

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (2S,4aR,3S,8aR,9R,10R)-1,4-Diallyl-2,3diphenylperhydroguinoxaline

### Fang Chen and Heng-Yun Ye\*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China. Correspondence e-mail: hyye@seu.edu.cn

Received 14 April 2008; accepted 21 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma(C-C) = 0.004$  Å; R factor = 0.060; wR factor = 0.154; data-to-parameter ratio = 11.5.

In the title compound, C<sub>26</sub>H<sub>32</sub>N<sub>2</sub>, the cyclohexane and piperazine rings each adopt a chair conformation. Both phenyl rings and the two propen-3-yl residues are in equatorial positions. There are no  $C-H \cdots N$  hydrogen bonds nor  $\pi - \pi$  interactions between the aromatic rings. The absolute configuration was assigned with reference to the starting material.

## **Related literature**

For an olefin-copper (I) complex with high anisotropy, see: Ye et al. (2007). For examples of the structure of olefins, see: Bond & Davies (2001); Presenti et al. (2001); Wang & Ye (2008).



T = 293 (2) K

 $R_{\rm int} = 0.040$ 

22256 measured reflections

2923 independent reflections

2452 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

#### Crystal data

C26H32N2 V = 2242 (2) Å<sup>3</sup>  $M_r = 372.54$ Z = 4Orthorhombic,  $P2_12_12_1$ Mo  $K\alpha$  radiation a = 6.509 (4) Å  $\mu = 0.06 \text{ mm}^{-3}$ b = 17.437 (10) Åc = 19.757 (12) Å  $0.35 \times 0.15 \times 0.15$  mm

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)  $T_{\min} = 0.808, T_{\max} = 1.000$ (expected range = 0.801 - 0.990)

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 254 parameters  $wR(F^2) = 0.154$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^-$ S = 1.13 $\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$ 2923 reflections

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2698).

#### References

- Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1041-o1042.
- Presenti, C., Bravo, P., Corradi, E., Frigerioe, M., Meille, S. V., Panzeri, W. & Viani, F. (2001). J. Org. Chem. 66, 5637-5640.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, 0359.

Ye, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856

# supporting information

Acta Cryst. (2008). E64, o907 [doi:10.1107/S1600536808011276]

# (2S,4aR,3S,8aR,9R,10R)-1,4-Diallyl-2,3-diphenylperhydroquinoxaline

## Fang Chen and Heng-Yun Ye

## S1. Comment

Recently, we have reported large anisotropy of an olefin copper (I) complex (Ye, *et al.*, 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound (Fig. 1).

The distances of the C=C double bonds [C8-C9 1.284 (5)Å, C25-C26 1.235 (5)Å] are slightly shorter than those found in other olefin compounds (Bond *et al.*, 2001; Presenti *et al.*, 2001). This might be due to an increased thermal vibration of the terminal C atoms. The two phenyl and the two propen-3-yl residues are located in an equatorial postion. The cyclohexane ring and the piperazine ring adopt a chair conformation. The two aromatic rings are gauche to each other [torsion angle C11—C10—C17—C18 -58.0 (2)°]. The dihedral angle between the two aromatic rings is 50.66 (0.10)°.

## S2. Experimental

(4aR,8aR)-2,3-Diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline (Wang *et al.*(2008) (2.0 g, 6.9 mmol) was dissolved in methanol (30 ml) and NaBH<sub>4</sub> (0.3 g) was added to the solution portionally. The mixture was stirred at room temperature for 3 h. The resulting solution was poured into ice water (200 mL), then extracted with dichlomethane (30 ml  $\times$  2). The organic phase was washed with saturated sodium chloride aqueous solution (20 mL) then dried with anhydrous sodium sulfate. After removing the solvent, the residue, potassium carbonate (3 g) and ethanol (20 mL) were placed to a 50 mL round bottom flask. After stirred for 15 min, a solution of allyl bromide (1.4 g, 11.5 mmol) in ethanol (10 mL) was added to the reaction mixture. The mixture was heated to reflux for *ca* 2 h until the starting material disappeared with TLC detection. The resulting solution was cooled and filtered off. The solvent was removed under reduced pressure to give a white semisolid product. The crude product was recrystallized by slowly evaporating an acetone solution to yield colorless block-like crystals.

## **S3. Refinement**

All H atoms were found in a difference electron-density map. Nevertheless, they were placed at idealized positons and refined using a riding model with  $C_{methine}$ —H = 0.98Å,  $C_{methylene}$ —H = 0.97Å,  $C_{aryl}$ —H =0.93Å,  $C_{ethylene}$ —H =0.93Å, and  $U_{iso}$ H = 1.2  $U_{eq}$ C. Due to the absence of significant anomalous scattering effects, 2187 Friedel pairs were merged. The absolute configuration was set according the starting material.



## Figure 1

Molecular conformation of the title compound with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.



# Figure 2

The crystal packing of the title compound viewed along the *a* axis.

## (2S,4aR,3S,8aR,9R,10R)- 1,4-Diallyl-2,3-diphenylperhydroquinoxaline

| Crystal | data |
|---------|------|
|---------|------|

| $C_{26}H_{32}N_2$                                    | F(000) = 808                                                        |
|------------------------------------------------------|---------------------------------------------------------------------|
| $M_r = 372.54$                                       | $D_{\rm x} = 1.101 {\rm Mg} {\rm m}^{-3}$                           |
| Orthorhombic, $P2_12_12_1$                           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å               |
| Hall symbol: P 2ac 2ab                               | Cell parameters from 15922 reflections                              |
| a = 6.509 (4)  Å                                     | $\theta = 3.3 - 27.5^{\circ}$                                       |
| b = 17.437 (10)  Å                                   | $\mu = 0.06 \mathrm{~mm^{-1}}$                                      |
| c = 19.757 (12)  Å                                   | T = 293  K                                                          |
| $V = 2242 (2) Å^3$                                   | Block, colorless                                                    |
| Z = 4                                                | $0.35 \times 0.15 \times 0.15 \text{ mm}$                           |
| Data collection                                      |                                                                     |
| Rigaku SCXmini                                       | 22256 measured reflections                                          |
| diffractometer                                       | 2923 independent reflections                                        |
| Radiation source: fine-focus sealed tube             | 2452 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                               | $R_{\rm int} = 0.040$                                               |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$ |
| $\omega$ scans                                       | $h = -8 \longrightarrow 8$                                          |
| Absorption correction: multi-scan                    | $k = -22 \longrightarrow 22$                                        |
| (CrystalClear; Rigaku, 2005)                         | $l = -25 \rightarrow 25$                                            |
| $T_{\min} = 0.809, \ T_{\max} = 1.000$               |                                                                     |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.059$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.154$                               | neighbouring sites                                       |
| <i>S</i> = 1.13                                 | H-atom parameters constrained                            |
| 2923 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0674P)^2 + 0.2312P]$        |
| 254 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.15 \ { m e} \ { m \AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2^2 > \sigma(F^2^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|--------------|-----------------------------|
| C1  | 0.5826 (4)  | 0.80378 (13) | 0.84675 (11) | 0.0506 (5)                  |
| H1A | 0.7233      | 0.8238       | 0.8463       | 0.061*                      |
| C2  | 0.5523 (5)  | 0.75694 (16) | 0.91185 (12) | 0.0647 (7)                  |
| H2A | 0.4177      | 0.7331       | 0.9110       | 0.078*                      |
| H2B | 0.6544      | 0.7165       | 0.9137       | 0.078*                      |
| C3  | 0.5705 (6)  | 0.80629 (17) | 0.97458 (13) | 0.0761 (8)                  |
| H3A | 0.5417      | 0.7754       | 1.0143       | 0.091*                      |
| H3B | 0.7101      | 0.8253       | 0.9784       | 0.091*                      |
| C4  | 0.4241 (6)  | 0.87304 (17) | 0.97238 (12) | 0.0745 (8)                  |
| H4A | 0.4446      | 0.9049       | 1.0120       | 0.089*                      |
| H4B | 0.2839      | 0.8542       | 0.9732       | 0.089*                      |
| C5  | 0.4569 (5)  | 0.92060 (15) | 0.90914 (11) | 0.0643 (7)                  |
| H5A | 0.5932      | 0.9431       | 0.9102       | 0.077*                      |
| H5B | 0.3576      | 0.9621       | 0.9081       | 0.077*                      |
| C6  | 0.4339 (4)  | 0.87160 (12) | 0.84510(11)  | 0.0486 (5)                  |
| H6A | 0.2934      | 0.8515       | 0.8436       | 0.058*                      |
| C7  | 0.3422 (5)  | 0.98753 (13) | 0.78078 (14) | 0.0653 (7)                  |
| H7A | 0.3672      | 1.0132       | 0.7380       | 0.078*                      |
| H7B | 0.3879      | 1.0216       | 0.8165       | 0.078*                      |
| C8  | 0.1147 (5)  | 0.97599 (18) | 0.78826 (18) | 0.0834 (9)                  |
| H8A | 0.0553      | 0.9367       | 0.7631       | 0.100*                      |
| C9  | -0.0048 (7) | 1.0156 (3)   | 0.8263 (2)   | 0.1171 (14)                 |
| H9A | 0.0483      | 1.0554       | 0.8523       | 0.141*                      |
| H9B | -0.1444     | 1.0045       | 0.8279       | 0.141*                      |

| C10  | 0.4402 (4) | 0.86967 (12) | 0.72229 (11) | 0.0483 (5)  |
|------|------------|--------------|--------------|-------------|
| H10A | 0.2982     | 0.8509       | 0.7218       | 0.058*      |
| C11  | 0.4779 (4) | 0.91552 (13) | 0.65788 (11) | 0.0533 (6)  |
| C12  | 0.3334 (5) | 0.91742 (15) | 0.60669 (13) | 0.0693 (8)  |
| H12A | 0.2095     | 0.8915       | 0.6120       | 0.083*      |
| C13  | 0.3722 (7) | 0.95790 (18) | 0.54713 (15) | 0.0914 (11) |
| H13A | 0.2743     | 0.9585       | 0.5129       | 0.110*      |
| C14  | 0.5517 (7) | 0.9965 (2)   | 0.53880 (15) | 0.0981 (12) |
| H14A | 0.5765     | 1.0233       | 0.4990       | 0.118*      |
| C15  | 0.6952 (6) | 0.9957 (2)   | 0.58882 (17) | 0.0956 (11) |
| H15A | 0.8185     | 1.0219       | 0.5830       | 0.115*      |
| C16  | 0.6586 (5) | 0.95579 (16) | 0.64889 (14) | 0.0734 (8)  |
| H16A | 0.7567     | 0.9563       | 0.6831       | 0.088*      |
| C17  | 0.5854 (4) | 0.80049 (12) | 0.72363 (11) | 0.0494 (5)  |
| H17A | 0.7274     | 0.8192       | 0.7231       | 0.059*      |
| C18  | 0.5511 (4) | 0.75131 (14) | 0.66111 (11) | 0.0541 (6)  |
| C19  | 0.6996 (5) | 0.74603 (15) | 0.61113 (13) | 0.0677 (7)  |
| H19A | 0.8235     | 0.7719       | 0.6165       | 0.081*      |
| C20  | 0.6668 (6) | 0.70288 (18) | 0.55319 (15) | 0.0857 (10) |
| H20A | 0.7678     | 0.7002       | 0.5200       | 0.103*      |
| C21  | 0.4855 (6) | 0.66430 (17) | 0.54495 (15) | 0.0826 (10) |
| H21A | 0.4637     | 0.6352       | 0.5062       | 0.099*      |
| C22  | 0.3358 (6) | 0.66848 (16) | 0.59373 (14) | 0.0763 (8)  |
| H22A | 0.2119     | 0.6428       | 0.5878       | 0.092*      |
| C23  | 0.3702 (4) | 0.71126 (15) | 0.65195 (13) | 0.0642 (7)  |
| H23A | 0.2696     | 0.7129       | 0.6853       | 0.077*      |
| C24  | 0.6823 (5) | 0.68533 (14) | 0.78648 (14) | 0.0677 (7)  |
| H24A | 0.6575     | 0.6576       | 0.7447       | 0.081*      |
| H24B | 0.6373     | 0.6528       | 0.8234       | 0.081*      |
| C25  | 0.9103 (5) | 0.6977 (2)   | 0.79341 (19) | 0.0882 (10) |
| H25A | 0.9648     | 0.7397       | 0.7705       | 0.106*      |
| C26  | 1.0331 (7) | 0.6584 (3)   | 0.8261 (2)   | 0.1236 (16) |
| H26A | 0.9870     | 0.6158       | 0.8499       | 0.148*      |
| H26B | 1.1716     | 0.6714       | 0.8269       | 0.148*      |
| N1   | 0.4696 (3) | 0.91737 (10) | 0.78298 (9)  | 0.0510 (4)  |
| N2   | 0.5531 (3) | 0.75566 (10) | 0.78624 (9)  | 0.0512 (4)  |
|      |            |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|-------------|--------------|--------------|
| C1 | 0.0577 (13) | 0.0487 (11) | 0.0453 (11) | 0.0009 (11) | -0.0019 (11) | 0.0009 (9)   |
| C2 | 0.0857 (18) | 0.0610 (15) | 0.0474 (12) | 0.0109 (15) | -0.0022 (13) | 0.0088 (11)  |
| C3 | 0.102 (2)   | 0.0804 (18) | 0.0453 (13) | 0.0067 (19) | -0.0094 (15) | 0.0070 (13)  |
| C4 | 0.108 (2)   | 0.0775 (17) | 0.0380 (11) | 0.0065 (18) | -0.0012 (14) | -0.0055 (12) |
| C5 | 0.0890 (19) | 0.0562 (14) | 0.0477 (13) | 0.0034 (14) | -0.0046 (13) | -0.0067 (11) |
| C6 | 0.0582 (13) | 0.0467 (11) | 0.0409 (11) | 0.0014 (11) | -0.0041 (10) | -0.0008 (9)  |
| C7 | 0.096 (2)   | 0.0444 (11) | 0.0551 (13) | 0.0100 (12) | -0.0002 (15) | 0.0012 (11)  |
| C8 | 0.089 (2)   | 0.0738 (17) | 0.088 (2)   | 0.0259 (17) | -0.0153 (19) | -0.0051 (17) |
|    |             |             |             |             |              |              |

| С9  | 0.103 (3)   | 0.118 (3)   | 0.130 (3)   | 0.024 (3)    | 0.021 (3)    | -0.012 (3)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C10 | 0.0579 (13) | 0.0453 (11) | 0.0419 (11) | -0.0045 (10) | -0.0003 (11) | 0.0008 (9)   |
| C11 | 0.0703 (15) | 0.0473 (12) | 0.0422 (11) | -0.0025 (12) | -0.0015 (11) | 0.0024 (9)   |
| C12 | 0.088 (2)   | 0.0602 (15) | 0.0600 (15) | -0.0094 (15) | -0.0194 (14) | 0.0080 (12)  |
| C13 | 0.138 (3)   | 0.0806 (19) | 0.0553 (16) | -0.014 (2)   | -0.0286 (19) | 0.0168 (15)  |
| C14 | 0.155 (4)   | 0.085 (2)   | 0.0537 (16) | -0.026 (3)   | -0.002 (2)   | 0.0203 (16)  |
| C15 | 0.113 (3)   | 0.098 (2)   | 0.075 (2)   | -0.038 (2)   | 0.012 (2)    | 0.0172 (18)  |
| C16 | 0.0829 (19) | 0.0798 (18) | 0.0574 (14) | -0.0230 (16) | -0.0063 (15) | 0.0153 (14)  |
| C17 | 0.0553 (12) | 0.0473 (11) | 0.0457 (11) | -0.0027 (10) | 0.0035 (11)  | 0.0010 (9)   |
| C18 | 0.0682 (15) | 0.0476 (12) | 0.0464 (12) | 0.0014 (12)  | 0.0053 (11)  | -0.0016 (10) |
| C19 | 0.0761 (18) | 0.0638 (15) | 0.0630 (15) | -0.0032 (15) | 0.0167 (13)  | -0.0039 (13) |
| C20 | 0.113 (3)   | 0.085 (2)   | 0.0590 (16) | -0.006 (2)   | 0.0291 (18)  | -0.0160 (15) |
| C21 | 0.119 (3)   | 0.0755 (19) | 0.0527 (15) | 0.002 (2)    | 0.0028 (17)  | -0.0179 (14) |
| C22 | 0.090 (2)   | 0.0706 (17) | 0.0681 (17) | -0.0135 (16) | -0.0041 (17) | -0.0106 (14) |
| C23 | 0.0728 (16) | 0.0665 (15) | 0.0534 (13) | -0.0082 (14) | 0.0096 (13)  | -0.0093 (12) |
| C24 | 0.097 (2)   | 0.0477 (12) | 0.0581 (14) | 0.0146 (13)  | 0.0004 (16)  | 0.0027 (11)  |
| C25 | 0.084 (2)   | 0.0784 (19) | 0.102 (2)   | 0.0273 (18)  | 0.0133 (19)  | 0.0080 (19)  |
| C26 | 0.107 (3)   | 0.137 (4)   | 0.127 (4)   | 0.027 (3)    | -0.026 (3)   | 0.007 (3)    |
| N1  | 0.0688 (12) | 0.0407 (9)  | 0.0434 (9)  | 0.0014 (8)   | -0.0006 (10) | 0.0024 (8)   |
| N2  | 0.0653 (11) | 0.0411 (9)  | 0.0474 (10) | 0.0034 (8)   | 0.0014 (10)  | 0.0016 (8)   |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| C1—N2  | 1.473 (3) | C12—C13  | 1.395 (4) |
|--------|-----------|----------|-----------|
| C1—C6  | 1.528 (3) | C12—H12A | 0.9300    |
| C1—C2  | 1.536 (3) | C13—C14  | 1.358 (6) |
| C1—H1A | 0.9800    | C13—H13A | 0.9300    |
| C2—C3  | 1.514 (4) | C14—C15  | 1.360 (5) |
| C2—H2A | 0.9700    | C14—H14A | 0.9300    |
| C2—H2B | 0.9700    | C15—C16  | 1.396 (4) |
| C3—C4  | 1.505 (4) | C15—H15A | 0.9300    |
| С3—НЗА | 0.9700    | C16—H16A | 0.9300    |
| С3—Н3В | 0.9700    | C17—N2   | 1.478 (3) |
| C4—C5  | 1.515 (4) | C17—C18  | 1.520 (3) |
| C4—H4A | 0.9700    | C17—H17A | 0.9800    |
| C4—H4B | 0.9700    | C18—C23  | 1.381 (4) |
| C5—C6  | 1.534 (3) | C18—C19  | 1.385 (4) |
| C5—H5A | 0.9700    | C19—C20  | 1.386 (4) |
| C5—H5B | 0.9700    | C19—H19A | 0.9300    |
| C6—N1  | 1.482 (3) | C20—C21  | 1.368 (5) |
| С6—Н6А | 0.9800    | C20—H20A | 0.9300    |
| C7—N1  | 1.479 (3) | C21—C22  | 1.373 (5) |
| С7—С8  | 1.501 (5) | C21—H21A | 0.9300    |
| C7—H7A | 0.9700    | C22—C23  | 1.389 (4) |
| С7—Н7В | 0.9700    | C22—H22A | 0.9300    |
| С8—С9  | 1.284 (5) | C23—H23A | 0.9300    |
| C8—H8A | 0.9300    | C24—N2   | 1.487 (3) |
| С9—Н9А | 0.9300    | C24—C25  | 1.506 (5) |
|        |           |          |           |

| С9—Н9В     | 0.9300      | C24—H24A     | 0.9700      |
|------------|-------------|--------------|-------------|
| C10—N1     | 1.472 (3)   | C24—H24B     | 0.9700      |
| C10—C11    | 1.523 (3)   | C25—C26      | 1.235 (5)   |
| C10—C17    | 1.533 (3)   | C25—H25A     | 0.9300      |
| C10—H10A   | 0.9800      | C26—H26A     | 0.9300      |
| C11—C12    | 1.381 (4)   | C26—H26B     | 0.9300      |
| C11—C16    | 1.381 (4)   |              |             |
|            |             |              |             |
| N2—C1—C6   | 109.94 (18) | C11—C12—C13  | 120.4 (3)   |
| N2—C1—C2   | 111.09 (18) | C11—C12—H12A | 119.8       |
| C6—C1—C2   | 110.4 (2)   | C13—C12—H12A | 119.8       |
| N2—C1—H1A  | 108.5       | C14—C13—C12  | 120.5 (3)   |
| C6—C1—H1A  | 108.5       | C14—C13—H13A | 119.7       |
| C2—C1—H1A  | 108.5       | C12—C13—H13A | 119.7       |
| C3—C2—C1   | 111.9 (2)   | C13—C14—C15  | 119.9 (3)   |
| C3—C2—H2A  | 109.2       | C13—C14—H14A | 120.1       |
| C1—C2—H2A  | 109.2       | C15—C14—H14A | 120.1       |
| C3—C2—H2B  | 109.2       | C14—C15—C16  | 120.3 (3)   |
| C1—C2—H2B  | 109.2       | C14—C15—H15A | 119.8       |
| H2A—C2—H2B | 107.9       | C16—C15—H15A | 119.8       |
| C4—C3—C2   | 111.5 (2)   | C11—C16—C15  | 120.5 (3)   |
| С4—С3—НЗА  | 109.3       | C11—C16—H16A | 119.7       |
| С2—С3—НЗА  | 109.3       | C15—C16—H16A | 119.7       |
| C4—C3—H3B  | 109.3       | N2—C17—C18   | 111.13 (17) |
| С2—С3—Н3В  | 109.3       | N2-C17-C10   | 110.05 (18) |
| НЗА—СЗ—НЗВ | 108.0       | C18—C17—C10  | 109.82 (19) |
| C3—C4—C5   | 111.0 (2)   | N2—C17—H17A  | 108.6       |
| C3—C4—H4A  | 109.4       | C18—C17—H17A | 108.6       |
| C5—C4—H4A  | 109.4       | С10—С17—Н17А | 108.6       |
| C3—C4—H4B  | 109.4       | C23—C18—C19  | 117.9 (2)   |
| C5—C4—H4B  | 109.4       | C23—C18—C17  | 121.1 (2)   |
| H4A—C4—H4B | 108.0       | C19—C18—C17  | 120.9 (2)   |
| C4—C5—C6   | 111.2 (2)   | C18—C19—C20  | 121.2 (3)   |
| С4—С5—Н5А  | 109.4       | C18—C19—H19A | 119.4       |
| С6—С5—Н5А  | 109.4       | С20—С19—Н19А | 119.4       |
| C4—C5—H5B  | 109.4       | C21—C20—C19  | 119.9 (3)   |
| С6—С5—Н5В  | 109.4       | C21—C20—H20A | 120.1       |
| H5A—C5—H5B | 108.0       | C19—C20—H20A | 120.1       |
| N1-C6-C1   | 109.56 (19) | C20—C21—C22  | 120.2 (3)   |
| N1—C6—C5   | 111.58 (19) | C20—C21—H21A | 119.9       |
| C1—C6—C5   | 110.58 (19) | C22—C21—H21A | 119.9       |
| N1—C6—H6A  | 108.3       | C21—C22—C23  | 119.7 (3)   |
| С1—С6—Н6А  | 108.3       | C21—C22—H22A | 120.2       |
| С5—С6—Н6А  | 108.3       | C23—C22—H22A | 120.2       |
| N1—C7—C8   | 116.1 (2)   | C18—C23—C22  | 121.2 (3)   |
| N1—C7—H7A  | 108.3       | C18—C23—H23A | 119.4       |
| С8—С7—Н7А  | 108.3       | С22—С23—Н23А | 119.4       |
| N1—C7—H7B  | 108.3       | N2—C24—C25   | 116.1 (2)   |

| С8—С7—Н7В       | 108.3       | N2—C24—H24A   | 108.3       |
|-----------------|-------------|---------------|-------------|
| H7A—C7—H7B      | 107.4       | C25—C24—H24A  | 108.3       |
| C9—C8—C7        | 125.7 (4)   | N2—C24—H24B   | 108.3       |
| С9—С8—Н8А       | 117.2       | C25—C24—H24B  | 108.3       |
| С7—С8—Н8А       | 117.2       | H24A—C24—H24B | 107.4       |
| С8—С9—Н9А       | 120.0       | C26—C25—C24   | 127.2 (4)   |
| С8—С9—Н9В       | 120.0       | C26—C25—H25A  | 116.4       |
| Н9А—С9—Н9В      | 120.0       | C24—C25—H25A  | 116.4       |
| N1-C10-C11      | 111.29 (17) | C25—C26—H26A  | 120.0       |
| N1-C10-C17      | 110.49 (18) | C25—C26—H26B  | 120.0       |
| C11—C10—C17     | 109.16 (18) | H26A—C26—H26B | 120.0       |
| N1-C10-H10A     | 108.6       | C10—N1—C7     | 111.74 (19) |
| C11-C10-H10A    | 108.6       | C10—N1—C6     | 110.48 (16) |
| C17—C10—H10A    | 108.6       | C7—N1—C6      | 112.43 (19) |
| C12—C11—C16     | 118.3 (2)   | C1—N2—C17     | 111.06 (16) |
| C12—C11—C10     | 121.0 (2)   | C1—N2—C24     | 113.17 (19) |
| C16—C11—C10     | 120.8 (2)   | C17—N2—C24    | 110.99 (19) |
| C11—C10—C17—C18 | -58.0 (2)   |               |             |