organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6-Dinitrobenzene-1,3-diamine

Tian Zhou,^a* De-Fu Han^b and Yong-Jun Hu^b

^aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and ^bSchool of Life Science, Changchun Normal University, Changchun 130032, People's Republic of China Correspondence e-mail: zhout016@nenu.edu.cn

Received 27 March 2008; accepted 6 April 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.188; data-to-parameter ratio = 10.4.

The molecule of the title compound, C₆H₆N₄O₄, is almost planar, being stabilized by two intramolecular N-H···O hydrogen bonds. Further N-H···O links lead to a sheet in the crystal structure.

Related literature

For related literature, see: Siri & Braunstein (2005).

Experimental

Crystal data

C₆H₆N₄O₄ $M_r = 198.15$ Triclinic, $P\overline{1}$ a = 7.1294 (6) Å b = 7.1770 (9) Å c = 9.1289 (8) Å $\alpha = 67.710 \ (6)^{\circ}$ $\beta = 86.692 \ (6)^{\circ}$

 $\gamma = 62.214 \ (5)^{\circ}$ $V = 378.30 (7) \text{ Å}^3$ Z = 2Mo Ka radiation $\mu = 0.15 \text{ mm}^{-1}$ T = 295 (2) K $0.23\,\times\,0.21\,\times\,0.19$ mm

Data collection

Bruker APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2001)
  T_{\min} = 0.967, T_{\max} = 0.972
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	127 parameters
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
1322 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

2447 measured reflections

 $R_{\rm int} = 0.024$

1322 independent reflections

1098 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O3^{i}$ $N1 - H1A \cdots O1^{ii}$ $N1 - H1B = O4$	0.86 0.86	2.24 2.47 2.05	3.074 (2) 2.917 (2) 2.667 (2)	162 113
$N1 - H1B \cdots O4$ $N2 - H2A \cdots O2^{i}$ $N2 - H2B \cdots O1$	0.86 0.86 0.86	2.05 2.31 2.03	2.667 (3) 3.098 (2) 2.642 (2)	128 152 128
$N2 - H2B \cdots O4^{iii}$	0.86	2.33	2.964 (3)	131

Symmetry codes: (i) x, y + 1, z; (ii) x, y, z + 1; (iii) x, y + 1, z - 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Science Foundation of Maoming University (grant No. 208033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2712).

References

Bruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Siri, O. & Braunstein, P. (2005). New J. Chem. 29, 75-78.

supporting information

Acta Cryst. (2008). E64, o840 [doi:10.1107/S1600536808009318]

4,6-Dinitrobenzene-1,3-diamine

Tian Zhou, De-Fu Han and Yong-Jun Hu

S1. Comment

As part of the ongoing investigations of biological structure-property relationships in amino-containing molecules (Siri & Braunstein, 2005), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The molecule of (I) is almost planar, being stabilised by two intramolecular N-H···O interactions (Table 1). The aromatic ring makes dihedral angles of $3.7 (2)^{\circ}$ and $4.6 (3)^{\circ}$ with the N3/O1/O2 and N4/O3/O4 nitro groups, respectively. Further intermolecular N-H···O hydrogen bonds result in (100) sheets in the crystal (Fig. 2).

S2. Experimental

80 ml concentrated HN0₃ was added dropwise to 29.2 g 1,3-dichlorobenzene in 150 ml oleum (25% sulfur trioxide) and the mixture was stirred for 30 minutes. The resulting solution was poured over 2000 g crushed ice. After the ice has melted, sufficient 30% sodium hydroxide solution was added to achieve a pH of 7 and 24.2 g of 1,3-dinitro-4,6-dichlorobenzene (II) was obtained after filtration and drying. Then, 7.2 g of (II) and 50 ml 30% aqueous ammonia were sealed in a 100-ml autoclave and heated to 443 K for 24 h. After cooling to room temperature, 5.6 g (23% yield) of colourless blocks of (I) were recovered. Anal. Calc. for $C_6H_6N_4O_4$: C 36.34, H 3.03, N 28.28%; Found: C 36.32, H 3.01, N 28.29%.

S3. Refinement

The H atoms were placed in calculated positions with C—H = 0.93Å and N—H = 0.86Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figure 1

The molecular structure of (I), drawn with 50% displacement ellipsoids for the non-hydrogen atoms. The hydrogen bonds are shown as double-dashed lines.

4,6-Dinitrobenzene-1,3-diamine

Crystal data	
$C_6H_6N_4O_4$	Z = 2
$M_r = 198.15$	F(000) = 204
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.740 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.1294 (6) Å	Cell parameters from 1322 reflections
b = 7.1770 (9) Å	$\theta = 3.4 - 25.1^{\circ}$
c = 9.1289 (8) Å	$\mu = 0.15 \text{ mm}^{-1}$
$\alpha = 67.710 \ (6)^{\circ}$	T = 295 K
$\beta = 86.692 \ (6)^{\circ}$	Block, colourless
$\gamma = 62.214 \ (5)^{\circ}$	$0.23 \times 0.21 \times 0.19 \text{ mm}$
$V = 378.30 (7) Å^3$	
Data collection	
Bruker APEXII CCD	φ and ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: fine-focus sealed tube	(SADABS; Bruker, 2001)
Graphite monochromator	$T_{\min} = 0.967, T_{\max} = 0.972$

2447 measured reflections	$\theta_{\rm max} = 25.1^{\circ}, \theta_{\rm min} = 3.4^{\circ}$
1322 independent reflections	$h = -8 \rightarrow 8$
1098 reflections with $I > 2\sigma(I)$	$k = -3 \rightarrow 8$
$R_{\rm int}=0.024$	$l = -9 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.187$	neighbouring sites
S = 1.00	H-atom parameters constrained
1322 reflections	$w = 1/[\sigma^2(F_o^2) + (0.15P)^2 + 0.0584P]$
127 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	х	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2508 (3)	0.6981 (4)	0.8212 (2)	0.0307 (5)	
C2	0.2639 (3)	0.8653 (4)	0.6845 (2)	0.0325 (6)	
H2	0.2723	0.9844	0.6965	0.039*	
C3	0.2654 (3)	0.8654 (3)	0.5319 (2)	0.0291 (5)	
C4	0.2464 (3)	0.6832 (3)	0.5162 (2)	0.0284 (5)	
C5	0.2400 (3)	0.5121 (3)	0.6491 (2)	0.0308 (5)	
Н5	0.2317	0.3932	0.6369	0.037*	
C6	0.2457 (3)	0.5127 (3)	0.7994 (2)	0.0312 (5)	
N1	0.2441 (3)	0.7171 (3)	0.9615 (2)	0.0399 (6)	
H1A	0.2478	0.8319	0.9678	0.048*	
H1B	0.2360	0.6146	1.0455	0.048*	
N2	0.2856 (3)	1.0298 (3)	0.4091 (2)	0.0397 (5)	
H2A	0.2977	1.1347	0.4248	0.048*	
H2B	0.2865	1.0300	0.3148	0.048*	
N3	0.2326 (3)	0.6701 (3)	0.3643 (2)	0.0332 (5)	
N4	0.2487 (3)	0.3197 (3)	0.9290 (2)	0.0390 (5)	
01	0.2415 (3)	0.8172 (3)	0.24312 (17)	0.0490 (5)	
O2	0.2106 (3)	0.5129 (3)	0.35769 (19)	0.0501 (5)	
03	0.2537 (4)	0.1638 (3)	0.9013 (2)	0.0635 (7)	
O4	0.2458 (3)	0.3152 (3)	1.06588 (18)	0.0539 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0380 (11)	0.0317 (11)	0.0225 (10)	-0.0169 (9)	0.0053 (8)	-0.0108 (8)
C2	0.0471 (12)	0.0284 (11)	0.0280 (12)	-0.0218 (9)	0.0058 (9)	-0.0126 (9)
C3	0.0360 (11)	0.0269 (11)	0.0236 (10)	-0.0160 (8)	0.0051 (8)	-0.0082 (8)
C4	0.0354 (11)	0.0300 (11)	0.0207 (10)	-0.0149 (9)	0.0052 (7)	-0.0122 (9)
C5	0.0401 (11)	0.0256 (10)	0.0287 (11)	-0.0172 (9)	0.0043 (8)	-0.0112 (9)
C6	0.0415 (11)	0.0288 (11)	0.0220 (11)	-0.0186 (9)	0.0041 (8)	-0.0065 (9)
N1	0.0684 (13)	0.0374 (11)	0.0218 (10)	-0.0307 (10)	0.0093 (8)	-0.0132 (8)
N2	0.0674 (13)	0.0363 (10)	0.0241 (9)	-0.0343 (10)	0.0092 (8)	-0.0091 (8)
N3	0.0443 (10)	0.0319 (10)	0.0253 (9)	-0.0185 (8)	0.0041 (7)	-0.0129 (8)
N4	0.0593 (12)	0.0337 (11)	0.0265 (9)	-0.0268 (9)	0.0078 (8)	-0.0090 (8)
01	0.0861 (13)	0.0490 (11)	0.0202 (8)	-0.0406 (9)	0.0121 (7)	-0.0121 (8)
02	0.0847 (12)	0.0457 (10)	0.0358 (10)	-0.0388 (9)	0.0054 (8)	-0.0217 (8)
03	0.1255 (18)	0.0439 (11)	0.0397 (10)	-0.0569 (12)	0.0171 (10)	-0.0147 (9)
04	0.0979 (14)	0.0498 (11)	0.0214 (9)	-0.0460 (10)	0.0134 (8)	-0.0087 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.334 (3)	С5—Н5	0.9300
C1—C2	1.401 (3)	C6—N4	1.432 (3)
C1—C6	1.435 (3)	N1—H1A	0.8600
С2—С3	1.392 (3)	N1—H1B	0.8600
C2—H2	0.9300	N2—H2A	0.8600
C3—N2	1.344 (3)	N2—H2B	0.8600
C3—C4	1.434 (3)	N3—O1	1.229 (2)
C4—C5	1.377 (3)	N3—O2	1.233 (2)
C4—N3	1.437 (3)	N4—O3	1.222 (3)
C5—C6	1.377 (3)	N4—O4	1.236 (3)
N1 C1 C2	110.87 (10)	C5 C6 N4	116 47 (18)
N1_C1_C6	123.84 (19)	C_{5} C_{6} C_{1}	120 45 (10)
N1 - C1 - C0	123.84(19) 116.20(10)	C_{3}	120.43(19) 122.07(10)
$C_2 = C_1 = C_0$	124 42 (19)	N4 - C0 - C1	123.07 (19)
$C_3 = C_2 = C_1$	124.43 (19)	C1 = N1 = H1R	120.0
$C_3 - C_2 - H_2$	117.8		120.0
CI-C2-H2	117.8	HIA—NI—HIB	120.0
N2—C3—C2	119.92 (18)	C3—N2—H2A	120.0
N2—C3—C4	123.51 (19)	C3—N2—H2B	120.0
C2—C3—C4	116.57 (18)	H2A—N2—H2B	120.0
C5—C4—C3	120.39 (19)	O1—N3—O2	121.21 (18)
C5-C4-N3	117.18 (18)	O1—N3—C4	119.26 (17)
C3—C4—N3	122.43 (19)	O2—N3—C4	119.52 (17)
C4—C5—C6	121.69 (19)	O3—N4—O4	121.72 (17)
С4—С5—Н5	119.2	O3—N4—C6	119.01 (18)
С6—С5—Н5	119.2	O4—N4—C6	119.27 (18)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A····O3 ⁱ	0.86	2.24	3.074 (2)	162
N1—H1A····O1 ⁱⁱ	0.86	2.47	2.917 (2)	113
N1—H1 <i>B</i> …O4	0.86	2.05	2.667 (3)	128
N2— $H2A$ ···O2 ⁱ	0.86	2.31	3.098 (2)	152
N2—H2 <i>B</i> …O1	0.86	2.03	2.642 (2)	128
N2—H2 <i>B</i> ····O4 ⁱⁱⁱ	0.86	2.33	2.964 (3)	131

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*, *z*+1; (iii) *x*, *y*+1, *z*-1.