	0.7103 0.5720 (4)	0.3704	-0.00218 (10)	0.099°
U25	0.5729 (4)	0.4019 (3)	-0.0275	0.0822 (10)
1123 C26	0.5440	0.3101 0.3476(2)	-0.0021(9)	0.0722 (0)
U20 U26	0.5175 (4)	0.3470(3)	0.00931 (8)	0.0752 (9)
п20 С27	0.4331	0.5252	-0.0298	0.0562(0)
U27	0.3303 (3)	0.2048 (3)	0.01987 (7)	0.0303 (6)
П2/ С29	0.3162	0.1009	0.0100	0.008°
C28	0.5268 (3)	-0.041/(2)	0.12839(/)	0.04/1(5)

C29	0.4518 (3)	-0.0313 (2)	0.16414 (8)	0.0549 (6)	
H29	0.4239	0.0446	0.1733	0.066*	
C30	0.4176 (3)	-0.1326 (2)	0.18659 (8)	0.0579 (7)	
H30	0.3682	-0.1244	0.2109	0.069*	
C31	0.4563 (4)	-0.2445 (2)	0.17306 (8)	0.0583 (7)	
C32	0.5345 (4)	-0.2552 (2)	0.13739 (8)	0.0698 (8)	
H32	0.5635	-0.3311	0.1286	0.084*	
C33	0.5695 (4)	-0.1558 (2)	0.11504 (8)	0.0615 (7)	
H33	0.6214	-0.1642	0.0911	0.074*	
C34	0.3451 (6)	-0.3423 (3)	0.22891 (10)	0.1026 (15)	
H34A	0.3317	-0.4215	0.2399	0.154*	
H34B	0.2500	-0.3067	0.2236	0.154*	
H34C	0.3984	-0.2930	0.2477	0.154*	
C35	0.2155 (3)	0.2959 (2)	0.20132 (7)	0.0509 (6)	
C36A	0.227 (2)	0.1693 (8)	0.2565 (2)	0.099 (4)	0.67 (2)
H36A	0.3178	0.1371	0.2677	0.119*	0.67 (2)
H36B	0.2132	0.2487	0.2681	0.119*	0.67 (2)
C36B	0.2763 (18)	0.166 (2)	0.2577 (7)	0.094 (8)	0.33 (2)
H36C	0.2370	0.2319	0.2737	0.113*	0.33 (2)
H36D	0.3801	0.1541	0.2641	0.113*	0.33 (2)
C37A	0.1243 (12)	0.1053 (17)	0.2693 (3)	0.113 (5)	0.67 (2)
H37A	0.1328	0.0977	0.2978	0.170*	0.67 (2)
H37B	0.1300	0.0269	0.2572	0.170*	0.67 (2)
H37C	0.0309	0.1419	0.2627	0.170*	0.67 (2)
C37B	0.182 (4)	0.0452 (14)	0.2633 (4)	0.130 (9)	0.33 (2)
H37D	0.1729	0.0272	0.2914	0.196*	0.33 (2)
H37E	0.2311	-0.0203	0.2500	0.196*	0.33 (2)
H37F	0.0849	0.0560	0.2520	0.196*	0.33 (2)
C38	-0.0228(5)	0.6993 (3)	-0.01129 (10)	0.0934 (11)	
H38A	-0.0871	0.7543	-0.0252	0.140*	
H38B	-0.0431	0.6184	-0.0199	0.140*	
H38C	0.0786	0.7190	-0.0171	0.140*	
N1	0.5645 (2)	0.06099 (17)	0.10584 (6)	0.0476 (5)	
N2	0.2955 (2)	0.20995 (16)	0.13575 (5)	0.0402 (4)	
N3	0.5465 (3)	0.40018 (18)	0.16171 (7)	0.0531 (5)	
01	0.7299 (3)	0.00518 (18)	0.05473 (6)	0.0730 (6)	
O2	0.4270 (3)	-0.35051 (16)	0.19254 (5)	0.0772 (7)	
03	0.2539 (2)	0.18744 (16)	0.21413 (5)	0.0614 (5)	
O4	0.1785 (3)	0.37724 (19)	0.22274 (6)	0.0777 (6)	
05	-0.0475 (3)	0.70850 (19)	0.03026 (7)	0.0815 (6)	
O6	0.5102 (2)	0.3667 (2)	0.19483 (6)	0.0699 (6)	
07	0.6700 (2)	0.4365 (2)	0.15328 (7)	0.0782 (6)	
			× /		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C1	0.0449 (12)	0.0404 (11)	0.0429 (11)	-0.0039 (10)	0.0002 (10)	0.0047 (9)
C2	0.0392 (11)	0.0484 (13)	0.0519 (12)	-0.0036 (10)	0.0007 (10)	0.0082 (10)

C3	0.0535 (14)	0.0512 (13)	0.0508 (13)	0.0027 (12)	0.0079 (11)	0.0064 (11)
C4	0.0432 (11)	0.0373 (10)	0.0371 (10)	-0.0031 (9)	-0.0003(9)	0.0023 (9)
C5	0.0466 (12)	0.0394 (11)	0.0464 (11)	-0.0039 (10)	-0.0068 (10)	0.0027 (9)
C6	0.0509 (13)	0.0396 (11)	0.0452 (12)	-0.0006 (11)	-0.0026 (10)	-0.0048 (10)
C7	0.0449 (11)	0.0428 (11)	0.0377 (10)	0.0001 (11)	-0.0014 (9)	-0.0024(9)
C8	0.0424 (12)	0.0563 (14)	0.0540 (13)	0.0024 (12)	-0.0023 (11)	0.0022 (11)
C9	0.0394 (12)	0.0631 (15)	0.0419 (11)	-0.0043 (11)	-0.0057 (10)	0.0048 (11)
C10	0.0426 (13)	0.0831 (19)	0.0546 (14)	-0.0019 (14)	-0.0012 (12)	0.0051 (14)
C11	0.0568 (16)	0.091 (2)	0.0629 (16)	-0.0254 (17)	0.0044 (14)	0.0133 (16)
C12	0.074 (2)	0.0660 (18)	0.082 (2)	-0.0271 (18)	0.0046 (17)	0.0048 (16)
C13	0.0657 (18)	0.0564 (15)	0.0716 (17)	-0.0199 (15)	0.0026 (15)	-0.0070 (13)
C14	0.0469 (13)	0.0582 (14)	0.0463 (12)	-0.0132 (12)	-0.0050 (10)	-0.0018 (11)
C15	0.0487 (13)	0.0488 (12)	0.0464 (12)	-0.0099 (11)	0.0007 (11)	-0.0088 (10)
C16	0.0530 (14)	0.0380 (11)	0.0498 (12)	-0.0001 (11)	-0.0011 (11)	-0.0026 (10)
C17	0.0734 (18)	0.0538 (14)	0.0531 (14)	0.0148 (14)	-0.0002 (13)	-0.0067 (12)
C18	0.0713 (18)	0.0537 (15)	0.0723 (17)	0.0186 (14)	-0.0074 (15)	-0.0066 (14)
C19	0.0673 (17)	0.0438 (13)	0.0665 (15)	0.0025 (13)	-0.0126 (14)	0.0081 (12)
C20	0.0722 (17)	0.0584 (15)	0.0488 (13)	0.0083 (15)	-0.0034 (13)	0.0048 (11)
C21	0.0643 (16)	0.0488 (13)	0.0520 (13)	0.0105 (13)	0.0008 (12)	0.0006 (11)
C22	0.0410 (12)	0.0519 (13)	0.0524 (13)	-0.0002 (11)	0.0046 (10)	0.0104 (11)
C23	0.0612 (16)	0.0583 (16)	0.0689 (16)	-0.0106 (14)	-0.0019 (14)	0.0140 (13)
C24	0.093 (2)	0.0612 (18)	0.093 (2)	-0.0071 (18)	0.005 (2)	0.0275 (17)
C25	0.085 (2)	0.089 (2)	0.0730 (19)	0.013 (2)	0.0069 (18)	0.0370 (18)
C26	0.0676 (18)	0.102 (2)	0.0499 (14)	0.0056 (18)	-0.0012 (13)	0.0150 (16)
C27	0.0539 (15)	0.0645 (15)	0.0506 (13)	-0.0039 (13)	0.0025 (12)	0.0048 (12)
C28	0.0497 (13)	0.0423 (12)	0.0493 (12)	-0.0023 (11)	0.0018 (11)	0.0062 (10)
C29	0.0641 (16)	0.0421 (12)	0.0584 (14)	0.0028 (12)	0.0105 (13)	0.0037 (11)
C30	0.0681 (17)	0.0518 (14)	0.0537 (14)	-0.0077 (14)	0.0097 (13)	0.0072 (11)
C31	0.0806 (19)	0.0440 (13)	0.0504 (13)	-0.0154 (14)	-0.0013 (14)	0.0043 (11)
C32	0.110 (3)	0.0406 (13)	0.0590 (15)	-0.0050 (16)	0.0063 (17)	-0.0015 (12)
C33	0.085 (2)	0.0484 (14)	0.0507 (13)	-0.0015 (14)	0.0103 (14)	0.0000 (11)
C34	0.168 (4)	0.074 (2)	0.0659 (19)	-0.049 (3)	0.029 (2)	0.0030 (17)
C35	0.0561 (14)	0.0558 (14)	0.0406 (11)	-0.0051 (13)	0.0009 (11)	-0.0045 (11)
C36A	0.185 (11)	0.086 (5)	0.027 (3)	-0.057 (6)	-0.007 (5)	0.006 (3)
C36B	0.052 (6)	0.17 (2)	0.066 (9)	0.037 (11)	-0.012 (5)	0.039 (9)
C37A	0.100 (6)	0.179 (13)	0.062 (4)	-0.039 (7)	0.002 (4)	0.032 (6)
C37B	0.26 (3)	0.073 (9)	0.056 (6)	0.017 (12)	0.060 (12)	0.022 (6)
C38	0.108 (3)	0.091 (2)	0.082 (2)	0.013 (2)	-0.021 (2)	0.0345 (18)
N1	0.0521 (11)	0.0395 (10)	0.0512 (10)	0.0007 (9)	0.0073 (9)	0.0045 (8)
N2	0.0409 (10)	0.0394 (9)	0.0404 (9)	-0.0045 (8)	0.0009 (8)	-0.0033 (8)
N3	0.0540 (13)	0.0427 (10)	0.0625 (13)	-0.0060 (10)	-0.0127 (11)	-0.0022 (10)
01	0.0886 (15)	0.0584 (11)	0.0719 (12)	0.0103 (11)	0.0320 (12)	0.0013 (10)
O2	0.1283 (19)	0.0457 (10)	0.0576 (10)	-0.0274 (12)	0.0074 (12)	0.0055 (8)
03	0.0868 (13)	0.0590 (10)	0.0386 (8)	-0.0079 (10)	-0.0050 (9)	0.0070 (8)
O4	0.1063 (18)	0.0765 (13)	0.0502 (10)	0.0096 (13)	0.0095 (11)	-0.0168 (10)
05	0.0965 (16)	0.0656 (12)	0.0824 (14)	0.0216 (13)	-0.0214 (13)	0.0100 (11)
O6	0.0764 (13)	0.0744 (13)	0.0590 (11)	-0.0144 (11)	-0.0207 (10)	0.0107 (10)
O7	0.0528 (12)	0.0899 (15)	0.0921 (14)	-0.0189 (12)	-0.0117 (11)	-0.0037 (12)

Geometric parameters (Å, °)

C1—N1	1.482 (3)	C22—C23	1.377 (4)
C1—C4	1.517 (3)	C22—C27	1.380 (4)
C1—C2	1.577 (3)	C23—C24	1.386 (4)
C1—H1	0.9800	C23—H23	0.9300
C2—C22	1.504 (3)	C24—C25	1.369 (5)
C2—C3	1.524 (4)	C24—H24	0.9300
С2—Н2	0.9800	C25—C26	1.362 (5)
C3—O1	1.197 (3)	C25—H25	0.9300
C3—N1	1.378 (3)	C26—C27	1.384 (4)
C4—N2	1.464 (3)	C26—H26	0.9300
C4—C5	1.542 (3)	C27—H27	0.9300
C4—H4	0.9800	C28—C29	1.376 (4)
C5—N3	1.511 (3)	C28—C33	1.395 (3)
С5—С6	1.524 (3)	C28—N1	1.406 (3)
С5—Н5	0.9800	C29—C30	1.384 (3)
C6—C16	1.514 (3)	C29—H29	0.9300
С6—С7	1.561 (3)	C30—C31	1.366 (4)
С6—Н6	0.9800	C30—H30	0.9300
C7—N2	1.474 (3)	C31—O2	1.369 (3)
C7—C35	1.538 (3)	C31—C32	1.388 (4)
С7—С8	1.545 (3)	C32—C33	1.367 (4)
С8—С9	1.496 (4)	C32—H32	0.9300
C8—H8A	0.9700	С33—Н33	0.9300
C8—H8B	0.9700	C34—O2	1.424 (4)
C9—C10	1.385 (4)	C34—H34A	0.9600
C9—C14	1.388 (4)	C34—H34B	0.9600
C10-C11	1.377 (4)	C34—H34C	0.9600
C10—H10	0.9300	C35—O4	1.198 (3)
C11—C12	1.370 (5)	C35—O3	1.322 (3)
C11—H11	0.9300	C36A—C37A	1.240 (17)
C12—C13	1.380 (4)	C36A—O3	1.448 (8)
C12—H12	0.9300	C36A—H36A	0.9700
C13—C14	1.380 (4)	C36A—H36B	0.9700
С13—Н13	0.9300	C36B—O3	1.49 (2)
C14—C15	1.497 (3)	C36B—C37B	1.60 (3)
C15—N2	1.474 (3)	C36B—H36C	0.9700
C15—H15A	0.9700	C36B—H36D	0.9700
C15—H15B	0.9700	C37A—H37A	0.9600
C16—C21	1.384 (3)	C37A—H37B	0.9600
C16—C17	1.390 (3)	C37A—H37C	0.9600
C17—C18	1.366 (4)	C37B—H37D	0.9600
С17—Н17	0.9300	С37В—Н37Е	0.9600
C18—C19	1.387 (4)	C37B—H37F	0.9600
C18—H18	0.9300	C38—O5	1.408 (4)
C19—C20	1.368 (4)	C38—H38A	0.9600
C19—O5	1.379 (3)	C38—H38B	0.9600

C20—C21	1.385 (4)	C38—H38C	0.9600
C20—H20	0.9300	N3—O6	1.211 (3)
C21—H21	0.9300	N3—O7	1.217 (3)
N1—C1—C4	117.82 (19)	C23—C22—C2	119.9 (2)
N1—C1—C2	87.16 (17)	C27—C22—C2	121.4 (2)
C4—C1—C2	115.87 (17)	C22—C23—C24	120.1 (3)
N1—C1—H1	111.3	С22—С23—Н23	120.0
C4—C1—H1	111.3	С24—С23—Н23	120.0
C2—C1—H1	111.3	C25—C24—C23	120.8 (3)
C22—C2—C3	118.6 (2)	C25—C24—H24	119.6
C22—C2—C1	119.5 (2)	C23—C24—H24	119.6
$C_{3}-C_{2}-C_{1}$	85.25 (17)	$C_{26} - C_{25} - C_{24}$	119.3 (3)
C22—C2—H2	110.4	C26—C25—H25	120.4
C3—C2—H2	110.4	C24—C25—H25	120.4
C1-C2-H2	110.4	C_{25} C_{26} C_{27}	120.4 (3)
$01 - C_3 - N_1$	131 5 (2)	$C_{25} = C_{26} = H_{26}$	119.8
01-C3-C2	1354(2)	$C_{27} - C_{26} - H_{26}$	119.8
N1 - C3 - C2	93 13 (19)	$C_{22} = C_{27} = C_{26}$	120.7(3)
$N_2 - C_4 - C_1$	114 74 (16)	$C_{22} = C_{27} = C_{20}$	110 7
$N_2 - C_4 - C_5$	105 44 (17)	$C_{22} = C_{27} = H_{27}$	119.7
C1 - C4 - C5	103.44(17) 113.11(18)	$C_{20} = C_{27} = H_{27}$	119.7 110.2(2)
$N_2 C_4 H_4$	107.7	$C_{29} = C_{28} = C_{33}$	117.2(2) 1210(2)
$\Gamma_{1} = C_{1} = C_{1} = C_{1}$	107.7	$C_{23} = C_{28} = N_1$	121.0(2) 110.8(2)
$C_1 = C_4 = 114$	107.7	$C_{23} = C_{23} = C_{23}$	119.0(2) 120.7(2)
C_{3} C_{4} C_{14} C_{5} C_{6}	107.7	$C_{28} = C_{29} = C_{30}$	120.7 (2)
$N_{3} = C_{5} = C_{4}$	111.29(19) 100.25(12)	$C_{20} = C_{20} = H_{20}$	119.0
$N_{3} = C_{3} = C_{4}$	109.03(10) 105.74(10)	$C_{20} = C_{29} = H_{29}$	119.0
$C_0 - C_3 - C_4$	103.74 (18)	$C_{21} = C_{20} = C_{29}$	120.1 (2)
N3-C3-H3	110.0	$C_{31} = C_{30} = H_{30}$	120.0
	110.0	$C_{29} = C_{30} = H_{30}$	120.0
C4-C5-H3	110.0	$C_{30} = C_{31} = C_{22}$	125.0(2)
C10 - C0 - C3	112.48 (19)	$C_{30} = C_{31} = C_{32}$	119.4(2)
$C_{10} = C_{0} = C_{10}$	113.8(2)	02 - 031 - 032	115.0(2)
C_{3}	103.80 (18)	$C_{33} = C_{32} = C_{31}$	121.1 (3)
	108.1	C33—C32—H32	119.5
С5—С6—Н6	108.1	C31—C32—H32	119.5
C/-C6-H6	108.1	$C_{32} = C_{33} = C_{28}$	119.5 (2)
N2-C7-C35	111.71 (19)	С32—С33—Н33	120.2
N2—C7—C8	111.33 (19)	С28—С33—Н33	120.2
C35—C7—C8	103.68 (19)	02—C34—H34A	109.5
N2—C/—C6	106.29 (17)	02—C34—H34B	109.5
C35—C7—C6	109.46 (19)	H34A—C34—H34B	109.5
C8—C7—C6	114.5 (2)	02—C34—H34C	109.5
C9—C8—C7	109.2 (2)	H34A—C34—H34C	109.5
C9—C8—H8A	109.8	H34B—C34—H34C	109.5
C7—C8—H8A	109.8	04	124.4 (2)
С9—С8—Н8В	109.8	O4—C35—C7	121.9 (2)
C7—C8—H8B	109.8	O3—C35—C7	113.5 (2)

H8A—C8—H8B	108.3	C37A—C36A—O3	122.8 (11)
C10—C9—C14	119.5 (3)	C37A—C36A—H36A	106.6
С10—С9—С8	125.2 (3)	O3—C36A—H36A	106.6
C14—C9—C8	115.2 (2)	С37А—С36А—Н36В	106.6
C11—C10—C9	119.8 (3)	O3—C36A—H36B	106.6
C11—C10—H10	120.1	H36A—C36A—H36B	106.6
С9—С10—Н10	120.1	O3—C36B—C37B	100.1 (15)
C12—C11—C10	120.6 (3)	O3—C36B—H36C	111.7
C12—C11—H11	119.7	C37B—C36B—H36C	111.7
C10-C11-H11	119.7	O3—C36B—H36D	111.7
C11—C12—C13	120.2 (3)	C37B—C36B—H36D	111.7
C11—C12—H12	119.9	H36C—C36B—H36D	109.5
C13—C12—H12	119.9	С36А—С37А—Н37А	109.5
C14—C13—C12	119.7 (3)	С36А—С37А—Н37В	109.5
C14—C13—H13	120.2	H37A—C37A—H37B	109.5
C12—C13—H13	120.2	С36А—С37А—Н37С	109.5
C13—C14—C9	120.2 (3)	H37A—C37A—H37C	109.5
C13—C14—C15	123.9 (3)	Н37В—С37А—Н37С	109.5
C9—C14—C15	115.8 (2)	C36B—C37B—H37D	109.5
N2-C15-C14	109.52 (18)	С36В—С37В—Н37Е	109.5
N2—C15—H15A	109.8	H37D—C37B—H37E	109.5
C14—C15—H15A	109.8	C36B—C37B—H37F	109.5
N2—C15—H15B	109.8	H37D—C37B—H37F	109.5
C14—C15—H15B	109.8	H37E—C37B—H37F	109.5
H15A—C15—H15B	108.2	O5—C38—H38A	109.5
C21—C16—C17	116.7 (2)	O5—C38—H38B	109.5
C21—C16—C6	124.1 (2)	H38A—C38—H38B	109.5
C17—C16—C6	119.2 (2)	O5—C38—H38C	109.5
C18—C17—C16	122.1 (2)	H38A—C38—H38C	109.5
C18—C17—H17	118.9	H38B—C38—H38C	109.5
С16—С17—Н17	118.9	C3—N1—C28	130.0 (2)
C17—C18—C19	120.0 (3)	C3—N1—C1	94.42 (18)
C17—C18—H18	120.0	C28—N1—C1	129.14 (19)
C19—C18—H18	120.0	C4—N2—C7	111.06 (17)
C20—C19—O5	124.8 (3)	C4—N2—C15	111.80 (16)
C20—C19—C18	119.3 (2)	C7—N2—C15	115.71 (18)
O5—C19—C18	115.9 (3)	O6—N3—O7	124.1 (2)
C19—C20—C21	120.0 (2)	O6—N3—C5	118.8 (2)
С19—С20—Н20	120.0	O7—N3—C5	117.1 (2)
С21—С20—Н20	120.0	C31—O2—C34	116.7 (2)
C16—C21—C20	121.9 (3)	C35—O3—C36A	113.4 (5)
C16—C21—H21	119.1	C35—O3—C36B	119.7 (10)
C20—C21—H21	119.1	C36A—O3—C36B	17.5 (10)
C23—C22—C27	118.6 (2)	C19—O5—C38	117.4 (3)
			x- /
N1—C1—C2—C22	119.1 (2)	C2—C22—C23—C24	-175.0 (3)
C4—C1—C2—C22	-0.6 (3)	C22—C23—C24—C25	-0.3 (5)
N1—C1—C2—C3	-1.17 (17)	C23—C24—C25—C26	-1.6 (5)

C4—C1—C2—C3	-120.9 (2)	C24—C25—C26—C27	1.6 (5)
C22—C2—C3—O1	61.1 (4)	C23—C22—C27—C26	-2.3 (4)
C1-C2-C3-O1	-177.8 (3)	C2—C22—C27—C26	174.9 (3)
C22—C2—C3—N1	-119.9 (2)	C25—C26—C27—C22	0.4 (5)
C1—C2—C3—N1	1.26 (18)	C33—C28—C29—C30	-0.6 (4)
N1—C1—C4—N2	58.1 (3)	N1-C28-C29-C30	-178.7(3)
C2—C1—C4—N2	159.31 (18)	C28—C29—C30—C31	-0.9 (5)
N1—C1—C4—C5	179.16 (17)	C29—C30—C31—O2	-179.4(3)
C2—C1—C4—C5	-79.7 (2)	C29—C30—C31—C32	2.2 (5)
N2-C4-C5-N3	94.8 (2)	C30—C31—C32—C33	-1.9 (5)
C1—C4—C5—N3	-31.3 (3)	O2—C31—C32—C33	179.5 (3)
N2—C4—C5—C6	-25.4 (2)	C31—C32—C33—C28	0.4 (5)
C1—C4—C5—C6	-151.54 (18)	C29—C28—C33—C32	0.9 (5)
N3-C5-C6-C16	142.32 (19)	N1—C28—C33—C32	179.0 (3)
C4—C5—C6—C16	-98.4 (2)	N2—C7—C35—O4	164.9 (2)
N3—C5—C6—C7	-91.7 (2)	C8—C7—C35—O4	-75.2 (3)
C4—C5—C6—C7	27.5 (2)	C6—C7—C35—O4	47.4 (3)
C16—C6—C7—N2	103.9 (2)	N2—C7—C35—O3	-20.1(3)
C5—C6—C7—N2	-19.9 (2)	C8—C7—C35—O3	99.9 (3)
C16—C6—C7—C35	-135.3 (2)	C6—C7—C35—O3	-137.6(2)
C5—C6—C7—C35	100.9 (2)	O1—C3—N1—C28	24.7 (5)
C16—C6—C7—C8	-19.4 (3)	C2-C3-N1-C28	-154.4 (2)
C5—C6—C7—C8	-143.24 (19)	O1—C3—N1—C1	177.8 (3)
N2—C7—C8—C9	49.1 (2)	C2—C3—N1—C1	-1.34 (19)
C35—C7—C8—C9	-71.1 (2)	C29—C28—N1—C3	159.1 (3)
C6—C7—C8—C9	169.71 (18)	C33—C28—N1—C3	-19.0 (4)
C7—C8—C9—C10	125.3 (2)	C29—C28—N1—C1	14.7 (4)
C7—C8—C9—C14	-51.4 (3)	C33—C28—N1—C1	-163.4 (3)
C14—C9—C10—C11	-1.5 (4)	C4—C1—N1—C3	119.2 (2)
C8—C9—C10—C11	-178.1 (3)	C2-C1-N1-C3	1.30 (19)
C9—C10—C11—C12	0.6 (4)	C4—C1—N1—C28	-87.3(3)
C10-C11-C12-C13	0.3 (5)	C2-C1-N1-C28	154.8 (2)
C11—C12—C13—C14	-0.3 (5)	C1—C4—N2—C7	138.00 (18)
C12—C13—C14—C9	-0.5(4)	C5—C4—N2—C7	12.9 (2)
C12—C13—C14—C15	175.9 (2)	C1—C4—N2—C15	-91.1 (2)
C10—C9—C14—C13	1.4 (4)	C5—C4—N2—C15	143.76 (19)
C8—C9—C14—C13	178.3 (2)	C35—C7—N2—C4	-114.9 (2)
C10—C9—C14—C15	-175.3(2)	C8—C7—N2—C4	129.7 (2)
C8—C9—C14—C15	1.7 (3)	C6—C7—N2—C4	4.4 (2)
C13—C14—C15—N2	-127.0(3)	C35—C7—N2—C15	116.2 (2)
C9-C14-C15-N2	49.5 (3)	C8—C7—N2—C15	0.8 (3)
C5-C6-C16-C21	29.0 (3)	C6-C7-N2-C15	-124.4(2)
C7—C6—C16—C21	-90.2(3)	C14-C15-N2-C4	-178.13(19)
C5—C6—C16—C17	-150.5(2)	C14—C15—N2—C7	-49.7 (3)
C7—C6—C16—C17	90.3 (3)	C6—C5—N3—O6	40.4 (3)
C_{21} — C_{16} — C_{17} — C_{18}	0.3 (4)	C4—C5—N3—O6	-76.4 (3)
C6—C16—C17—C18	179.9 (3)	C6—C5—N3—O7	-142.3(2)
C_{16} C_{17} C_{18} C_{19}	-14(5)	C4-C5-N3-07	1010(2)
	(.)	0, 00 110 07	10110 (2)

C17—C18—C19—C20	1.2 (5)	C30—C31—O2—C34	2.4 (5)
C17—C18—C19—O5	-178.5 (3)	C32—C31—O2—C34	-179.1 (3)
C19—C20—C21	1/9.7 (3)	C7—C35—O3—C36A	8.5 (8)
C18—C19—C20—C21	0.0 (4)	O4—C35—O3—C36A	-166.4 (7)
C17—C16—C21—C20	1.0 (4)	O4—C35—O3—C36B	-9.9 (10)
C6—C16—C21—C20	-178.6 (3)	C7—C35—O3—C36B	175.3 (9)
C19—C20—C21—C16	-1.1 (5)	C37A—C36A—O3—C35	106.6 (10)
C3-C2-C22-C23	-156.6 (3)	C37A—C36A—O3—C36B	-139 (5)
C1-C2-C22-C23	101.9 (3)	C37B—C36B—O3—C35	132.2 (15)
C3-C2-C22-C23	26.2 (3)	C37B—C36B—O3—C36A	59 (4)
C1-C2-C22-C27	-75.3 (3)	C20—C19—O5—C38	-1.1 (5)
C27-C22-C23-C24	2.3 (4)	C18—C19—O5—C38	178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C6—H6…O2 ⁱ	0.98	2.42	3.260 (3)	143
C20—H20…O1 ⁱⁱ	0.93	2.47	3.397 (3)	172
С29—Н29…О3	0.93	2.59	3.442 (3)	152
C29—H29…N2	0.93	2.50	3.168 (3)	128
C33—H33…O1	0.93	2.44	3.054 (4)	123

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1/2, -*y*+1/2, -*z*.