metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­({9-[(2,6-diiso­propyl­phen­yl)imino­meth­yl]anthracen-1-yl}palladium(II))

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: hjsun@sdu.edu.cn

(Received 18 March 2008; accepted 15 April 2008; online 23 April 2008)

The centrosymmetric title compound, [Pd2Cl2(C27H26N)2], was obtained by a C—H bond-activation reaction of a Schiff base ligand with Li2PdCl4 in methanol, and was crystallized from dichloro­methane as orange crystals. The Pd atom displays a slightly distorted square-planar geometry, with the N- and C-atom donors in a cis arrangement.

Related literature

An imine palladacycle crystal structure with a six-membered ring has been determined (Munno et al. 1995[Munno, G. D., Ghedini, M. & Neve, F. (1995). Inorg. Chim. Acta, 239, 155-158.]). For related literature, see: Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2Cl2(C27H26N)2]

  • Mr = 1012.68

  • Monoclinic, P 21 /n

  • a = 12.3002 (4) Å

  • b = 12.9836 (4) Å

  • c = 15.4558 (5) Å

  • β = 110.364 (2)°

  • V = 2314.04 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.873

  • 27723 measured reflections

  • 5320 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 0.94

  • 5320 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 1997[Bruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, much attention is being paid to the use of palladacycles as catalyst precursors (Dupont et al. 2005). Several imine-palladacycles with six-membered rings were prepared as catalyst precursors (Munno et al. 1995). We prepared a new palladacycle with six-membered ring by a C—H bond activation reaction between a Schiff base ligand and Li2PdCl4 in methanol. In its orange crystals palladium displays a slightly distorted square-planar geometry with the nitrogen and the carbon donors in cis-fashion. The length of C26—N1 (1.292 (6) Å) is characteristic for a C=N double bond. The distances of Pd—Cl bond trans to the carbon donor are slightly longer (ca 0.12 Å) than those trans to the imine donor, as expected, because of the trans influence. The chelate ring of Pd1—N1—C26—C27—C24—C23 adopts a twisted half-chair conformation, which is due to the presence of three double bonds of N1—C26, C23—C24 and C24—C27 in the ring. The isopropyl groups on the aromatic ring may readily force the N-phenyl ring perpendicular to the coordination plane.

Related literature top

An imine palladacycle crystal structure with a six-membered ring has been determined (Munno et al. 1995).

For related literature, see: Dupont et al. (2005).

Experimental top

Anthracen-9-ylmethylene-(2,6-di-isopropylphenyl)-amine (383 mg, 1.05 mmol) was mixed with Li2PdCl4 (262 mg, 1 mmol) and NaOAc (86 mg, 1.05 mmol) in 5 ml of methanol. The reaction mixture was stirred for 3 days. The title compound was filtrated and dried under vacuo in the yield of 65% (329 mg). The crystals suitable for X-ray analysis were obtained from a dichloromethane solution by slow evaporation at room temperatures.

Refinement top

All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic), 0.96 (methyl), 0.98 Å (methine) with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level, symmetry code A: 0.5-X, 0.5+Y, 0.5-Z
Di-µ-chlorido-bis({9-[(2,6-diisopropylphenyl)iminomethyl]anthracen-1- yl}palladium(II)) top
Crystal data top
[Pd2Cl2(C27H26N)2]F(000) = 1032
Mr = 1012.68Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3002 (4) ÅCell parameters from 2187 reflections
b = 12.9836 (4) Åθ = 2.4–18.8°
c = 15.4558 (5) ŵ = 0.93 mm1
β = 110.364 (2)°T = 298 K
V = 2314.04 (13) Å3Block, orange
Z = 20.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII
diffractometer
5320 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1614
Tmin = 0.836, Tmax = 0.873k = 1616
27723 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0537P)2]
where P = (Fo2 + 2Fc2)/3
5320 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Pd2Cl2(C27H26N)2]V = 2314.04 (13) Å3
Mr = 1012.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.3002 (4) ŵ = 0.93 mm1
b = 12.9836 (4) ÅT = 298 K
c = 15.4558 (5) Å0.20 × 0.18 × 0.15 mm
β = 110.364 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
5320 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2428 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.873Rint = 0.101
27723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.94Δρmax = 0.58 e Å3
5320 reflectionsΔρmin = 0.54 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.40636 (3)0.49507 (3)0.06810 (3)0.04914 (17)
C270.1926 (4)0.4388 (4)0.1521 (3)0.0411 (13)
Cl30.57537 (14)0.40623 (14)0.05309 (12)0.0827 (6)
N10.3915 (3)0.3993 (3)0.1645 (3)0.0395 (10)
C260.3002 (4)0.3840 (4)0.1860 (3)0.0426 (13)
H26A0.30490.33160.22820.051*
C250.0810 (4)0.5956 (4)0.0888 (4)0.0485 (14)
C240.1851 (4)0.5348 (4)0.1064 (3)0.0400 (13)
C230.2731 (4)0.5759 (4)0.0773 (3)0.0466 (14)
C220.0973 (4)0.4010 (4)0.1764 (4)0.0496 (14)
C210.5028 (4)0.2374 (4)0.1872 (3)0.0429 (13)
C200.1011 (5)0.3082 (5)0.2267 (4)0.0666 (18)
H20A0.16820.26840.24550.080*
C190.5995 (5)0.1817 (4)0.2388 (4)0.0545 (16)
H19A0.60840.11450.22170.065*
C180.0089 (5)0.4584 (5)0.1491 (4)0.0492 (14)
C170.5775 (4)0.3840 (4)0.2893 (4)0.0447 (13)
C160.4925 (4)0.3376 (4)0.2149 (3)0.0414 (13)
C150.5675 (5)0.4939 (4)0.3150 (4)0.0560 (15)
H15A0.51600.52880.25970.067*
C140.0114 (5)0.5520 (5)0.1076 (4)0.0573 (16)
H14A0.08030.58920.09070.069*
C130.6832 (5)0.2241 (5)0.3152 (4)0.0572 (16)
H13A0.74710.18540.35000.069*
C120.2641 (5)0.6770 (5)0.0496 (4)0.0666 (18)
H12A0.32500.70580.03530.080*
C110.0777 (6)0.6980 (5)0.0583 (4)0.0668 (18)
H11A0.01150.73720.04980.080*
C100.1665 (6)0.7400 (5)0.0415 (5)0.077 (2)
H10A0.16510.80900.02490.092*
C90.6706 (5)0.3239 (5)0.3391 (4)0.0572 (16)
H9A0.72690.35210.39070.069*
C80.4119 (5)0.1866 (4)0.1027 (4)0.0578 (16)
H8A0.36380.24160.06500.069*
C70.1044 (5)0.4211 (5)0.1699 (5)0.0684 (19)
H7A0.17400.45710.14940.082*
C60.0057 (5)0.2770 (5)0.2479 (5)0.081 (2)
H6A0.00960.21720.28190.097*
C50.0964 (6)0.3348 (6)0.2185 (6)0.087 (2)
H5A0.15990.31280.23310.105*
C40.3321 (5)0.1145 (5)0.1306 (5)0.095 (2)
H4A0.27590.08540.07630.142*
H4B0.29310.15250.16450.142*
H4C0.37710.06030.16870.142*
C30.5130 (7)0.5030 (5)0.3888 (5)0.101 (2)
H3A0.43960.46810.36880.152*
H3B0.50150.57440.39940.152*
H3C0.56330.47230.44500.152*
C20.4703 (6)0.1313 (6)0.0437 (5)0.103 (3)
H2A0.51760.17920.02520.154*
H2B0.41220.10330.01020.154*
H2C0.51800.07660.07870.154*
C10.6817 (6)0.5514 (5)0.3466 (5)0.095 (2)
H1A0.71670.54650.30010.143*
H1B0.73260.52170.40300.143*
H1C0.66820.62250.35670.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0378 (2)0.0662 (3)0.0482 (3)0.0092 (2)0.02099 (18)0.0192 (2)
C270.040 (3)0.051 (4)0.037 (3)0.002 (3)0.018 (3)0.004 (3)
Cl30.0636 (10)0.1143 (14)0.0903 (13)0.0401 (10)0.0520 (10)0.0621 (11)
N10.034 (2)0.043 (3)0.042 (3)0.0013 (19)0.014 (2)0.007 (2)
C260.038 (3)0.043 (3)0.049 (3)0.003 (2)0.017 (3)0.010 (3)
C250.043 (3)0.060 (4)0.044 (3)0.004 (3)0.018 (3)0.004 (3)
C240.037 (3)0.053 (4)0.033 (3)0.003 (2)0.016 (2)0.003 (2)
C230.051 (3)0.045 (4)0.044 (3)0.006 (3)0.016 (3)0.007 (3)
C220.045 (3)0.056 (4)0.053 (4)0.001 (3)0.022 (3)0.002 (3)
C210.039 (3)0.059 (4)0.036 (3)0.005 (3)0.020 (3)0.010 (3)
C200.045 (4)0.068 (4)0.088 (5)0.004 (3)0.026 (3)0.009 (4)
C190.048 (4)0.049 (4)0.074 (5)0.010 (3)0.031 (3)0.012 (3)
C180.043 (3)0.059 (4)0.050 (4)0.006 (3)0.021 (3)0.005 (3)
C170.038 (3)0.060 (4)0.038 (3)0.005 (3)0.015 (3)0.010 (3)
C160.035 (3)0.058 (4)0.038 (3)0.007 (3)0.022 (3)0.016 (3)
C150.056 (3)0.057 (4)0.050 (3)0.008 (3)0.012 (3)0.002 (3)
C140.052 (4)0.070 (4)0.051 (4)0.015 (3)0.020 (3)0.008 (3)
C130.043 (3)0.067 (4)0.059 (4)0.004 (3)0.014 (3)0.022 (3)
C120.071 (4)0.074 (5)0.064 (4)0.009 (4)0.036 (4)0.013 (4)
C110.081 (5)0.062 (4)0.070 (5)0.024 (4)0.042 (4)0.007 (4)
C100.102 (6)0.052 (4)0.090 (5)0.021 (4)0.051 (5)0.023 (4)
C90.049 (4)0.071 (5)0.045 (4)0.010 (3)0.009 (3)0.010 (3)
C80.055 (4)0.055 (4)0.057 (4)0.004 (3)0.012 (3)0.003 (3)
C70.044 (4)0.079 (5)0.089 (5)0.001 (3)0.033 (4)0.024 (4)
C60.065 (4)0.077 (5)0.109 (6)0.013 (4)0.041 (4)0.014 (4)
C50.052 (4)0.091 (6)0.139 (7)0.011 (4)0.058 (5)0.012 (5)
C40.068 (5)0.108 (6)0.096 (6)0.031 (4)0.013 (4)0.006 (5)
C30.130 (7)0.079 (5)0.116 (6)0.017 (5)0.070 (6)0.033 (5)
C20.079 (5)0.122 (7)0.097 (6)0.011 (4)0.018 (5)0.048 (5)
C10.085 (6)0.072 (5)0.124 (7)0.022 (4)0.030 (5)0.003 (5)
Geometric parameters (Å, º) top
Pd1—C231.992 (5)C15—C31.516 (8)
Pd1—N11.997 (4)C15—H15A0.9800
Pd1—Cl3i2.3440 (15)C14—H14A0.9300
Pd1—Cl32.4580 (15)C13—C91.370 (7)
C27—C241.420 (7)C13—H13A0.9300
C27—C221.436 (7)C12—C101.421 (8)
C27—C261.431 (6)C12—H12A0.9300
Cl3—Pd1i2.3440 (15)C11—C101.326 (8)
N1—C261.292 (6)C11—H11A0.9300
N1—C161.456 (6)C10—H10A0.9300
C26—H26A0.9300C9—H9A0.9300
C25—C111.405 (7)C8—C21.523 (8)
C25—C141.388 (7)C8—C41.522 (8)
C25—C241.448 (7)C8—H8A0.9800
C24—C231.413 (7)C7—C51.333 (8)
C23—C121.374 (7)C7—H7A0.9300
C22—C201.426 (7)C6—C51.396 (8)
C22—C181.434 (7)C6—H6A0.9300
C21—C161.388 (7)C5—H5A0.9300
C21—C191.383 (7)C4—H4A0.9600
C21—C81.542 (7)C4—H4B0.9600
C20—C61.384 (7)C4—H4C0.9600
C20—H20A0.9300C3—H3A0.9600
C19—C131.383 (7)C3—H3B0.9600
C19—H19A0.9300C3—H3C0.9600
C18—C141.370 (7)C2—H2A0.9600
C18—C71.407 (8)C2—H2B0.9600
C17—C91.378 (7)C2—H2C0.9600
C17—C161.394 (7)C1—H1A0.9600
C17—C151.498 (7)C1—H1B0.9600
C15—C11.514 (7)C1—H1C0.9600
C23—Pd1—N189.05 (19)C9—C13—C19119.1 (5)
C23—Pd1—Cl3i94.53 (16)C9—C13—H13A120.5
N1—Pd1—Cl3i174.64 (12)C19—C13—H13A120.5
C23—Pd1—Cl3176.05 (17)C23—C12—C10123.5 (6)
N1—Pd1—Cl394.50 (12)C23—C12—H12A118.3
Cl3i—Pd1—Cl382.05 (5)C10—C12—H12A118.3
C24—C27—C22120.8 (5)C10—C11—C25121.7 (6)
C24—C27—C26120.7 (4)C10—C11—H11A119.2
C22—C27—C26118.0 (5)C25—C11—H11A119.2
Pd1i—Cl3—Pd197.95 (5)C11—C10—C12118.3 (6)
C26—N1—C16115.7 (4)C11—C10—H10A120.8
C26—N1—Pd1127.0 (3)C12—C10—H10A120.8
C16—N1—Pd1117.3 (3)C17—C9—C13122.3 (5)
N1—C26—C27127.2 (5)C17—C9—H9A118.8
N1—C26—H26A116.4C13—C9—H9A118.8
C27—C26—H26A116.4C2—C8—C4111.4 (6)
C11—C25—C14121.7 (6)C2—C8—C21110.8 (5)
C11—C25—C24119.9 (5)C4—C8—C21111.8 (5)
C14—C25—C24118.3 (5)C2—C8—H8A107.5
C27—C24—C23124.4 (5)C4—C8—H8A107.5
C27—C24—C25118.2 (5)C21—C8—H8A107.5
C23—C24—C25117.4 (5)C5—C7—C18121.0 (6)
C12—C23—C24118.2 (5)C5—C7—H7A119.5
C12—C23—Pd1117.4 (4)C18—C7—H7A119.5
C24—C23—Pd1124.4 (4)C20—C6—C5120.5 (6)
C27—C22—C20123.8 (5)C20—C6—H6A119.8
C27—C22—C18119.3 (5)C5—C6—H6A119.8
C20—C22—C18116.9 (5)C7—C5—C6121.0 (6)
C16—C21—C19117.7 (5)C7—C5—H5A119.5
C16—C21—C8123.0 (5)C6—C5—H5A119.5
C19—C21—C8119.2 (5)C8—C4—H4A109.5
C6—C20—C22120.4 (6)C8—C4—H4B109.5
C6—C20—H20A119.8H4A—C4—H4B109.5
C22—C20—H20A119.8C8—C4—H4C109.5
C13—C19—C21121.3 (5)H4A—C4—H4C109.5
C13—C19—H19A119.4H4B—C4—H4C109.5
C21—C19—H19A119.4C15—C3—H3A109.5
C14—C18—C7121.9 (6)C15—C3—H3B109.5
C14—C18—C22117.9 (5)H3A—C3—H3B109.5
C7—C18—C22120.1 (6)C15—C3—H3C109.5
C9—C17—C16117.1 (5)H3A—C3—H3C109.5
C9—C17—C15121.4 (5)H3B—C3—H3C109.5
C16—C17—C15121.5 (5)C8—C2—H2A109.5
C21—C16—C17122.4 (5)C8—C2—H2B109.5
C21—C16—N1120.2 (5)H2A—C2—H2B109.5
C17—C16—N1117.4 (5)C8—C2—H2C109.5
C17—C15—C1113.7 (5)H2A—C2—H2C109.5
C17—C15—C3111.9 (5)H2B—C2—H2C109.5
C1—C15—C3108.8 (5)C15—C1—H1A109.5
C17—C15—H15A107.4C15—C1—H1B109.5
C1—C15—H15A107.4H1A—C1—H1B109.5
C3—C15—H15A107.4C15—C1—H1C109.5
C18—C14—C25125.0 (6)H1A—C1—H1C109.5
C18—C14—H14A117.5H1B—C1—H1C109.5
C25—C14—H14A117.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd2Cl2(C27H26N)2]
Mr1012.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.3002 (4), 12.9836 (4), 15.4558 (5)
β (°) 110.364 (2)
V3)2314.04 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.836, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
27723, 5320, 2428
Rint0.101
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 0.94
No. of reflections5320
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.54

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of this work by the Excellent Young Teachers Program of MOE, People's Republic of China, and by the Scientific Research Foundation for Returned Overseas Chinese Scholars/State Education Ministry, Natural Science Foundation of Shandong University for Young Scientists, are gratefully acknowledged.

References

First citationBruker (1997). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMunno, G. D., Ghedini, M. & Neve, F. (1995). Inorg. Chim. Acta, 239, 155–158.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds