# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Trichlorido(N,N'-di-tert-butylbenzamidinato- $\kappa^2 N, N'$ )silicon

### Lu-Dan Lv,<sup>a</sup> Jun-Jun Li,<sup>b</sup> Wei Yang,<sup>a</sup> Chun-Xia Ren<sup>a</sup>\* and Yu-Qiang Ding<sup>a</sup>\*

<sup>a</sup>School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, and <sup>b</sup>College of Pharmacy, GuangDong Pharmaceutical University, Guangzhou, Guangdong Province 510006, People's Republic of China

Correspondence e-mail: chunxiaren@sina.com, liweijun947@163.com

Received 30 March 2008; accepted 15 April 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.160; data-to-parameter ratio = 16.2.

In the title molecule, C<sub>15</sub>H<sub>23</sub>Cl<sub>3</sub>N<sub>2</sub>Si, the Si atom is pentacoordinated by two N atoms [Si-N = 1.780(3)] and 1.931 (3) Å] from the benzamidinate ligand and three chloride anions [Si-Cl = 2.0711 (14)-2.1449 (14) Å] in a distorted trigonal-bipyramidal geometry.

### **Related literature**

For the geometric parameters of related silicon complexes, see: So et al. (2006); Hargittai et al. (1983); Koe et al. (1998); Karsch et al. (1998); Jones et al. (2002).



## **Experimental**

### Crystal data

| C <sub>15</sub> H <sub>23</sub> Cl <sub>3</sub> N <sub>2</sub> Si | $\gamma = 84.189 \ (6)^{\circ}$           |
|-------------------------------------------------------------------|-------------------------------------------|
| $M_r = 365.80$                                                    | V = 915.3 (7) Å <sup>3</sup>              |
| Triclinic, P1                                                     | Z = 2                                     |
| a = 6.372 (3) Å                                                   | Mo $K\alpha$ radiation                    |
| b = 10.278 (4) Å                                                  | $\mu = 0.56 \text{ mm}^{-1}$              |
| c = 14.229 (6) Å                                                  | T = 273 (2) K                             |
| $\alpha = 83.222 \ (6)^{\circ}$                                   | $0.35 \times 0.26 \times 0.15 \text{ mm}$ |
| $\beta = 83.227 \ (6)^{\circ}$                                    |                                           |

#### Data collection

| Bruker SMART CCD area-detector |
|--------------------------------|
| diffractometer                 |
| Absorption correction: none    |
| 4535 measured reflections      |

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.053$ | 196 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.159$               | H-atom parameters constrained                              |
| S = 0.99                        | $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$  |
| 3166 reflections                | $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ |

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

3166 independent reflections 2189 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.028$ 

This work was supported by the National Natural Science Foundation of China (grant Nos. 20571033 and 20701016).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2396).

### References

- Bruker, (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hargittai, I., Schultz, G., Tremmel, J., Kagramanov, N. D., Maltsev, A. K. & Nefedov, O. M. (1983). J. Am. Chem. Soc. 105, 2895-2896.
- Jones, C., Junk, P. C., Leary, S. G., Smithies, N. A. & Steed, J. W. (2002). Inorg. Chem. Commun. 5, 533-536.
- Karsch, H. H., Schlüter, P. A. & Reisky, M. (1998). Eur. J. Inorg. Chem. pp. 433-436
- Koe, J. R., Powell, D. R., Buffy, J. J., Hayase, S. & West, R. (1998). Angew. Chem. Int. Ed. 37, 1441-1442.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- So, C.-W., Roesky, H. W., Magull, J. & Oswald, R. B. (2006). Angew. Chem. Int. Ed. 45. 3948-3950.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

# supporting information

Acta Cryst. (2008). E64, o870 [doi:10.1107/S1600536808010398]

# Trichlorido(N,N'-di-tert-butylbenzamidinato- $\kappa^2 N,N'$ )silicon

## Lu-Dan Lv, Jun-Jun Li, Wei Yang, Chun-Xia Ren and Yu-Qiang Ding

### S1. Comment

The discrete electronically neutral mononuclear heteroleptic title silicon(IV) complex, (I), crystallizes in the triclinic space group P-1. The mean plane of Si1/N1/C1/N2 and phenyl ring C2-C7 form a dihedral angle of 79.1 (1) °. The Si-Cl bond lengths lie in the range 2.0711 (14)-2.1449 (14) Å and agree well with those observed in the related silicon complexes (So *et al.*, 2006; Hargittai *et al.*, 1983; Koe *et al.*, 1998). The N1-C1 bond [1.308 (4) Å] is a typical double bond, while C1-N2 bond [1.368 (4) Å] is intermediate between the double and single C-N bonds. The N1-Si1-N2 angle [70.1 (1) °] in (I) is comparable to that in [PhC(NtBu)<sub>2</sub>]SiCl [68.4 (1) °] (So *et al.*, 2006) and in [MeC(Nipr)<sub>2</sub>]<sub>2</sub>SiCl<sub>2</sub> [68.8 (1) and 69.0 (1) °] (Karsch *et al.*, 1998). The Si-N bond lengths of 1.780 (3) and 1.931 (3) Å are slightly longer than the Si—N<sub>amide</sub> bond length in the silicon(IV) complex (C<sub>5</sub>H<sub>3</sub>N-6-Me-2-NSiMe<sub>3</sub>)SiCl<sub>3</sub> [1.753 (5) Å] (Jones *et al.*, 2002).

### S2. Experimental

All manipulations were carried out in an inert atmosphere of  $N_2$  using standard Schlenk techniques and in a  $N_2$  filled glove box. Solvents were dried over and distilled from Na/K alloy prior to use.

PhLi (3.6 ml, 6.48 mmol, 1.8 mol/*L* in cyclohexane/Et<sub>2</sub>O (7:3)) was added to a solution of tBuN=C=NtBu(1.25 ml, 6.48 mmol) in Et<sub>2</sub>O (35 ml) at -78 °C. The solution was raised to ambient temperature and stirred for 1 h. SiCl<sub>4</sub> (0.8 ml, 6.97 mmol) was added to this solution at -78 °C. The resulting yellow suspension was stirred overnight at ambient temperature. The precipitate was filtered, and the filtrate was concentrated under reduced pressure until colourless crystals of the title compound (1.11 g, 46%) were obtained. *M*.p. 178 °C. Elemental analysis (%) calcd for C<sub>15</sub>H<sub>23</sub>Cl<sub>3</sub>N<sub>2</sub>Si: C 49.24, H 6.34, N 7.66; found: C 49.17, H 6.42, N 7.71. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  = 1.18 (s, 18H, tBu), 7.42–7.68 p.p.m. (m, 5H, Ph).

### **S3. Refinement**

The H atoms were positioned geometrically (C—H 0.93–0.97 Å), and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$ .



# Figure 1

The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

## Trichlorido(N,N'-di-tert-butylbenzamidinato- $\kappa^2 N,N'$ )silicon

| Crystal data                                                                                                                                                                                                                                            |                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{15}H_{23}Cl_3N_2Si$<br>$M_r = 365.80$<br>Triclinic, $P\overline{l}$<br>a = 6.372 (3) Å<br>b = 10.278 (4) Å                                                                                                                                          | Z = 2<br>F(000) = 384<br>$D_x = 1.327 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A}<br>Cell parameters from 1365 reflections                                                    |
| c = 14.229 (6)  Å<br>$a = 83.222 (6)^{\circ}$<br>$\beta = 83.227 (6)^{\circ}$<br>$\gamma = 84.189 (6)^{\circ}$<br>$V = 915.3 (7) \text{ Å}^{3}$                                                                                                         | $\theta = 2.0-25.0^{\circ}$<br>$\mu = 0.56 \text{ mm}^{-1}$<br>T = 273  K<br>Block, colourless<br>$0.35 \times 0.26 \times 0.15 \text{ mm}$                                                                 |
| Data collection                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |
| <ul> <li>Bruker SMART CCD area-detector<br/>diffractometer</li> <li>Radiation source: fine-focus sealed tube</li> <li>Graphite monochromator</li> <li>φ and ω scans</li> <li>4535 measured reflections</li> <li>3166 independent reflections</li> </ul> | 2189 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.028$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -7 \rightarrow 7$<br>$k = -7 \rightarrow 12$<br>$l = -16 \rightarrow 16$ |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.053$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.159$                               | neighbouring sites                                       |
| S = 0.99                                        | H-atom parameters constrained                            |
| 3166 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.102P)^2]$                   |
| 196 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                           |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У             | Ζ            | $U_{ m iso}*/U_{ m eq}$ |
|------|--------------|---------------|--------------|-------------------------|
| Si1  | 0.38635 (14) | 0.09933 (9)   | 0.76514 (7)  | 0.0428 (3)              |
| Cl1  | 0.54115 (17) | -0.02445 (10) | 0.66177 (8)  | 0.0732 (4)              |
| C12  | 0.22531 (16) | -0.05055 (9)  | 0.84243 (7)  | 0.0598 (3)              |
| C13  | 0.67974 (13) | 0.13745 (9)   | 0.80465 (7)  | 0.0564 (3)              |
| N1   | 0.2423 (4)   | 0.2341 (2)    | 0.83913 (18) | 0.0396 (6)              |
| N2   | 0.2521 (4)   | 0.2228 (3)    | 0.68974 (18) | 0.0443 (7)              |
| C1   | 0.1884 (5)   | 0.3019 (3)    | 0.7605 (2)   | 0.0390 (7)              |
| C2   | 0.1051 (5)   | 0.4426 (3)    | 0.7473 (2)   | 0.0406 (8)              |
| C3   | 0.2489 (6)   | 0.5342 (3)    | 0.7133 (3)   | 0.0536 (9)              |
| Н3   | 0.3908       | 0.5063        | 0.6976       | 0.064*                  |
| C4   | 0.1823 (7)   | 0.6665 (4)    | 0.7027 (3)   | 0.0649 (11)             |
| H4   | 0.2794       | 0.7278        | 0.6807       | 0.078*                  |
| C5   | -0.0281 (8)  | 0.7075 (4)    | 0.7249 (3)   | 0.0675 (12)             |
| Н5   | -0.0728      | 0.7967        | 0.7177       | 0.081*                  |
| C6   | -0.1716 (6)  | 0.6183 (4)    | 0.7572 (3)   | 0.0596 (10)             |
| H6   | -0.3137      | 0.6470        | 0.7716       | 0.072*                  |
| C7   | -0.1065 (5)  | 0.4847 (3)    | 0.7686 (2)   | 0.0499 (9)              |
| H7   | -0.2046      | 0.4240        | 0.7906       | 0.060*                  |
| C8   | 0.1975 (6)   | 0.2399 (4)    | 0.5881 (2)   | 0.0564 (10)             |
| С9   | 0.3937 (9)   | 0.2735 (6)    | 0.5218 (3)   | 0.0974 (18)             |
| H9A  | 0.4331       | 0.3576        | 0.5330       | 0.146*                  |
| H9B  | 0.3638       | 0.2767        | 0.4570       | 0.146*                  |
| H9C  | 0.5081       | 0.2074        | 0.5335       | 0.146*                  |
| C10  | 0.0117 (9)   | 0.3443 (4)    | 0.5736 (3)   | 0.0904 (16)             |
| H10A | -0.1015      | 0.3288        | 0.6233       | 0.136*                  |

| H10B | -0.0376     | 0.3396     | 0.5130     | 0.136*      |
|------|-------------|------------|------------|-------------|
| H10C | 0.0577      | 0.4300     | 0.5755     | 0.136*      |
| C11  | 0.1190 (7)  | 0.1105 (4) | 0.5664 (3) | 0.0682 (12) |
| H11A | 0.2315      | 0.0412     | 0.5708     | 0.102*      |
| H11B | 0.0761      | 0.1215     | 0.5032     | 0.102*      |
| H11C | 0.0005      | 0.0882     | 0.6115     | 0.102*      |
| C12  | 0.2239 (5)  | 0.2735 (3) | 0.9381 (2) | 0.0452 (8)  |
| C13  | 0.3108 (7)  | 0.1583 (4) | 1.0033 (3) | 0.0732 (12) |
| H13A | 0.2254      | 0.0860     | 1.0053     | 0.110*      |
| H13B | 0.3077      | 0.1839     | 1.0662     | 0.110*      |
| H13C | 0.4543      | 0.1319     | 0.9796     | 0.110*      |
| C14  | 0.3482 (7)  | 0.3920 (4) | 0.9418 (3) | 0.0686 (12) |
| H14A | 0.4918      | 0.3739     | 0.9145     | 0.103*      |
| H14B | 0.3474      | 0.4087     | 1.0068     | 0.103*      |
| H14C | 0.2833      | 0.4677     | 0.9064     | 0.103*      |
| C15  | -0.0083 (6) | 0.3052 (4) | 0.9733 (3) | 0.0659 (11) |
| H15A | -0.0616     | 0.3854     | 0.9388     | 0.099*      |
| H15B | -0.0213     | 0.3155     | 1.0400     | 0.099*      |
| H15C | -0.0884     | 0.2348     | 0.9633     | 0.099*      |
|      |             |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | <i>I</i> 711 | I /22       | I /33       | I /12        | I /13        | <i>L</i> /23 |
|-----|--------------|-------------|-------------|--------------|--------------|--------------|
| ~   |              |             |             |              |              |              |
| Sil | 0.0501 (6)   | 0.0290 (5)  | 0.0498 (6)  | -0.0020 (4)  | -0.0022 (4)  | -0.0107 (4)  |
| Cl1 | 0.0790 (7)   | 0.0593 (7)  | 0.0827 (8)  | 0.0118 (5)   | 0.0007 (6)   | -0.0375 (6)  |
| Cl2 | 0.0756 (7)   | 0.0345 (5)  | 0.0695 (6)  | -0.0162 (4)  | -0.0042 (5)  | -0.0006 (4)  |
| Cl3 | 0.0471 (5)   | 0.0533 (6)  | 0.0713 (6)  | -0.0056 (4)  | -0.0073 (4)  | -0.0152 (5)  |
| N1  | 0.0508 (15)  | 0.0308 (15) | 0.0374 (15) | 0.0031 (12)  | -0.0052 (12) | -0.0105 (12) |
| N2  | 0.0605 (17)  | 0.0336 (15) | 0.0396 (15) | -0.0012 (13) | -0.0024 (13) | -0.0129 (13) |
| C1  | 0.0439 (17)  | 0.0298 (17) | 0.0451 (19) | -0.0076 (14) | -0.0032 (14) | -0.0094 (15) |
| C2  | 0.053 (2)    | 0.0281 (17) | 0.0425 (18) | -0.0024 (15) | -0.0092 (15) | -0.0083 (14) |
| C3  | 0.064 (2)    | 0.035 (2)   | 0.063 (2)   | -0.0093 (17) | -0.0059 (18) | -0.0084 (17) |
| C4  | 0.087 (3)    | 0.035 (2)   | 0.075 (3)   | -0.017 (2)   | -0.016 (2)   | -0.002 (2)   |
| C5  | 0.101 (3)    | 0.031 (2)   | 0.073 (3)   | 0.005 (2)    | -0.029 (2)   | -0.0103 (19) |
| C6  | 0.065 (2)    | 0.046 (2)   | 0.068 (3)   | 0.0146 (19)  | -0.015 (2)   | -0.0132 (19) |
| C7  | 0.056 (2)    | 0.0355 (19) | 0.060(2)    | -0.0060 (16) | -0.0092 (17) | -0.0067 (17) |
| C8  | 0.088 (3)    | 0.045 (2)   | 0.040(2)    | -0.015 (2)   | -0.0090 (18) | -0.0070 (17) |
| C9  | 0.136 (5)    | 0.114 (4)   | 0.049 (3)   | -0.065 (4)   | 0.010 (3)    | -0.008 (3)   |
| C10 | 0.151 (5)    | 0.064 (3)   | 0.063 (3)   | 0.016 (3)    | -0.053 (3)   | -0.014 (2)   |
| C11 | 0.087 (3)    | 0.061 (3)   | 0.064 (3)   | -0.017 (2)   | -0.013 (2)   | -0.023 (2)   |
| C12 | 0.055 (2)    | 0.042 (2)   | 0.0395 (18) | 0.0009 (16)  | -0.0067 (15) | -0.0108 (16) |
| C13 | 0.105 (3)    | 0.066 (3)   | 0.046 (2)   | 0.022 (2)    | -0.020 (2)   | -0.009(2)    |
| C14 | 0.091 (3)    | 0.068 (3)   | 0.055 (2)   | -0.029(2)    | -0.004(2)    | -0.025(2)    |
| C15 | 0.068 (3)    | 0.078 (3)   | 0.049 (2)   | -0.001 (2)   | 0.0006 (19)  | -0.009 (2)   |
|     |              |             |             |              |              |              |

Geometric parameters (Å, °)

| Si1—N2           | 1.780 (3)   | C8—C11        | 1.544 (5) |  |
|------------------|-------------|---------------|-----------|--|
| Si1—N1           | 1.931 (3)   | С9—Н9А        | 0.9600    |  |
| Si1—Cl2          | 2.0711 (14) | С9—Н9В        | 0.9600    |  |
| Si1—Cl3          | 2.1005 (14) | С9—Н9С        | 0.9600    |  |
| Si1—Cl1          | 2.1449 (14) | C10—H10A      | 0.9600    |  |
| N1—C1            | 1.308 (4)   | C10—H10B      | 0.9600    |  |
| N1-C12           | 1.499 (4)   | C10—H10C      | 0.9600    |  |
| N2—C1            | 1.368 (4)   | C11—H11A      | 0.9600    |  |
| N2-C8            | 1.513 (4)   | C11—H11B      | 0.9600    |  |
| C1-C2            | 1 488 (4)   | C11—H11C      | 0.9600    |  |
| $C^2 - C^7$      | 1 383 (5)   | C12-C13       | 1 516 (5) |  |
| $C^2 - C^3$      | 1.385(5)    | C12-C15       | 1.520 (5) |  |
| $C_3 - C_4$      | 1.379(5)    | C12 - C14     | 1.527 (5) |  |
| С3—Н3            | 0.9300      | C13—H13A      | 0.9600    |  |
| C4-C5            | 1 375 (6)   | C13—H13B      | 0.9600    |  |
| C4—H4            | 0.9300      | C13—H13C      | 0.9600    |  |
| C5               | 1 363 (6)   | C14—H14A      | 0.9600    |  |
| C5_H5            | 0.9300      | C14 H14B      | 0.9600    |  |
| C6C7             | 1 390 (5)   | C14 H14C      | 0.9600    |  |
| С6—Н6            | 0.9300      | C15H15A       | 0.9600    |  |
| C7 H7            | 0.9300      | C15 H15B      | 0.9600    |  |
| $C_{1}^{2}$      | 1 518 (6)   | C15_H15C      | 0.9600    |  |
| $C_{8}$ $C_{10}$ | 1.518 (0)   | 015—11150     | 0.9000    |  |
| 63-610           | 1.551 (0)   |               |           |  |
| N2—Si1—N1        | 70.14 (12)  | C9—C8—C11     | 110.8 (3) |  |
| N2—Si1—Cl2       | 120.61 (11) | C10—C8—C11    | 105.1 (3) |  |
| N1—Si1—Cl2       | 94.21 (10)  | С8—С9—Н9А     | 109.5     |  |
| N2—Si1—Cl3       | 118.03 (10) | С8—С9—Н9В     | 109.5     |  |
| N1—Si1—Cl3       | 90.61 (9)   | H9A—C9—H9B    | 109.5     |  |
| Cl2—Si1—Cl3      | 119.05 (6)  | С8—С9—Н9С     | 109.5     |  |
| N2—Si1—Cl1       | 100.24 (10) | Н9А—С9—Н9С    | 109.5     |  |
| N1—Si1—Cl1       | 169.82 (10) | H9B—C9—H9C    | 109.5     |  |
| Cl2—Si1—Cl1      | 93.66 (6)   | C8—C10—H10A   | 109.5     |  |
| Cl3—Si1—Cl1      | 91.20 (6)   | C8—C10—H10B   | 109.5     |  |
| C1—N1—C12        | 129.8 (3)   | H10A—C10—H10B | 109.5     |  |
| C1—N1—Si1        | 89.35 (19)  | C8—C10—H10C   | 109.5     |  |
| C12—N1—Si1       | 139.8 (2)   | H10A—C10—H10C | 109.5     |  |
| C1—N2—C8         | 128.9 (3)   | H10B—C10—H10C | 109.5     |  |
| C1—N2—Si1        | 94.06 (19)  | C8—C11—H11A   | 109.5     |  |
| C8—N2—Si1        | 136.8 (2)   | C8—C11—H11B   | 109.5     |  |
| N1—C1—N2         | 105.9 (3)   | H11A—C11—H11B | 109.5     |  |
| N1—C1—C2         | 127.5 (3)   | C8—C11—H11C   | 109.5     |  |
| N2—C1—C2         | 126.0 (3)   | H11A—C11—H11C | 109.5     |  |
| N1—C1—Si1        | 56.34 (16)  | H11B—C11—H11C | 109.5     |  |
| N2—C1—Si1        | 49.93 (16)  | N1—C12—C13    | 108.6 (3) |  |
| C2—C1—Si1        | 167.6 (2)   | N1—C12—C15    | 109.8 (3) |  |
|                  |             |               | (-)       |  |

| C7—C2—C3  | 119.5 (3) | C13—C12—C15   | 107.9 (3) |
|-----------|-----------|---------------|-----------|
| C7—C2—C1  | 122.9 (3) | N1-C12-C14    | 111.2 (3) |
| C3—C2—C1  | 117.6 (3) | C13—C12—C14   | 109.3 (3) |
| C4—C3—C2  | 120.2 (4) | C15—C12—C14   | 110.0 (3) |
| С4—С3—Н3  | 119.9     | С12—С13—Н13А  | 109.5     |
| С2—С3—Н3  | 119.9     | С12—С13—Н13В  | 109.5     |
| C5—C4—C3  | 119.8 (4) | H13A—C13—H13B | 109.5     |
| C5—C4—H4  | 120.1     | С12—С13—Н13С  | 109.5     |
| C3—C4—H4  | 120.1     | H13A—C13—H13C | 109.5     |
| C6—C5—C4  | 120.5 (4) | H13B—C13—H13C | 109.5     |
| С6—С5—Н5  | 119.7     | C12—C14—H14A  | 109.5     |
| С4—С5—Н5  | 119.7     | C12—C14—H14B  | 109.5     |
| C5—C6—C7  | 120.3 (4) | H14A—C14—H14B | 109.5     |
| С5—С6—Н6  | 119.9     | C12—C14—H14C  | 109.5     |
| С7—С6—Н6  | 119.9     | H14A—C14—H14C | 109.5     |
| C2—C7—C6  | 119.6 (3) | H14B—C14—H14C | 109.5     |
| С2—С7—Н7  | 120.2     | С12—С15—Н15А  | 109.5     |
| С6—С7—Н7  | 120.2     | C12—C15—H15B  | 109.5     |
| N2—C8—C9  | 109.0 (3) | H15A—C15—H15B | 109.5     |
| N2-C8-C10 | 111.9 (3) | С12—С15—Н15С  | 109.5     |
| C9—C8—C10 | 111.4 (4) | H15A—C15—H15C | 109.5     |
| N2-C8-C11 | 108.6 (3) | H15B—C15—H15C | 109.5     |
|           |           |               |           |