

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-hydroxymethyl-2-methylpyridine-5-carboxylate

Peter D. W. Boyd,^a* Gersande Lena^b and Julie A. Spicer^b

^aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and ^bCancer Research Laboratory, The University of Auckland, Private Bag 92019, Auckland, New Zealand Correspondence e-mail: pdw.boyd@auckland.ac.nz

Received 14 April 2008; accepted 14 April 2008

Key indicators: single-crystal X-ray study; T = 87 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.134; data-to-parameter ratio = 15.3.

The title compound, $C_{10}H_{13}NO_3$, was obtained as a by-product of the aldolization reaction of furo[3,4-*c*]pyridin-3(1*H*)-one with thiophene-2-carboxaldehyde. The substituents on the pyridine ring are nearly coplanar, with an 8.1 (2)° rotation of the hydroxmethyl group from this plane. The molecules assemble in the crystal structure as chains *via* O–H···N hydrogen bonding between the pyridine N atom and a neighbouring hydroxymethyl OH group.

Related literature

For related literature, see: Goswami *et al.* (2006), Wu *et al.* (2006). For bond-length data, see: Allen *et al.*, (1987).

a = 4.4998 (2) Å

b = 15.4499 (8) Å

c = 14.2036 (7) Å

Experimental

Crystal data $C_{10}H_{13}NO_3$ $M_r = 195.21$ Monoclinic, $P2_1/n$

$\beta = 96.417 \ (1)^{\circ}$
V = 981.27 (8) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Siemens SMART CCD diffractometer Absorption correction: none 5759 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.134$ S = 1.021987 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots N1^{i}$	0.82	2.01	2.8227 (17)	170
	1 . 2 .	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by Auckland Division of the Cancer Society of New Zealand, UniServices and The University of Auckland Research Committee.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2697).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goswami, S., Dey, S., Fun, H.-K. & Chantrapromma, S. (2006). Acta Cryst. E62, 03225–03227.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wu, Y.-M., Dong, C.-C., Liu, S., Zhu, H.-J. & Wu, Y.-Z. (2006). Acta Cryst. E62, 02102–02103.

organic compounds

 $\mu = 0.10 \text{ mm}^{-1}$ T = 87 (2) K

 $R_{\rm int} = 0.081$

130 parameters

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

 $0.32 \times 0.18 \times 0.12 \text{ mm}$

1987 independent reflections

1786 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2008). E64, o883 [doi:10.1107/S160053680801026X]

Ethyl 4-hydroxymethyl-2-methylpyridine-5-carboxylate

Peter D. W. Boyd, Gersande Lena and Julie A. Spicer

S1. Comment

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are normal (Allen *et al.*, 1987). The ethyl ester group is nearly coplanar with the pyridine ring (C1-C5,N1 rmsd 0.0064 Å; C2,C8,C9,C10,O1,O2 rmsd 0.0064 Å, interplanar angle 2.17 (9)°). The hydroxymethyl group is rotated slightly out of the plane (O3—C7—C3 —C4 8.1 (2)°).

The molecules in the crystal are connected *via* hydrogen bonding between the pyridine N atom and an adjacent OH group (Table 1) to give chains along the *c* axis (Figure 2a). These chains are stacked along the *a* axis (Figure 2 b). Similar hydrogen bonding interactions are observed in other hydroxymethyl substituted pyridines (Goswami *et al.*, 2006, Wu *et al.*, 2006).

S2. Experimental

The title compound was obtained as a by-product of the aldolization reaction of furo[3,4-c] pyridin-3(1*H*)-one with thiophene-2-carboxaldehyde. The desired product was not isolated, only the starting material and the title compound were characterized after the reaction.

Ethyl 4-(hydroxymethyl)-6-methylnicotinate (I): Furo[3,4-*c*]pyridin-3(1*H*)-one (II) (110 mg,0.74 mmol, 1 eq.) was suspended in EtOH (15 ml) at 65°C. Thiophene-2-carboxaldehyde (III) (99 mg, 0.88 mmol) and triethylamine (18 mg,0.18 mmol) were then added and the reaction mixture stirred at 80°C for 6 days. After cooling to room temperature the reaction was quenched with 1*M* HCl and extracted with EtOAc. The organic layer was rinsed with water and dried over MgSO4. Removal of MgSO₄ by filtration and evaporation of solvent under reduced pressure gave the crude product. This product was dissolved in dichloromethane and stored at 4°C to yield colorless crystals (25 mg, 17% yield) which were isolated by filtration and identified as the title compound. ¹H NMR (400 MHz, CD₃)₂SO, 298 K) δ 8.83 (s, 1 H), 7.03 (s, 1 H), 5.43 (s, 1 H), 4.83 (br s, 2 H), 4.30 (q, J = 7.1 Hz, 2 H), 2.54 (s, 3 H), 1.32 (t, J = 7.1 Hz, 3 H). LCMS (APCI⁺) calcd for C₁₀H₁₃NO₃ 195 (MH⁺), found 196.

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [O—H 0.82 Å, C—H 0.93–0.97 Å), with $U_{iso}(H) = 1.5$ times $U_{eq}(O)$ and $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figure 1

Structure of (I) showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitrary spheres.

Figure 2

Illustration of the arrangement of the complex (I) in the crystal along the *a* axis showing pyridine N···H—O hydrogen bonding arrangement.

Figure 3

Illustration of the arrangement of the complex (I) in the crystal along the *a* axis showing stacking of hydrogen bonded chains.

Ethyl 4-hydroxymethyl-2-methylpyridine-5-carboxylate

Crystal data

$C_{10}H_{13}NO_3$	F(000) = 416
$M_r = 195.21$	$D_x = 1.321 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
a = 4.4998 (2) A	Cell parameters from 4149 reflections
b = 15.4499 (8) Å	$\theta = 2.0-26.3^{\circ}$
c = 14.2036 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 96.417 (1)^{\circ}$	T = 87 K
$V = 981.27 (8) Å^{3}$	Needle, colourless
Z = 4	$0.32 \times 0.18 \times 0.12 \text{ mm}$
Data collection Siemens SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Area–detector ω scans 5759 measured reflections 1987 independent reflections	1786 reflections with $l > 2\sigma(I)$ $R_{int} = 0.081$ $\theta_{max} = 26.3^\circ, \ \theta_{min} = 2.0^\circ$ $h = -5 \rightarrow 5$ $k = -19 \rightarrow 17$ $l = -17 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.02	H-atom parameters constrained
1987 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.7105P]$
130 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.4226 (3)	0.73560 (9)	0.54034 (9)	0.0197 (3)
01	0.7485 (3)	0.96228 (7)	0.64708 (8)	0.0207 (3)
02	0.5468 (3)	0.95300 (8)	0.78490 (8)	0.0255 (3)
03	-0.0290 (3)	0.75164 (8)	0.84444 (8)	0.0215 (3)
Н3	-0.0566	0.7606	0.8997	0.032*
C1	0.5219 (4)	0.81023 (11)	0.58079 (11)	0.0184 (4)
H1	0.6416	0.8453	0.5474	0.022*
C2	0.4576 (3)	0.83885 (10)	0.66979 (11)	0.0167 (3)
C3	0.2720 (3)	0.78652 (11)	0.72042 (10)	0.0167 (3)
C4	0.1707 (4)	0.70920 (11)	0.67810 (11)	0.0189 (4)
H4	0.0480	0.6732	0.7092	0.023*
C5	0.2507 (4)	0.68475 (11)	0.58930 (11)	0.0191 (4)
C6	0.1465 (5)	0.60006 (12)	0.54492 (12)	0.0290 (4)
H6A	-0.0682	0.5987	0.5366	0.044*
H6B	0.2204	0.5532	0.5854	0.044*
H6C	0.2206	0.5942	0.4844	0.044*
C7	0.1868 (4)	0.81091 (11)	0.81720 (11)	0.0184 (4)
H7A	0.3629	0.8099	0.8633	0.022*
H7B	0.1053	0.8691	0.8152	0.022*
C8	0.5846 (3)	0.92273 (11)	0.70790 (11)	0.0184 (4)
С9	0.8760 (4)	1.04629 (11)	0.67761 (12)	0.0218 (4)
H9A	1.0137	1.0397	0.7348	0.026*
H9B	0.7187	1.0860	0.6906	0.026*
C10	1.0378 (4)	1.08024 (12)	0.59824 (12)	0.0242 (4)
H10A	1.1936	1.0406	0.5864	0.036*

supporting information

H10B	1.1235	1.1357	0.6156	0.036*
H10C	0.8994	1.0861	0.5421	0.036*

1+	dianla		n an an otona	182
Atomic	aispia	cement	parameters	(A^{*})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0253 (7)	0.0210 (7)	0.0131 (6)	0.0006 (5)	0.0027 (5)	0.0001 (5)
01	0.0250 (6)	0.0200 (6)	0.0180 (6)	-0.0041 (5)	0.0057 (5)	-0.0031 (5)
O2	0.0332 (7)	0.0261 (7)	0.0180 (6)	-0.0048 (5)	0.0073 (5)	-0.0061 (5)
O3	0.0263 (6)	0.0275 (6)	0.0115 (5)	-0.0033 (5)	0.0060 (5)	-0.0002 (5)
C1	0.0216 (8)	0.0205 (8)	0.0137 (7)	-0.0002 (6)	0.0043 (6)	0.0020 (6)
C2	0.0169 (7)	0.0200 (8)	0.0127 (7)	0.0034 (6)	0.0001 (6)	0.0000 (6)
C3	0.0174 (7)	0.0216 (8)	0.0108 (7)	0.0038 (6)	0.0005 (6)	0.0028 (6)
C4	0.0223 (8)	0.0220 (8)	0.0123 (7)	-0.0013 (6)	0.0022 (6)	0.0032 (6)
C5	0.0237 (8)	0.0206 (8)	0.0127 (7)	0.0007 (6)	0.0005 (6)	0.0001 (6)
C6	0.0450 (11)	0.0257 (9)	0.0170 (8)	-0.0089 (8)	0.0062 (7)	-0.0030 (7)
C7	0.0215 (8)	0.0218 (8)	0.0123 (7)	-0.0003 (6)	0.0032 (6)	0.0003 (6)
C8	0.0191 (7)	0.0210 (8)	0.0151 (7)	0.0024 (6)	0.0021 (6)	0.0006 (6)
C9	0.0255 (8)	0.0184 (8)	0.0217 (8)	-0.0018 (6)	0.0026 (7)	-0.0035 (6)
C10	0.0270 (8)	0.0234 (9)	0.0219 (8)	-0.0051 (7)	0.0015 (7)	-0.0014 (7)

Geometric parameters (Å, °)

N1—C1	1.342 (2)	C4—H4	0.9300
N1—C5	1.349 (2)	C5—C6	1.504 (2)
O1—C8	1.344 (2)	С6—Н6А	0.9600
O1—C9	1.4649 (19)	С6—Н6В	0.9600
O2—C8	1.219 (2)	С6—Н6С	0.9600
O3—C7	1.420 (2)	C7—H7A	0.9700
O3—H3	0.8200	С7—Н7В	0.9700
C1—C2	1.400 (2)	C9—C10	1.503 (2)
C1—H1	0.9300	С9—Н9А	0.9700
C2—C3	1.415 (2)	С9—Н9В	0.9700
C2—C8	1.493 (2)	C10—H10A	0.9600
C3—C4	1.391 (2)	C10—H10B	0.9600
С3—С7	1.515 (2)	C10—H10C	0.9600
C4—C5	1.402 (2)		
C1N1C5	117 54 (14)	Н6В—С6—Н6С	109.5
$C_{8}^{-} O_{1}^{-} C_{9}^{0}$	115 95 (13)	03 - 07 - 03	109.5
C7	109 5	$O_3 - C_7 - H_7 A$	109.70 (13)
N1-C1-C2	124 43 (15)	C3 - C7 - H7A	109.7
N1-C1-H1	117.8	O3 - C7 - H7B	109.7
C2-C1-H1	117.8	C3 - C7 - H7B	109.7
C1-C2-C3	118.16 (15)	H7A—C7—H7B	108.2
C1—C2—C8	119.48 (14)	02	122.94 (15)
C3—C2—C8	122.36 (14)	02-C8-C2	124.91 (15)
C4—C3—C2	117.04 (14)	01	112.14 (13)

C4—C3—C7	120.10 (14)	O1—C9—C10	107.08 (13)
C2—C3—C7	122.86 (14)	O1—C9—H9A	110.3
C3—C4—C5	121.03 (15)	С10—С9—Н9А	110.3
С3—С4—Н4	119.5	O1—C9—H9B	110.3
С5—С4—Н4	119.5	С10—С9—Н9В	110.3
N1C5C4	121.78 (15)	H9A—C9—H9B	108.6
N1—C5—C6	117.43 (14)	C9—C10—H10A	109.5
C4—C5—C6	120.79 (15)	C9—C10—H10B	109.5
С5—С6—Н6А	109.5	H10A-C10-H10B	109.5
С5—С6—Н6В	109.5	C9—C10—H10C	109.5
H6A—C6—H6B	109.5	H10A-C10-H10C	109.5
С5—С6—Н6С	109.5	H10B-C10-H10C	109.5
Н6А—С6—Н6С	109.5		
C5—N1—C1—C2	-0.4 (2)	C3—C4—C5—N1	-1.5 (2)
N1—C1—C2—C3	-0.9 (2)	C3—C4—C5—C6	178.53 (15)
N1—C1—C2—C8	179.21 (14)	C4—C3—C7—O3	-8.1 (2)
C1—C2—C3—C4	1.0 (2)	C2—C3—C7—O3	172.83 (13)
C8—C2—C3—C4	-179.12 (14)	C9—O1—C8—O2	-1.5 (2)
C1—C2—C3—C7	-179.91 (14)	C9—O1—C8—C2	178.51 (12)
C8—C2—C3—C7	0.0 (2)	C1—C2—C8—O2	-178.81 (16)
C2—C3—C4—C5	0.1 (2)	C3—C2—C8—O2	1.3 (2)
C7—C3—C4—C5	-178.98 (14)	C1—C2—C8—O1	1.2 (2)
C1—N1—C5—C4	1.6 (2)	C3—C2—C8—O1	-178.66 (13)
C1—N1—C5—C6	-178.42 (15)	C8—O1—C9—C10	-177.70 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…N1 ⁱ	0.82	2.01	2.8227 (17)	170

Symmetry code: (i) x-1/2, -y+3/2, z+1/2.