Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hafnium germanium telluride

Gyung-Joo Jang and Hoseop Yun*

Division of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
Correspondence e-mail: hsyun@ajou.ac.kr

Received 14 January 2008; accepted 21 April 2008

Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{Hf}-\mathrm{Ge})=0.002 \AA$; R factor $=0.024 ; w R$ factor $=0.055$; data-to-parameter ratio $=23.9$.

The title hafnium germanium telluride, HfGeTe_{4}, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe 4_{4} is isostructural with stoichiometric ZrGeTe_{4} and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe_{4} adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of facesharing Hf-centered bicapped trigonal prisms and cornersharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

Related literature

For the synthesis, crystal structure, and electronic structure of $\mathrm{Hf}_{0.85} \mathrm{GeTe}_{4}$, see: Mar \& Ibers (1993). For the synthesis and structure of ZrGeTe_{4}, see: Lee et al. (2007). The title compound, HfGeTe_{4}, is isostructural with $\mathrm{Hf}_{0.85} \mathrm{GeTe}_{4}$ and ZrGeTe_{4}. However the Hf site in HfGeTe_{4} is fully occupied. For related literature, see: Furuseth et al. (1973); Gelato \& Parthé (1987); Smith \& Bailey (1957); Zhao \& Parthé (1990).

Experimental

Crystal data

HfGeTe_{4}
$M_{r}=761.48$
Orthorhombic, Cmc_{1}
$a=3.97951$ (17) A
$b=15.9530$ (7) \AA
$c=10.9731$ (7) A

Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: numerical (NUMABS; Higashi, 2000)
$T_{\text {min }}=0.425, T_{\text {max }}=0.510$
$V=696.63(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=35.50 \mathrm{~mm}^{-1}$
$T=290$ (1) K
$0.30 \times 0.02 \times 0.02 \mathrm{~mm}$

> 3348 measured reflections 910 independent reflections 878 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$\Delta \rho_{\text {max }}=1.55$ e \AA^{-3}
$w R\left(F^{2}\right)=0.054$
$S=0.97$
910 reflections
38 parameters
$\Delta \rho_{\text {min }}=-2.00$ e \AA^{-3}
Absolute structure: Flack (1983),
431 Friedel pairs
Flack parameter: 0.008 (14)

1 restraint

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Hf}-\mathrm{Ge}^{\text {i }}$	2.8286 (15)	$\mathrm{Hf}-\mathrm{Te} 2^{\text {ii }}$	2.9825 (8)
$\mathrm{Hf}-\mathrm{Te} 3^{\text {ii }}$	2.9454 (8)	$\mathrm{Hf}-\mathrm{Te} 4^{\text {iv }}$	3.0312 (11)
Hf-Te $3^{\text {iii }}$	2.9454 (8)	$\mathrm{Ge}-\mathrm{Te} 4^{\text {v }}$	2.6761 (10)
$\mathrm{Hf}-\mathrm{Te} 1^{\text {iii }}$	2.9524 (7)	$\mathrm{Ge}-\mathrm{Te} 4^{\text {vi }}$	2.6761 (10)
$\mathrm{Hf}-\mathrm{Te} 1^{\text {ii }}$	2.9524 (7)	$\mathrm{Ge}-\mathrm{Te} 3$	2.6955 (17)
$\mathrm{Hf}-\mathrm{Te} 2^{\text {iii }}$	2.9825 (8)	Te1-Te2	2.7387 (13)
$\mathrm{Te} 4^{\mathrm{v}}-\mathrm{Ge}-\mathrm{Te} 4^{\text {vi }}$	96.07 (5)	$\mathrm{Te} 4^{\mathrm{v}}-\mathrm{Ge}-\mathrm{Hf}^{\text {iv }}$	123.85 (4)
$\mathrm{Te} 4^{\mathrm{v}}-\mathrm{Ge}-\mathrm{Te} 3$	92.35 (4)	$\mathrm{Te} 3-\mathrm{Ge}-\mathrm{Hf}^{\text {iv }}$	120.07 (5)
Symmetry codes: $-x,-y+1, z+\frac{1}{2} ;$	$\begin{aligned} & -y+1, z-\frac{1}{2} \\ & ,-y+\frac{1}{2}, z \end{aligned}$	$\begin{aligned} & x+\frac{1}{2}, y+\frac{1}{2}, z \\ & \text { vi) } \\ & -x+\frac{1}{2},-y+\frac{1}{2}, \end{aligned}$	$+\frac{1}{2}, z ; \text { (iv) }$

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

This research was supported by the Korean Research Foundation (KRF-2006-521-C00088). Use was made of the Xray facilities supported by Ajou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2040).

References

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Furuseth, S., Brattås, L. \& Kjekshus, A. (1973). Acta Chem. Scand. 27, $2367-$ 2374.

Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA
Lee, C.-H., Jang, G.-J. \& Yun, H. (2007). Acta Cryst. E63, i183.
Mar, A. \& Ibers, J. (1993). J. Am. Chem. Soc. 115, 3227-3238.
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smith, J. F. \& Bailey, D. M. (1957). Acta Cryst. 10, 341-342.
Zhao, J.-T. \& Parthé, E. (1990). J. Less-Common Met. 162, 27-29.

supporting information

Acta Cryst. (2008). E64, i27 [doi:10.1107/S1600536808011380]

Hafnium germanium telluride

Gyung-Joo Jang and Hoseop Yun

S1. Comment

A view of the structure of HfGeTe_{4} down the a axis in Fig. 1 shows the layered nature of the compound. Fig 2. shows that an individual layer is composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. The title compound is isostructural with $\mathrm{Hf}_{0.85} \mathrm{GeTe}_{4}$ (Mar \& Ibers, 1993) and ZrGeTe_{4} (Lee et al., 2007) and the detailed descriptions of this structural type have been given previously.

The Hf atom is surrounded by six Te atoms in a trigonal prismatic manner. The vertices of two base sides of the prism are composed of six Te atoms. Atoms $\mathrm{Te} 1, \mathrm{Te} 2$, and Te 3 form a triangle that is isosceles and the short $\mathrm{Te} 1 — \mathrm{Te} 2$ distance (2.739 (1) \AA) is typical of (Te-Te) $)^{2-}$ pair (Furuseth et al., 1973). An additional Te4 and Ge atoms cap two of the rectangular faces of the trigonal prism to complete the bicapped trigonal prismatic coordination. These trigonal prisms share their triangular faces to form an infinite chain, ${ }_{\infty}{ }^{1}\left[\mathrm{HfGeTe}_{4}\right]$ along the a axis. The Ge atom is surrounded by three Te and one Hf atoms in distorted tetrahedral fashion. These tetrahedra share their corners through the Te4 atom to form an infinite chain.
These bicapped trigonal prismatic and the tetrahedral chains are fused through $\mathrm{Hf}-\mathrm{Ge}$ bonds to form a double chain and finally these chains are linked along the c axis to complete the two-dimensional layer. These layers then stack on top of each other to form the three-dimensional structure with undulating van der Waals gaps shown in Fig. 1.
The Hf—Ge bond distance is 2.829 (2) \AA, which is comparable with those found in other hafnium germanides (HfGe2, 2.78-2.87 \AA (Smith \& Bailey, 1957); $\mathrm{Hf}_{5} \mathrm{Ge}_{4}, 2.82 \AA$ (Zhao \& Parthé, 1990)).

S2. Experimental

HfGeTe_{4} was prepared from a reaction of Hf (CERAC 99.8\%), Ge(CERAC 99.999\%), and Te(CERAC 99.95\%) in an
 starting materials were placed in a fused-silica tube. The tube was evacuated to $10^{-3} \mathrm{Torr}$, sealed, and heated to 973 K at a rate of $15 \mathrm{~K} / \mathrm{hr}$, where it was kept for 72 hrs . The tube was cooled at a rate of $10 \mathrm{~K} / \mathrm{hr}$ to 373 K and the furnace was shut off. Air- and water-stable metallic shiny needle-shaped crystals were isolated after the flux was removed with water. Qualitative analysis of the crystals with an EDAX-equipped scanning electron microscope indicated the presence of Hf , Ge , and Te . No other element was detected.

S3. Refinement

Refinement with the positional parameters taken from the ZrGeTe_{4} structure (Lee et al., 2007) gave the value of the Flack parameter (Flack, 1983) of $x=0.96(4)(w R 2=0.128)$, which suggests that the absolute structure should be incorrect. Refinement of the inverse structure which is in agreement with the selected setting of this work leads to $x=-0.02$ (6) and significantly better reliability factor (wR2=0.054). The structure was standardized by means of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The nonstoichiometry of the Hf site in the title compound was checked by refining the
occupancy and anisotropic displacement parameters of Hf while those of the other atoms were fixed. With the nonstoichiometric model, both parameter were not changed significantly and the residuals (wR2, R1 indices) remained the same. The highest $\operatorname{peak}\left(1.55 \mathrm{e} / \AA^{-3}\right)$ and the deepest hole $\left(-2.00 \mathrm{e} / \AA^{-3}\right)$ are $0.98 \AA$ and $0.78 \AA$ from the atom Hf, respectively.

Figure 1

View of HfGeTe_{4} down the a axis, showing the layered nature of the compound. Filled, grey, and open circles represent Hf, Ge, and Te atoms, respectively. Displacement ellipsoids are drawn at the 90% probability level.

Figure 2
View of HfGeTe_{4} down the b axis, showing a two-dimensional layer. Atoms are as marked in Fig. 1. [Symmetry code: (i) $-1 / 2+x,-1 / 2+y, z]$

hafnium germanium telluride, HfGeTe_{4}

Crystal data

HfGeTe_{4}

$M_{r}=761.48$
Orthorhombic, $\mathrm{Cmc}_{2}{ }_{1}$
Hall symbol: C 2c -2
$a=3.97951$ (17) \AA
$b=15.9530$ (7) \AA
$c=10.9731$ (7) \AA
$V=696.63(6) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: numerical
(NUMABS; Higashi, 2000)
$T_{\text {min }}=0.425, T_{\text {max }}=0.510$
3348 measured reflections
$F(000)=1248$
$D_{\mathrm{x}}=7.26 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3229 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=35.50 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Needle, metallic silver
$0.30 \times 0.02 \times 0.02 \mathrm{~mm}$

910 independent reflections
878 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 5$
$k=-20 \rightarrow 19$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.054$
$S=0.97$
910 reflections
38 parameters
1 restraint
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0001 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.55 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.00$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00231 (14)
Absolute structure: Flack (1983), 431 Friedel pairs
Absolute structure parameter: 0.008 (14)

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hf	0.0000	$0.65202(3)$	$0.22820(5)$	$0.01067(17)$
Ge	0.0000	$0.22772(8)$	$0.53878(13)$	$0.0113(3)$
Te 1	0.0000	$0.01673(5)$	$0.25689(9)$	$0.0129(2)$
Te 2	0.0000	$0.10126(5)$	$0.03966(9)$	$0.0126(2)$
Te 3	0.0000	$0.27773(5)$	$0.30414(8)$	$0.0102(2)$
Te 4	0.0000	$0.38127(5)$	$0.00017(8)$	$0.0106(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hf	$0.0113(3)$	$0.0107(3)$	$0.0100(3)$	0	0	$0.0000(2)$
Ge	$0.0118(6)$	$0.0112(7)$	$0.0108(8)$	0	0	$0.0012(6)$
Te 1	$0.0140(4)$	$0.0100(4)$	$0.0147(5)$	0	0	$0.0008(4)$
Te 2	$0.0142(4)$	$0.0130(4)$	$0.0106(5)$	0	0	$-0.0012(4)$
Te 3	$0.0116(3)$	$0.0093(4)$	$0.0097(4)$	0	0	$-0.0010(3)$
Te 4	$0.0118(4)$	$0.0087(4)$	$0.0111(5)$	0	0	$0.0002(3)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Hf}-\mathrm{Ge}^{\mathrm{i}}$	2.8286 (15)	$\mathrm{Ge}-\mathrm{Hf}^{\text {fv }}$	2.8286 (15)
$\mathrm{Hf}-\mathrm{Te} 3^{\text {ii }}$	2.9454 (8)	$\mathrm{Te} 1-\mathrm{Te} 2$	2.7387 (13)
$\mathrm{Hf}-\mathrm{Te} 3^{\text {iii }}$	2.9454 (8)	Te1-H ${ }^{\text {vii }}$	2.9524 (7)
$\mathrm{Hf}-\mathrm{Te} 1^{\text {iii }}$	2.9524 (7)	Te1—Hf ${ }^{\text {iiii }}$	2.9524 (7)
$\mathrm{Hf}-\mathrm{Te} 1^{\text {ii }}$	2.9524 (7)	Te2- $\mathrm{H}^{\text {rii }}$	2.9825 (8)
$\mathrm{Hf}-\mathrm{Te} 2^{\text {iii }}$	2.9825 (8)	Te2-Hf ${ }^{\text {iiii }}$	2.9825 (8)
$\mathrm{Hf}-\mathrm{Te} 2^{\text {ii }}$	2.9825 (8)	$\mathrm{Te} 3-\mathrm{Hf}^{\text {diii }}$	2.9454 (8)
$\mathrm{Hf}-\mathrm{Te} 4^{\text {iv }}$	3.0312 (11)	$\mathrm{Te} 3-\mathrm{H}^{\text {vii }}$	2.9454 (8)
$\mathrm{Ge}-\mathrm{Te} 4^{\mathrm{v}}$	2.6761 (10)	Te4-Ge ${ }^{\text {ix }}$	2.6761 (10)
$\mathrm{Ge}-\mathrm{Te} 4^{\text {vi }}$	2.6761 (10)	$\mathrm{Te} 4-\mathrm{Ge}^{\mathrm{x}}$	2.6761 (10)
$\mathrm{Ge}-\mathrm{Te} 3$	2.6955 (17)	Te4-Hf ${ }^{\text {l }}$	3.0312 (11)

Gei - $\mathrm{Hf}-\mathrm{Te} 3^{\text {ii }}$	75.29 (3)
Ge ${ }^{\text {i }}$ - $\mathrm{Hf}-\mathrm{Te} 3^{\text {iii }}$	75.29 (3)
$\mathrm{Te} 3{ }^{\text {iii }}-\mathrm{Hf}-\mathrm{Te} 3{ }^{\text {iii }}$	84.99 (3)
Ge ${ }^{\text {i }}$ - $\mathrm{Hf}-\mathrm{Te} 1{ }^{\text {iii }}$	125.04 (3)
Te $3^{\text {ii }}-\mathrm{Hf}-\mathrm{Te} 1^{\text {iii }}$	157.35 (3)
Te3iii-Hf—Te $1^{\text {iii }}$	90.704 (18)
Gei- $\mathrm{Hf}-\mathrm{Te} 1^{\text {ii }}$	125.04 (3)
Te $3^{\text {ii }}-\mathrm{Hf}-\mathrm{Te} 1^{\text {ii }}$	90.704 (18)
Te3iii-Hf—Te $1^{\text {ii }}$	157.35 (3)
Te $1^{\text {iii }}$ - $\mathrm{Hf}-\mathrm{Te} 1^{\text {ii }}$	84.75 (3)
Ge ${ }^{\text {i }}$ - $\mathrm{Hf}-\mathrm{Te} 2{ }^{\text {iii }}$	71.00 (3)
Te $3^{\text {ii }}-\mathrm{Hf}-\mathrm{Te} 2^{\text {iii }}$	146.29 (3)
Te3iii-Hf—-Te $2^{\text {iii }}$	86.01 (2)
Te1 $1^{\text {iii- }} \mathrm{Hf}-\mathrm{Te} 2^{\text {iii }}$	54.96 (3)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{Hf}-\mathrm{Te} 2^{\text {iii }}$	108.97 (3)
Gei- $\mathrm{Hf}-\mathrm{Te}^{2 i}$	71.00 (3)
Te3ii- ${ }^{\text {ii }}$	86.01 (2)
Te3 ${ }^{\text {iii }}-\mathrm{Hf}-\mathrm{Te} 2^{\text {ii }}$	146.29 (3)
Te $1^{\text {iii }}$-Hf—-Te $2^{\text {ii }}$	108.97 (3)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{Hf}-\mathrm{Te} 2^{\text {ii }}$	54.96 (3)
$\mathrm{Te} 2^{\text {iii }}-\mathrm{Hf}-\mathrm{Te} 2^{\text {ii }}$	83.69 (3)
$\mathrm{Ge}-\mathrm{Hf}-\mathrm{Te} 4^{\mathrm{iv}}$	147.38 (4)
$\mathrm{Te} 3{ }^{\text {ii }}-\mathrm{Hf}-\mathrm{Te} 4{ }^{\text {iv }}$	80.84 (2)

Te3iii-Hf-Te4 ${ }^{\text {iv }}$	80.84 (2)
Te ${ }^{\text {iiii- }}$ - $\mathrm{Hf}-\mathrm{Te} 4^{\text {iv }}$	76.52 (3)
Te ${ }^{\text {iii- }}$ - $\mathrm{Hf}-\mathrm{Te} 4^{\text {iv }}$	76.52 (3)
$\mathrm{Te} 2{ }^{\text {iii }}-\mathrm{Hf}-\mathrm{Te} 4^{\text {iv }}$	129.45 (2)
Te $2{ }^{\text {ii }}-\mathrm{Hf}-\mathrm{Te} 4{ }^{\text {iv }}$	129.45 (2)
$\mathrm{Te} 4^{\mathrm{v}}-\mathrm{Ge}-\mathrm{Te} 4^{\text {vi }}$	96.07 (5)
Te4 ${ }^{\text {v }}-\mathrm{Ge}-\mathrm{Te} 3$	92.35 (4)
Te4 ${ }^{\text {vi-_Ge-Te3 }}$	92.35 (4)
Te4 ${ }^{\text {v }}-\mathrm{Ge}-\mathrm{Hf}^{\text {fiv }}$	123.85 (4)
Te4 ${ }^{\text {vi }}-\mathrm{Ge}-\mathrm{Hf}^{\text {fiv }}$	123.85 (4)
$\mathrm{Te} 3-\mathrm{Ge}-\mathrm{Hf}^{\text {fv }}$	120.07 (5)
Te2-Te1-Hf ${ }^{\text {vii }}$	63.08 (2)
Te2-Te1- $\mathrm{H}^{\text {fiii }}$	63.08 (2)
$\mathrm{Hf}^{\text {vii }}$ - $\mathrm{Te} 1-\mathrm{Hf}^{\text {viii }}$	84.75 (3)
Te1-Te2-Hf ${ }^{\text {vii }}$	61.96 (2)
Te1—-Te2- $\mathrm{Hf}^{\text {fiii }}$	61.96 (2)
Hf ${ }^{\text {vii }}$ - $\mathrm{Te} 2-\mathrm{Hf}^{\text {viii }}$	83.69 (3)
$\mathrm{Ge}-\mathrm{Te} 3-\mathrm{H}^{\text {diii }}$	93.94 (3)
$\mathrm{Ge}-\mathrm{Te} 3-\mathrm{Hf}^{\text {dii }}$	93.94 (3)
$\mathrm{Hf}^{\text {viii- }} \mathrm{Te} 3-\mathrm{Hf}^{\text {vii }}$	84.99 (3)
$\mathrm{Ge}^{\mathrm{ix}}$ - $\mathrm{Te} 4-\mathrm{Ge}^{\mathrm{x}}$	96.07 (5)
$\mathrm{Ge}^{\mathrm{ix}}$ - $\mathrm{Te} 4-\mathrm{Hf}^{1}$	92.41 (4)
$\mathrm{Ge}^{\mathrm{x}}-\mathrm{Te} 4-\mathrm{Hf}^{\text {i }}$	92.41 (4)

Symmetry codes: (i) $-x,-y+1, z-1 / 2$; (ii) $x+1 / 2, y+1 / 2, z$; (iii) $x-1 / 2, y+1 / 2, z$; (iv) $-x,-y+1, z+1 / 2$; (v) $-x-1 / 2,-y+1 / 2, z+1 / 2$; (vi) $-x+1 / 2,-y+1 / 2, z+1 / 2$; (vii) $x+1 / 2, y-1 / 2, z$; (viii) $x-1 / 2, y-1 / 2, z$; (ix) $-x-1 / 2,-y+1 / 2, z-1 / 2$; (x) $-x+1 / 2,-y+1 / 2, z-1 / 2$.

