Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-methoxy-6-[3-(methylamino)propyliminomethyl]phenolato}nickel(II) bis(perchlorate)

Yin-Ting He

Zhoukou Vocational and Technical College, Zhoukou Henan 466600, People's Republic of China

Correspondence e-mail: yinting_he@163.com

Received 7 April 2008; accepted 7 April 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.056; wR factor = 0.188; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $[Ni(C_{12}H_{18}-N_2O_2)_2](ClO_4)_2$, consists of one-half of a centrosymmetric mononuclear Schiff base nickel(II) complex cation and one perchlorate anion. The Ni^{II} ion, lying on the inversion center, is coordinated by two N atoms and two O atoms from two Schiff base ligands, forming a square-planar geometry. The crystal packing is stabilized by $N-H\cdots O$ hydrogen bonds.

Related literature

For related structures, see: Arıcı *et al.* (2005); Bian *et al.* (2004); Chen *et al.* (2008); Holm (1960); Ma, Gu *et al.* (2006); Ma, Lv *et al.* (2006); Ma, Wu *et al.* (2006); Ma *et al.* (2005); Skovsgaard *et al.* (2005); Zhao (2007); Zhu *et al.* (2004).

Experimental

Crystal data $[Ni(C_{12}H_{18}N_2O_2)_2](CIO_4)_2$ $M_r = 702.18$ Orthorhombic, *Pbca* a = 13.557 (5) Å b = 13.302 (5) Å c = 17.371 (7) Å

 $V = 3133 (2) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.85 \text{ mm}^{-1}$ T = 298 (2) K $0.33 \times 0.28 \times 0.27 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	16728 measured reflections
diffractometer	3276 independent reflections
Absorption correction: multi-scan	2125 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.042$
$T_{\min} = 0.766, \ T_{\max} = 0.802$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	199 parameters
$wR(F^2) = 0.188$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
3276 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.922 (3)	Ni1-N1	2.018 (3)
D1 ⁱ -Ni1-O1 D1-Ni1-N1	180 90.30 (14)	$01 - Ni1 - N1^{i}$ $N1 - Ni1 - N1^{i}$	89.70 (13) 180
Symmetry code: (i)	$x \pm 1 = y \pm 1 = \pi \pm 1$		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.90	1.80	2.691 (4)	170
$N2-H2A\cdots O2^{i}$	0.90	2.44	2.929 (5)	114
N2-H2 B ···O4 ⁱⁱ	0.90	2.23	3.075 (8)	157
Symmetry codes: (i)	$x \pm 1 = y \pm 1$	-7 ± 1 ; (ii) x -	$v + \frac{1}{2} - \frac{1}{2}$	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author acknowledges the Zhoukou Vocational and Technical College for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2578).

References

- Arici, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.
- Bian, H.-D., Yang, X.-E., Yu, Q., Liang, H. & Wang, H.-G. (2004). Acta Cryst. E60, m685–m686.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.
- Holm, R. H. (1960). J. Am. Chem. Soc. 82, 5632-5636.
- Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.
- Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.
- Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.
- Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct, 221, 53–54.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135– m137.

Zhao, X.-F. (2007). Acta Cryst. E63, m704–m705. Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.

supporting information

Acta Cryst. (2008). E64, m646-m647 [doi:10.1107/S1600536808009562]

Bis{2-methoxy-6-[3-(methylamino)propyliminomethyl]phenolato}nickel(II) bis-(perchlorate)

Yin-Ting He

S1. Comment

Nickel(II) complexes with Schiff base ligands have been of great interest in coordination chemistry related to molecular structures and catalytical applications (Chen *et al.*, 2008; Holm, 1960; Arıcı *et al.*, 2005). Metal complexes derived from Schiff bases have been widely studied (Ma, Lv *et al.*, 2006; Ma, Gu *et al.*, 2006; Ma, Wu *et al.*, 2006; Ma *et al.*, 2005). However, the complexes derived from the Schiff base ligand 2-methoxy-6-[(3-methylaminopropylimino)methyl]phenol have never been reported. The author reports herein the title mononuclear nickel(II) complex.

The title compound consists of a centrosymmetric nickel(II) complex cation and two perchlorate anions (Fig. 1). The Ni^{II} ion, lying on the inversion center, is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands, giving a square planar geometry. All the bond lengths and angles (Table 1) involving the Ni^{II} atom are within normal ranges, and comparable to values observed in other Schiff base nickel(II) complexes (Zhu *et al.*, 2004; Zhao, 2007; Bian *et al.*, 2004; Skovsgaard *et al.*, 2005). The N1—C8—C9—C10 and C9—C10—N2—C11 torsion angles are 55.0 (3) and 2.7 (3)°, respectively. The crystal packing is stabilized by N—H…O hydrogen bonds (Table 2).

S2. Experimental

N-Methylpropane-1,3-diamine (0.5 mmol, 44.0 mg) and 3-methoxysalicylaldehyde (0.5 mmol, 76.0 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of nickel(II) perchlorate (0.5 mmol, 192.0 mg). After keeping the resulting solution in air for a few days, red block-shaped crystals were formed.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C-H = 0.93-0.97 Å, N-H = 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, 1 - y, 1 - z).

Bis{2-methoxy-6-[3-(methylamino)propyliminomethyl]phenolato}nickel(II) bis(perchlorate)

a 11	
Crystal data	
$[Ni(C_{12}H_{18}N_2O_2)_2](ClO_4)_2$	F(000) = 1464
$M_r = 702.18$	$D_{\rm x} = 1.489 {\rm Mg m^{-3}}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3048 reflections
a = 13.557 (5) Å	$\theta = 2.3 - 25.3^{\circ}$
b = 13.302(5) Å	$\mu = 0.86 \text{ mm}^{-1}$
c = 17.371 (7) Å	T = 298 K
V = 3133 (2) Å ³	Block, red
Z = 4	$0.33 \times 0.28 \times 0.27 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	16728 measured reflections
diffractometer	3276 independent reflections
Radiation source: fine-focus sealed tube	2125 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
ωscans	$\theta_{\text{max}} = 26.6^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$k = -16 \rightarrow 15$
$T_{\min} = 0.766, \ T_{\max} = 0.802$	$l = -19 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.188$	$w = 1/[\sigma^2(F_o^2) + (0.0892P)^2 + 4.466P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3276 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
199 parameters	$\Delta \rho_{\rm max} = 0.97 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.55 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0023 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	17*/17	
NI:1	A 5000	<i>y</i>	2		
N11	0.5000	0.5000	0.5000	0.0412 (3)	
CII	0.39978 (9)	0.29292 (9)	0.63654 (7)	0.0623 (4)	
01	0.5954 (2)	0.5558 (2)	0.56985 (16)	0.0550 (8)	
O2	0.6861 (3)	0.7085 (3)	0.6382 (2)	0.0792 (11)	
03	0.4646 (5)	0.3472 (5)	0.5938 (4)	0.178 (3)	
04	0.4518 (5)	0.2905 (5)	0.7084 (4)	0.169 (3)	
05	0.3852 (5)	0.1987 (5)	0.6207 (7)	0.260 (6)	
O6	0.3118 (3)	0.3474 (4)	0.6470 (3)	0.1112 (15)	
N1	0.6046 (3)	0.4103 (3)	0.45407 (18)	0.0497 (8)	
N2	0.4565 (3)	0.4199 (3)	0.2818 (2)	0.0604 (10)	
H2A	0.4351	0.4211	0.3308	0.072*	
H2B	0.4363	0.3615	0.2608	0.072*	
C1	0.7430 (4)	0.5058 (3)	0.5061 (2)	0.0549 (11)	
C2	0.6908 (3)	0.5687 (3)	0.5551 (2)	0.0495 (10)	
C3	0.7427 (4)	0.6482 (4)	0.5911 (2)	0.0586 (11)	
C4	0.8418 (4)	0.6607 (4)	0.5796 (3)	0.0715 (14)	
H4	0.8747	0.7132	0.6040	0.086*	
C5	0.8935 (4)	0.5960 (5)	0.5320 (4)	0.0797 (16)	
H5	0.9611	0.6044	0.5251	0.096*	
C6	0.8456 (4)	0.5204 (4)	0.4957 (3)	0.0715 (15)	
H6	0.8806	0.4774	0.4634	0.086*	
C7	0.6969 (3)	0.4249 (3)	0.4641 (2)	0.0563 (11)	
H7	0.7391	0.3780	0.4418	0.068*	

C8	0.5803 (4)	0.3206 (3)	0.4076 (3)	0.0633 (12)
H8A	0.5102	0.3074	0.4118	0.076*
H8B	0.6150	0.2630	0.4286	0.076*
C9	0.6073 (4)	0.3317 (4)	0.3228 (3)	0.0731 (15)
H9A	0.6786	0.3348	0.3187	0.088*
H9B	0.5858	0.2716	0.2959	0.088*
C10	0.5648 (4)	0.4214 (4)	0.2820 (3)	0.0713 (14)
H10A	0.5874	0.4823	0.3072	0.086*
H10B	0.5886	0.4226	0.2294	0.086*
C11	0.4092 (6)	0.5042 (4)	0.2391 (4)	0.099 (2)
H11A	0.4323	0.5671	0.2594	0.149*
H11B	0.3389	0.5002	0.2450	0.149*
H11C	0.4260	0.4997	0.1856	0.149*
C12	0.7201 (6)	0.8047 (4)	0.6537 (4)	0.113 (2)
H12A	0.7755	0.8010	0.6880	0.169*
H12B	0.6684	0.8433	0.6771	0.169*
H12C	0.7400	0.8363	0.6065	0.169*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nil	0.0409 (4)	0.0501 (4)	0.0326 (4)	-0.0002 (3)	0.0013 (3)	-0.0056 (3)
Cl1	0.0584 (7)	0.0553 (6)	0.0733 (8)	-0.0012 (5)	0.0005 (6)	0.0103 (5)
01	0.0486 (17)	0.073 (2)	0.0437 (15)	-0.0064 (14)	0.0031 (13)	-0.0133 (14)
O2	0.082 (3)	0.078 (2)	0.078 (2)	-0.0215 (19)	0.0081 (19)	-0.0288 (19)
O3	0.144 (5)	0.192 (6)	0.197 (6)	0.044 (4)	0.085 (5)	0.123 (5)
O4	0.184 (6)	0.177 (6)	0.146 (5)	0.022 (5)	-0.090 (5)	0.013 (4)
05	0.145 (6)	0.115 (5)	0.519 (17)	0.000 (4)	-0.079 (7)	-0.150 (8)
O6	0.081 (3)	0.119 (4)	0.133 (4)	0.035 (3)	0.008 (3)	0.024 (3)
N1	0.057 (2)	0.0515 (19)	0.0406 (18)	0.0053 (16)	-0.0010 (15)	-0.0024 (14)
N2	0.078 (3)	0.061 (2)	0.0424 (19)	-0.008(2)	0.0029 (18)	-0.0111 (17)
C1	0.047 (2)	0.069 (3)	0.049 (2)	0.009 (2)	-0.0043 (19)	0.009 (2)
C2	0.046 (2)	0.063 (3)	0.039 (2)	0.0010 (19)	-0.0043 (17)	0.0042 (18)
C3	0.062 (3)	0.067 (3)	0.046 (2)	-0.009(2)	-0.004 (2)	0.000 (2)
C4	0.059 (3)	0.083 (4)	0.072 (3)	-0.016 (3)	-0.012 (3)	0.008 (3)
C5	0.044 (3)	0.100 (4)	0.095 (4)	-0.006(3)	-0.007 (3)	0.010 (4)
C6	0.047 (3)	0.094 (4)	0.073 (3)	0.012 (3)	0.002 (2)	0.005 (3)
C7	0.054 (3)	0.066 (3)	0.049 (2)	0.015 (2)	0.000(2)	0.001 (2)
C8	0.073 (3)	0.049 (2)	0.069 (3)	0.008 (2)	-0.004 (2)	-0.006 (2)
C9	0.071 (3)	0.083 (4)	0.065 (3)	0.005 (3)	0.004 (2)	-0.034 (3)
C10	0.082 (4)	0.082 (4)	0.049 (3)	-0.019 (3)	0.016 (2)	-0.019 (2)
C11	0.140 (6)	0.083 (4)	0.075 (4)	0.011 (4)	-0.027 (4)	0.002 (3)
C12	0.159 (7)	0.066 (4)	0.114 (5)	-0.024 (4)	0.037 (5)	0.007 (4)

Geometric parameters (Å, °)

Ni1—O1 ⁱ	1.922 (3)	C3—C4	1.369 (7)
Nil—Ol	1.922 (3)	C4—C5	1.385 (8)

NG1 N1	2.018(3)		0.03
	2.018(3)		0.75
NII—NI	2.018(3)	C_{2}	1.555 (8)
	1.298 (6)	CS—HS	0.93
	1.358 (5)	С6—Н6	0.93
Cl1—O6	1.408 (4)	С7—Н7	0.93
Cl1—O4	1.434 (5)	C8—C9	1.525 (7)
O1—C2	1.329 (5)	C8—H8A	0.97
O2—C3	1.378 (6)	C8—H8B	0.97
O2—C12	1.386 (6)	C9—C10	1.502 (8)
N1—C7	1.278 (5)	С9—Н9А	0.97
N1—C8	1.477 (5)	С9—Н9В	0.97
N2—C10	1.469 (7)	C10—H10A	0.97
N2—C11	1.489 (6)	C10—H10B	0.97
N2—H2A	0.90	C11—H11A	0.96
N2—H2B	0.90	C11—H11B	0.96
C1—C2	1.389 (6)	C11—H11C	0.96
C1-C6	1 416 (7)	C12—H12A	0.96
C1-C7	1 443 (6)	C12—H12B	0.96
C^2 C^3	1.445 (6)	C12 $H12C$	0.96
62—63	1.410(0)		0.90
O1 ⁱ —Ni1—O1	180	C4—C5—H5	120.1
O1 ⁱ —Ni1—N1	89.70 (13)	C5—C6—C1	120.9 (5)
O1—Ni1—N1	90.30 (14)	С5—С6—Н6	119.5
$O1^{i}$ Ni1 N1 ⁱ	90.30 (14)	С1—С6—Н6	119.5
$01-Ni1-N1^{i}$	89.70 (13)	N1—C7—C1	127.3 (4)
N1—Ni1—N1 ⁱ	180	N1—C7—H7	1163
05-011-03	1197(6)	C1	116.3
05-C11-06	113.3 (4)	N1 - C8 - C9	113 3 (4)
03-C11-06	110.2(3)	N1 - C8 - H8A	108.9
05 Cl1 04	103.7(6)	$C_0 = C_8 = H_{8A}$	108.9
$O_3 = C_{11} = O_4$	103.7(0)	NI CS HSP	108.9
06 C11 04	108 A (A)		108.9
$C_{2} = 01$ Nil	100.4(4) 125.7(2)		108.9
$C_2 = O_1 = O_1$	123.7(2)	$H_0A = C_0 = H_0B$	107.7
$C_{3} = 0_{2} = C_{12}$	117.8 (4)	C10 - C9 - C8	110.1 (4)
C/-NI-C8	114.5 (4)	C10—C9—H9A	108.3
C = NI = NII	123.0 (3)	C8—C9—H9A	108.3
C8—N1—N11	122.5 (3)	С10—С9—Н9В	108.3
C10—N2—C11	114.9 (5)	С8—С9—Н9В	108.3
C10—N2—H2A	108.5	Н9А—С9—Н9В	107.4
C11—N2—H2A	108.5	N2—C10—C9	111.9 (4)
C10—N2—H2B	108.5	N2—C10—H10A	109.2
C11—N2—H2B	108.5	C9—C10—H10A	109.2
H2A—N2—H2B	107.5	N2-C10-H10B	109.2
C2—C1—C6	119.8 (4)	C9—C10—H10B	109.2
C2—C1—C7	122.6 (4)	H10A—C10—H10B	107.9
C6—C1—C7	117.6 (4)	N2—C11—H11A	109.5
O1—C2—C1	122.4 (4)	N2—C11—H11B	109.5
O1—C2—C3	119.7 (4)	H11A—C11—H11B	109.5

C1—C2—C3	117.9 (4)	N2—C11—H11C	109.5
C4—C3—O2	124.2 (4)	H11A—C11—H11C	109.5
C4—C3—C2	120.9 (5)	H11B—C11—H11C	109.5
O2—C3—C2	114.8 (4)	O2—C12—H12A	109.5
C3—C4—C5	120.6 (5)	O2—C12—H12B	109.5
C3—C4—H4	119.7	H12A—C12—H12B	109.5
C5—C4—H4	119.7	O2—C12—H12C	109.5
C6—C5—C4	119.8 (5)	H12A—C12—H12C	109.5
С6—С5—Н5	120.1	H12B—C12—H12C	109.5

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O1 ⁱ	0.90	1.80	2.691 (4)	170
N2— $H2A$ ···O2 ⁱ	0.90	2.44	2.929 (5)	114
N2—H2 B ···O4 ⁱⁱ	0.90	2.23	3.075 (8)	157

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+1/2, *z*-1/2.