Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

μ-Pyrazine-bis[tetraaquacadmium(II)] μ-pyrazine-bis[tetraacetatocadmium(II)]

Hoong-Kun Fun, ${ }^{\text {a* }}$ Suchada Chantrapromma ${ }^{\text {b }} \ddagger$ and Farzin Marandic

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {c }}$ Department of Science, Payame Noor University, Zanjan, Iran
Correspondence e-mail: hkfun@usm.my

Received 31 March 2008; accepted 19 April 2008

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.016 ; w R$ factor $=0.034$; data-to-parameter ratio $=17.1$.

In the title dinuclear ionic complex, $\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]$ $\left[\mathrm{Cd}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{8}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$, the cation and anion are disordered equally over a site with symmetry mmm . The $\mathrm{Cd}^{\mathrm{II}}$ ions and the N atoms of the bridging pyrazine ligand lie on the intersection of two crystallographic mirror planes. The C atoms of the bridging pyrazine ligand lie on one of these mirror planes, and the acetate groups and water molecules lie across the intersecting mirror planes. Each $\mathrm{Cd}^{\mathrm{II}}$ atom in the cation is five-coordinated by four O atoms from four water molecules and one N atom from the bridging pyrazine ligand, whereas each $\mathrm{Cd}^{\mathrm{II}}$ in the anion is nine-coordinated by four pairs of O atoms from the bidentate acetate ligands and one N atom from the bridging pyrazine ligand. In the crystal structure, each anion is surrounded by eight nearestneighbour cations and vice versa. The crystal structure is stabilized by ionic interactions as well as by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Experimental

Crystal data
$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]-$
$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{8}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$
$M_{r}=1226.26$
Tetragonal, $I 4 / \mathrm{mcm}$
$a=16.7103$ (4) £
$c=7.3533(2) \AA$
$V=2053.29(9) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
$0.58 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.371, T_{\text {max }}=0.895$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.034 \quad$ independent and constrained
$S=1.06$ refinement
1246 reflections
$\Delta \rho_{\max }=0.59 \mathrm{e}^{-3}$
73 parameters
2 restraints
12617 measured reflections 1246 independent reflections 1145 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Related literature

For bond-length data, see: Allen et al. (1987). For $\mathrm{Cd}^{\mathrm{II}}$ coordination chemistry, applications and related structures, see: Filipović et al. (2008); Inoue et al. (2000); Pons et al. (2007); Xia et al. (2004).

[^0]Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.96	2.47	$3.0405(18)$	118
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.96	2.56	$3.2700(17)$	131
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.96	2.47	$3.0405(18)$	118
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\text {iii }}$	0.96	2.56	$3.2700(17)$	131

Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $x, y,-z$; (iii) $-x, y, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

metal-organic compounds

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118. SC thanks Prince of Songkla University for generous support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2576).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Filipović, N. R., Bacchi, A., Lazić, M., Pelizzi, G., Radulović, S., Sladić, D., Todorović, T. R. \& Andelković, K. K. (2008). Inorg. Chem. Commun. 11, 47-50.
Inoue, M. B., Muñoz, I. C., Inoue, M. \& Fernando, Q. (2000). Inorg. Chim. Acta, 300-302, 206-211.
Pons, J., García-Antón, J., Jiménez, R., Solans, X., Font-Bardia, M. \& Ros, J. (2007). Inorg. Chem. Commun. 10, 1554-1556.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xia, S.-Q., Hu, S.-M., Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Zhang, J.-J. \& Du, W.-X. (2004). Polyhedron, 23, 1003-1009.

supporting information

Acta Cryst. (2008). E64, m736-m737 [doi:10.1107/S1600536808010994]

μ-Pyrazine-bis[tetraaquacadmium(II)] μ-pyrazine-bis[tetraacetatocadmium(II)]
 Hoong-Kun Fun, Suchada Chantrapromma and Farzin Marandi

S1. Comment

The investigations of coordination compounds between cadmium(II) and O and N donors atoms have attracted much attention due to their potential application in a number of areas (Inoue et al., 2000; Pons et al., 2007; Xia et al., 2004), including cytotoxic activities (Filipović et al., 2008). We report herein, the synthesis and crystal structure of the title compound which exhibits a mixed coordination for $\mathrm{Cd}^{\mathrm{II}}$ atom i.e nine- and five-coordination mode for $\mathrm{Cd}^{\mathrm{II}}$, which is a rare case.
In the title compound, both $\left[\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]^{4+}$ cations and $\left[\mathrm{Cd}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{8}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]^{4-}$ anions lie on the site symmetry mmm . The $\mathrm{Cd}^{\mathrm{II}}$ and the N atoms of the bridging pyrazine ligand lie on the intersection of two crystallographic mirror planes, one perpenidicular to the c axis $(z=0)$ and the other parallel to the c axis and passing through the mid points of the a and b axis. The C atoms of the bridging pyrazine ligand lie on the $z=0$ mirror plane, and the acetate groups and water molecules lie across the intersecting mirror planes. There are two molecules of the title complex in the unit cell.
In the structure, the cation contains two $\mathrm{Cd}^{I I}$ ions, eight water molecules and one bridging pyrazine ligand whereas the anion contains two $\mathrm{Cd}^{\mathrm{II}}$ ions, eight acetate and one bridging pyrazine ligands. Each of the $\mathrm{Cd}^{\mathrm{II}}$ in the cation is fivecoordinated with four O atoms from four water molecules and one N atom from a bridging pyrazine ligand, whereas each $\mathrm{Cd}^{\mathrm{II}}$ in the anion is nine-coordinated with four pairs of chelate O atoms from the bidentate acetate ligands and one N atom from the bridging pyrazine ligand. The $\mathrm{Cd}-O$ (acetate) bond distances are 2.3458 (14) and $2.5200(14) \AA$, and the $\mathrm{Cd}-$ O (water) and $\mathrm{Cd}-\mathrm{N}$ distances are 2.2783 (15) \AA and 2.3470 (15) \AA, respectively. The O (water)—Cd—O(water) bond angles lie in the range $64.15(8)^{\circ}-174.10(7)^{\circ}$, whereas, the O (acetate) - $\mathrm{Cd}-O$ (acetate) bond angles are in the range $53.57(7)^{\circ}-158.87(6)^{\circ}$. The $\mathrm{N}-\mathrm{Cd}-\mathrm{O}$ (water) angle is $92.95(3)^{\circ}$ and $N — \mathrm{Cd}-O($ acetate $)$ angles are 132.77 (3) and $79.43(3)^{\circ}$, respectively. The geometric parameters are comparable to those reported for other $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ donor complexes (Inoue et al., 2000; Pons et al., 2007; Xia et al., 2004).
In the crystal packing (Fig. 2 and Fig.3), each anion is surrounded by eight nearest neighbour cations and vice-versa. The crystal structure is stablized by ionic interactions as well as by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1).

S2. Experimental

The title compound was synthesized by mixing $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and pyrazine with a 2:1 molar ratio in a hot methanolwater $(2: 1 \mathrm{v} / \mathrm{v})$ solution and stirred for 10 min at room temperature. The solution was then left at ambient temperature to allow the solvent to slowly evaporate. Colourless crystals of the title compound suitable for X-ray structure determination were obtained after a few weeks.

S3. Refinement

Water H atoms were located in a difference map and refined isotropically, with a $\mathrm{O}-\mathrm{H}$ distance restraint of 0.800 (1) \AA. C -bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$. The $U_{\text {iso }}$ value of H 1 A was constrained to $1.2 U_{\mathrm{eq}}(\mathrm{C} 1)$ and for other H atoms the $U_{\text {iso }}$ values were refined. A rotating group model was used for the methyl group.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The cations and anions occupy the same site with equal occupancy. Symmetry codes for the Cd1A ion: (A) $x, 1-y,-z$. Symmetry codes for aqua and acetate atoms: (A) $x, y,-z$; (B) $1 / 2-y, 1 / 2-x, z$; (C) $1 / 2-y, 1 / 2-x,-z$; (D) $y-$ $1 / 2,1 / 2+x,-z$; (E) $y-1 / 2,1 / 2+x, z$; (F) $-x, 1-y,-z$; (G) $-x, 1-y, z$. Symmetry codes for ring C atoms: (A) $1 / 2-y, 1 / 2-$ x, z; (B) $y-1 / 2,1 / 2+x,-z$; (C) $-x, 1-y,-z$. Symmetry code for the N1 atom: (A) $-x, 1-y,-z$.

Figure 2
The crystal packing of the title compound, viewed along the c axis, showing a layer of the cations and anions.

Figure 3
The crystal packing of the title compound, viewed along the a axis, showing the same layer of cations and anions in Fig. 2.
μ-Pyrazine-bis[tetraaquacadmium(II)] μ-pyrazine-bis[tetraacetatocadmium(II)]

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{8}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$
$M_{r}=1226.26$
Tetragonal, $14 / \mathrm{mcm}$
Hall symbol: -I 4 2c
$a=16.7103$ (4) \AA
$c=7.3533$ (2) \AA
$V=2053.29(9) \AA^{3}$
$Z=2$
$F(000)=1208$
$D_{\mathrm{x}}=1.983 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1246 reflections
$\theta=1.7-35.0^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.58 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.371, T_{\text {max }}=0.895$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.034$
$S=1.06$
1246 reflections
73 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> 12617 measured reflections
> 1246 independent reflections
> 1145 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=35.0^{\circ}, \theta_{\min }=1.7^{\circ}$
> $h=-26 \rightarrow 26$
> $k=-26 \rightarrow 26$
> $l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0089 P)^{2}+1.5621 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.44$ e \AA^{-3}

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {is }} * / U_{\text {eq }}$	Occ. (<1)
Cd1	$0.158218(5)$	$0.341782(5)$	0.0000	$0.01214(4)$	
O1	$0.16811(7)$	$0.21686(8)$	$0.1438(2)$	$0.0156(2)$	0.50
O2	$0.04830(8)$	$0.27097(9)$	$0.1708(2)$	$0.0183(3)$	0.50
C2	$0.09773(11)$	$0.21621(11)$	$0.2069(3)$	$0.0144(3)$	0.50
C3	$0.07138(12)$	$0.14714(12)$	$0.3238(3)$	$0.0212(4)$	0.50
H3A	0.0344	0.1659	0.4142	$0.036(9)^{*}$	0.50
H3B	0.1172	0.1240	0.3825	$0.038(8)^{*}$	0.50
H3C	0.0458	0.1075	0.2493	$0.031(8)^{*}$	0.50
O1W	$0.11198(8)$	$0.28563(8)$	$0.2621(2)$	$0.0170(3)$	0.50
H1W1	$0.0654(4)$	$0.2746(17)$	$0.262(4)$	$0.020(7)^{*}$	0.50
H2W1	$0.1447(16)$	$0.2523(16)$	$0.287(5)$	$0.055(11)^{*}$	0.50
N1	$0.05890(6)$	$0.44110(6)$	0.0000	$0.0131(3)$	
C1	$-0.01905(7)$	$0.42237(7)$	0.0000	$0.0144(2)$	
H1A	-0.0354	0.3673	0.0000	$0.017 *$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.00955(4)$	$0.00955(4)$	$0.01731(7)$	$0.00080(4)$	0.000	0.000
O1	$0.0119(5)$	$0.0133(5)$	$0.0216(7)$	$0.0003(4)$	$0.0008(5)$	$0.0015(5)$
O2	$0.0137(6)$	$0.0151(6)$	$0.0260(8)$	$0.0028(5)$	$0.0007(6)$	$0.0037(5)$
C2	$0.0131(7)$	$0.0118(7)$	$0.0181(8)$	$-0.0016(5)$	$-0.0025(6)$	$0.0004(6)$
C3	$0.0189(9)$	$0.0195(9)$	$0.0251(10)$	$-0.0014(7)$	$0.0006(7)$	$0.0074(8)$
O1W	$0.0121(5)$	$0.0156(6)$	$0.0233(7)$	$0.0022(5)$	$0.0023(5)$	$0.0030(5)$
N1	$0.0119(4)$	$0.0119(4)$	$0.0155(7)$	$0.0010(5)$	0.000	0.000
C1	$0.0122(5)$	$0.0113(5)$	$0.0196(6)$	$0.0004(4)$	0.000	0.000

Geometric parameters ($A,{ }^{\circ}$)

Cd1-O1W	2.2782 (15)	O1-C2	1.264 (2)
Cd1-O1W ${ }^{\text {i }}$	2.2783 (15)	$\mathrm{O} 2-\mathrm{C} 2$	1.261 (2)
Cd1-O1W ${ }^{\text {ii }}$	2.2783 (15)	$\mathrm{C} 2-\mathrm{C} 3$	1.505 (3)
Cd1-O1W ${ }^{\text {iii }}$	2.2783 (15)	C3-H3A	0.96
Cd1-O1	2.3458 (14)	С3-H3B	0.96
$\mathrm{Cd} 1-\mathrm{Ol}^{\text {i }}$	2.3458 (14)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.96
$\mathrm{Cd} 1-\mathrm{O} 1^{\text {ii }}$	2.3458 (14)	O1W-H1W1	0.800 (1)
$\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	2.3458 (14)	O1W-H2W1	0.800 (1)
Cd1-N1	2.3470 (15)	$\mathrm{N} 1-\mathrm{C} 1^{\mathrm{i}}$	1.3396 (15)
$\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	2.5200 (14)	N1-C1	1.3397 (15)
$\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.5200 (14)	$\mathrm{C} 1-\mathrm{C} 1^{\text {iv }}$	1.384 (2)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.5200 (14)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.96
O1W-Cd1-O1W ${ }^{\text {i }}$	64.15 (8)	$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {ii }}$	81.84 (5)
O1W-Cd1-O1W ${ }^{\text {ii }}$	174.10 (7)	$\mathrm{O} 1^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {ii }}$	53.77 (4)
O1W ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O}^{\text {W }}{ }^{\text {ii }}$	115.52 (8)	$\mathrm{O}^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {ii }}$	113.02 (5)
O1W-Cd1-O1W ${ }^{\text {iii }}$	115.51 (8)	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {ii }}$	79.43 (3)
O1W ${ }^{\text {i }}$-Cd1—O1W ${ }^{\text {iii }}$	174.10 (7)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {ii }}$	59.77 (8)
O1W ${ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{O}^{\text {W }}{ }^{\text {iii }}$	64.15 (8)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	53.77 (4)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Ol}^{\text {i }}$	70.82 (6)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	113.02 (5)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Ol}^{\text {ii }}$	94.46 (6)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 2$	147.15 (4)
$\mathrm{O}{ }^{1}-\mathrm{Cd} 1-\mathrm{O}^{\text {ii }}$	53.57 (7)	$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 2$	81.84 (5)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	53.57 (7)	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	79.43 (3)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Ol}^{\text {iii }}$	94.46 (6)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2$	115.86 (8)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{O}{ }^{\text {iii }}$	70.82 (6)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 2$	158.87 (6)
O1W-Cd1-N1	92.95 (3)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cd} 1$	96.17 (11)
O1W ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	92.95 (3)	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cd} 1$	88.18 (11)
O1W ${ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1$	92.95 (3)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	121.73 (17)
O1W ${ }^{\text {iiii-Cd }}$ - ${ }^{\text {- }} 1$	92.95 (3)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	119.02 (16)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	132.77 (3)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	119.23 (16)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	132.77 (3)	Cd1-O1W-H1W1	115 (2)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1$	132.77 (3)	Cd1-O1W-H2W1	104 (3)
$\mathrm{O}{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 1$	132.77 (3)	H1W1-O1W-H2W1	120 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{2}$	113.02 (5)	$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1$	117.01 (15)

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	53.77 (4)	C1- ${ }^{\text {i }}$ N1-Cd1	121.49 (8)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	81.84 (5)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	121.49 (8)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	147.15 (4)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {iv }}$	121.50 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	79.43 (3)	N1-C1-H1A	120.0
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2^{\text {ii }}$	147.15 (4)	$\mathrm{Cl}^{\text {iv }}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.5
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	137.93 (10)	O1W ${ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	-122.12 (4)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	-173.19 (14)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	142.13 (5)
$\mathrm{O} 1{ }^{\text {iii }} \mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	-111.03 (11)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\mathrm{i}}$	37.87 (5)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	6.81 (14)	$\mathrm{O} 1^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	-37.87 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	103.79 (12)	O1 ${ }^{\text {iiii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	-142.13 (5)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	173.28 (11)	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\mathrm{i}}$	30.46 (4)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2$	-2.25 (11)	$\mathrm{O} 2{ }^{\text {ii- }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	-30.46 (4)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	2.24 (11)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	149.54 (4)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-38.85 (13)	O1W-Cd1-N1-C1	-57.88 (4)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	19.05 (17)	O1W ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-122.12 (4)
$\mathrm{O} 1{ }^{\text {iii- }} \mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	52.55 (12)	O1W ${ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	122.12 (4)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-171.01 (12)	O1W ${ }^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	57.88 (4)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-98.33 (12)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-37.87 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2$	-171.01 (12)	$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-142.13 (5)
Cd1-O2-C2-O1	-3.94 (19)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	142.13 (5)
$\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	177.83 (17)	$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	37.87 (5)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	4.3 (2)	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-149.54 (4)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	-177.52 (16)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	149.54 (4)
O1W-Cd1-N1-C1 ${ }^{\text {i }}$	122.12 (4)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-30.46 (4)
O1W ${ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{Cl}^{\text {i }}$	57.88 (4)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl}^{\mathrm{iv}}$	0.0
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{N} 1-1^{\text {i }}$	-57.88 (4)	Cd1-N1-C1-C1 ${ }^{\text {iv }}$	180.0

Symmetry codes: (i) $-y+1 / 2,-x+1 / 2, z$; (ii) $-y+1 / 2,-x+1 / 2,-z$; (iii) $x, y,-z$; (iv) $y-1 / 2, x+1 / 2,-z$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2$	0.96	2.47	$3.0405(18)$	118
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\mathrm{v}}$	0.96	2.56	$3.2700(17)$	131
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {iii }}$	0.96	2.47	$3.0405(18)$	118
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\mathrm{vi}}$	0.96	2.56	$3.2700(17)$	131

Symmetry codes: (iii) $x, y,-z$; (v) $-x, y,-z+1 / 2$; (vi) $-x, y, z-1 / 2$.

[^0]: \ddagger Additional correspondence author, e-mail: suchada.c@psu.ac.th.

