

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Carbonyl-1 κ C)bis[2,3(η^5)-cyclopentadienyl][μ_3 -(S-methyl trithiocarbonato)methylidyne-1:2:3 κ^4 C,S":C:C](triphenylphosphine-1 κ P)(μ_3 -sulfido-1:2:3 κ^3 S)dicobalt(II)iron(II) trifluoromethanesulfonate

Anthony R. Manning,^a C. John McAdam,^b Anthony J. Palmer^a and Jim Simpson^b*

^aDepartment of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 31 March 2008; accepted 2 April 2008

Key indicators: single-crystal X-ray study; T = 91 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.068; data-to-parameter ratio = 12.4.

The asymmetric unit of the title compound, $[FeCo_2(C_5H_5)_2-$ (C₃H₃S₃)S(C₁₈H₁₅P)(CO)]CF₃SO₃, consists of a triangular irondicobalt cluster cation and a trifluoromethanesulfonate anion. In the cation, the FeCo₂ triangle is symmetrically capped on one face by an S atom and on the other by a C atom linked to a methyl trithiocarbonate residue that bridges the Fe-C bond. Each Co atom carries a cyclopentadienyl ligand while the Fe atom coordinates to one carbonyl and one triphenylphosphine ligand. In the crystal structure, the cation is linked to the anion by a number of weak non-classical C- $H \cdots O$ and $C - H \cdots F$ hydrogen bonds and weak $S \cdots O$ (3.317 Å) and S. · · F (3.198 Å) interactions. The structure is further stabilized by additional intermolecular $C-H\cdots O, C H \cdot \cdot F$ and $O \cdot \cdot O$ (2.942 Å) contacts, together with an unusual $S \cdots \pi(Cp)$ interaction ($S \cdots$ centroid distance = 3.385 Å), generating an extended network.

Related literature

For the preparation of the title compound, see: Manning *et al.* (2003). For reference structural data, see: Allen *et al.* (1987, 2002). For related sulfur- and carbon-capped triangular $FeCo_2$ structures, see: Manning, O'Dwyer *et al.* (1995, 1998, 1999); Manning, Palmer *et al.* (1998). For related literature, see: Ringer *et al.* (2007).

Experimental

Crystal data

 $[FeCo_{2}(C_{5}H_{5})_{2}(C_{3}H_{3}S_{3})S(C_{18}H_{15}P)-(CO)]CF_{3}SO_{3}$ $M_{r} = 910.53$ Monoclinic, $P2_{1}/c$ a = 11.0403 (6) Å b = 29.2183 (14) Å c = 10.9040 (5) Å

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.717, T_{\max} = 0.899$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.067$ S = 1.035502 reflections 36119 measured reflections 5502 independent reflections 4297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$

 $\beta = 100.664 \ (3)^{\circ}$

Z = 4

V = 3456.7 (3) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.06 \times 0.06$ mm

 $\mu = 1.77 \text{ mm}^{-3}$

T = 91 (2) K

443 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.38$ e Å⁻³ $\Delta \rho_{min} = -0.35$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Co2-S1	2.1275 (9)	Fe1-Co2	2.6149 (6)
Co1-S1	2.1564 (9)	Co1-C1	1.867 (3)
Fe1-S1	2.1836 (9)	Co1-Co2	2.4153 (6)
Fe1-C1	1.891 (3)	Co2-C1	1.880 (3)
Fe1-Co1	2.5035 (6)		
Co2-S1-Co1	68.64 (3)	Co1-C1-Co2	80.27 (13)
Co2-S1-Fe1	74.67 (3)	Co1-C1-Fe1	83.54 (13)
Co1-S1-Fe1	70.45 (3)	Co2-C1-Fe1	87.81 (13)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots O2$	0.98	2.56	3.477 (4)	156
C3−H3 <i>C</i> ···F3	0.98	2.62	3.297 (4)	127
C11−H11···O3	0.95	2.41	3.293 (4)	154
C21-H21···O2	0.95	2.64	3.588 (4)	174
C21-H21···O3	0.95	2.64	3.235 (4)	121
C13−H13· · · O1 ⁱ	0.95	2.42	3.288 (4)	152
C14−H14···F1 ⁱ	0.95	2.56	3.248 (4)	129
C35−H35···O1 ⁱⁱ	0.95	2.53	3.283 (4)	136
$C24 - H24 \cdots O2^{iii}$	0.95	2.49	3.298 (4)	143

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

metal-organic compounds

Data collection: *APEX2* (Bruker 2006); cell refinement: *APEX2* and *SAINT* (Bruker 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) and *TITAN2000* (Hunter & Simpson, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *TITAN2000*; molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004) and *PLATON* (Spek, 2003).

We thank the New Zealand Foundation for Research Science and Technology for a Postdoctoral Fellowship to CJM, and the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2713).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Manning, A. R., McAdam, C. J., Palmer, A. J., Robinson, B. H. & Simpson, J. (2003). Dalton Trans. pp. 4472–4481.
- Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1995). J. Organomet. Chem. 503, C46–C47.
- Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1998). J. Organomet. Chem. 551, 139–149.
- Manning, A. R., O'Dwyer, L., McArdle, P. A. & Cunningham, D. (1999). J. Organomet. Chem. 573, 109–120.
- Manning, A. R., Palmer, A. J., McAdam, C. J., Robinson, B. H. & Simpson, J. (1998). Chem. Commun. pp. 1577–1578.
- Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 1-8.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, m635-m636 [doi:10.1107/S1600536808008970]

(Carbonyl-1 κ C)bis[2,3(η^5)-cyclopentadienyl][μ_3 -(S-methyl trithiocarbonato)methylidyne-1:2:3 κ^4 C,S'':C:C](triphenylphosphine-1 κ P)(μ_3 sulfido-1:2:3 κ^3 S)dicobalt(II)iron(II) trifluoromethanesulfonate

Anthony R. Manning, C. John McAdam, Anthony J. Palmer and Jim Simpson

S1. Comment

The title compound (I) was first reported and characterized by us (Manning *et al.*, 2003), as part of a study into the reaction of carbon disulfide with the μ_3 -CS cluster [{Co(η^5 -C₅H₅)}₂{Fe(CO)(PPh₃)}(μ_3 -S)(μ_3 -CS)]. The product from this reaction, [{Co(η^5 -C₅H₅)}₂{Fe(CO)(PPh₃)}(μ_3 -S)(μ_3 -C₂S₃)], reacted with alkylating agents MeX to give [{Co(η^5 -C₅H₅)}₂{Fe(CO)(PPh₃)}(μ_3 -S)(μ_3 -C₂S₃Me)]⁺[X]⁻ salts. The compound with [X]⁻ = I⁻ was characterized crystallographically in the initial report. Since then crystals of the compound (I) where [X]⁻ is trifluoromethanesulfonate have come to hand allowing us to determine the effect of the counter-anion on the unusual structure of the cation.

The asymmetric unit of (I), $C_{32}H_{28}OPS_4FeCo_2^+$, $CO_3F_3S^-$, consists of a bicapped iron-dicobalt cluster cation and a trifluoromethanesulfonate anion (Fig. 1). The structure of the cation in (I) is very similar to that of the cation in the previously reported iodide salt [{ $Co(\eta^5-C_5H_5)$ }_2{Fe(CO)(PPh_3)}(\mu_3-S)(\mu_3-C_2S_3Me)][I], Manning *et al.* (2003). The bond lengths and angles in the cations, (Table 1) are comparable in both structures. They also confirm our suggestion that the bonding within the Fe—S—C(SMe)-S—C metallocycle is delocalized. Bond distances and angles in the anion are also normal (Allen *et al.*, 1987).

In the crystal structure the cation is linked to the anion in the asymmetric unit by a number of weak non-classical C— H···O and C—H···F hydrogen bonds and weak S···O and F···O interactions. A feature of the packing is an intermolecular S··· π (Cp) interaction involving the capping S1 atom and the C21···C25 cyclopentadiene ring of an adjacent molecule (Fig. 2), with an S···*Cg*ⁱ distance of 3.385Å and a mean S1···*Cg*···Cn angle of 89.9° (*Cg* is the centroid of the C21···C25 cyclopentadiene ring and n = 21···25; symmetry code i = x, 3/2 - y, 1/2 + z). Such interactions between S atoms and benzene rings are common, 1781 examples with S···*Cg* distances in the range 3.0 ··· 3.7 Å (mean 3.54 Å) and S1···*Cg*···Cn angles in the range 60···120° (mean 90.0°) in the Cambridge database Ver 5.29 to January 2008 (Allen *et al.*, 2004). They are also important in determining protein folding interactions in biochemistry (Ringer *et al.*, 2007). In contrast however, the database reveals only 194 similar interactions involving five-membered aromatic rings with the same distance and angle limitations (mean S···*Cg* distance 3.62 Å, S1···*Cg*···Cn angle 89.9), many of which involve cyclopentadiene rings in transition metal organometallic complexes.

The structure is further stabilized by additional intermolecular C—H···O, C—H···F and O···O contacts which generate an extended network (Table 2). Pairs of cluster cations, interleave with trifluoromethyl sulphonate cations to form interlinked columns down the *c* axis (Fig. 3).

For related sulfur and carbon capped triangular FeCo₂ structures see Manning, O'Dwyer *et al.*, (1995, 1998, 1999); Manning, Palmer *et al.*, (1998).

S2. Experimental

The title compound was prepared from the room temperature reaction of methyl trifluoromethanesulfonate with $[{Co(\eta^5 - C_5H_5)}_2{Fe(CO)(PPh_3)}(\mu_3 - S)(\mu_3 - C_2S_3)]$, Manning *et al.* (2003), with X-ray quality crystals grown from dichloromethane layered with methanol.

S3. Refinement

The crystals were small and weakly diffracting and little useable data were obtained beyond $\theta = 24^{\circ}$. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic and 0.98 Å, $U_{iso}=1.5U_{eq}$ (C) for CH₃ H atoms.

Figure 1

The asymmetric unit of (I), with 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The unusual $S \cdots \pi(Cp)$ interaction (dotted line) in (I). The red circle represents the centroid of the C21 \cdots C25 cyclopentadiene ring.

Figure 3

Crystal packing of (I) viewed down the c axis.

 $(Carbonyl-1\kappa C)bis[2,3(\eta^{5})-cyclopentadienyl][\mu_{3}-(S-methyl trithiocarbonato)methylidyne-1:2:3\kappa^{4}C,S'':C:C] (triphenylphosphine- 1\kappa P)(\mu_{3}-sulfido-1:2:3\kappa^{3}S)dicobalt(II)iron(II) trifluoromethanesulfonate$

F(000) = 1840

 $\theta = 2.3 - 23.6^{\circ}$

 $\mu = 1.77 \text{ mm}^{-1}$ T = 91 K

 $D_{\rm x} = 1.750 {\rm ~Mg} {\rm ~m}^{-3}$

Irregular fragment, black

 $0.18 \times 0.06 \times 0.06 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5433 reflections

Crystal data

 $[FeCo_{2}(C_{5}H_{5})_{2}(C_{3}H_{3}S_{3})S(C_{18}H_{15}P)(CO)]CF_{3}SO_{3}$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 11.0403 (6) Å b = 29.2183 (14) Å c = 10.9040 (5) Å $\beta = 100.664$ (3)° V = 3456.7 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector	36119 measured reflections
diffractometer	5502 independent reflections
Radiation source: fine-focus sealed tube	4297 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.081$
ω scans	$\theta_{\rm max} = 24.2^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2006)	$k = -33 \rightarrow 33$
$T_{\min} = 0.717, \ T_{\max} = 0.899$	$l = -12 \rightarrow 12$

Refinement

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.43507 (7)	0.68025 (3)	0.84869 (8)	0.01321 (19)	
Fe1	0.38034 (4)	0.614761 (15)	0.75881 (4)	0.01093 (12)	
Col	0.59348 (4)	0.647577 (15)	0.79713 (4)	0.01244 (12)	

Co2	0 43989 (4)	0 600/31 (15)	0 65645 (4)	0.01123 (11)
C02	0.43989(4)	0.090431(13)	0.05045(4)	0.01123(11)
S2	0.4900(3) 0.52197(7)	0.02912(11) 0.59798(3)	0.0302(3)	0.0119(7)
C2	0.32197(7)	0.56308 (11)	0.52501(0)	0.01445(1)
S3	0.36348(8)	0.52579 (3)	0.38030(3)	0.0120(7)
C3	0.30348(8) 0.4831(3)	0.52579(3) 0.53630(12)	0.38030(8) 0.2012(3)	0.0193(2)
	0.4877	0.55050 (12)	0.2912(3)	0.0219(0)
H3R	0.4642	0.5107	0.2147	0.033*
H3C	0.4042	0.5258	0.2119	0.033*
115C S4	0.3024 0.29960 (7)	0.56474 (3)	0.5580	0.033
54 C4	0.2330(3)	0.50474(3) 0.57269(12)	0.00791(0)	0.0150(2)
04	0.4330(3) 0.4722(2)	0.57209(12) 0.54557(8)	0.8704(3)	0.0109(8)
C11	0.4722(2) 0.7657(3)	0.54557(8) 0.65135(13)	0.9440(2) 0.7521(3)	0.0208(0)
U11	0.7037 (3)	0.05155 (15)	0.7521 (5)	0.0218 (9)
C12	0.7622 0.7542 (2)	0.0373	0.0712	0.020°
U12	0.7545 (5)	0.06436 (12)	0.8458 (5)	0.0232 (9)
П12 С12	0.7008	0.7108	0.8550	0.028°
U12	0.7314(3)	0.00107 (15)	0.9313 (3)	0.0242 (9)
HI3	0.7209	0.0/48	1.02/6	0.029*
U14	0.7270 (3)	0.01407 (15)	0.9253 (3)	0.0249 (9)
H14	0.7124	0.5905	0.9807	0.030*
	0.7481 (3)	0.00788 (15)	0.8022 (3)	0.0249 (9)
HIS GOI	0.7501	0.5/94	0.7606	0.030*
C21	0.4574 (3)	0.71066 (11)	0.4791 (3)	0.0171 (8)
H21	0.4880	0.6920	0.4202	0.021*
C22	0.3330 (3)	0.71431 (11)	0.4931 (3)	0.0166 (8)
H22	0.2653	0.6988	0.4441	0.020*
C23	0.3258 (3)	0.74476 (11)	0.5918 (3)	0.0173 (8)
H23	0.2534	0.7529	0.6224	0.021*
C24	0.4474 (3)	0.76111 (11)	0.6372 (3)	0.0187 (8)
H24	0.4703	0.7827	0.7026	0.022*
C25	0.5283 (3)	0.73976 (11)	0.5685 (3)	0.0192 (8)
H25	0.6149	0.7442	0.5802	0.023*
P1	0.19319 (7)	0.62119 (3)	0.81383 (8)	0.01130 (19)
C31	0.1058 (3)	0.66800 (11)	0.7289 (3)	0.0118 (7)
C32	0.0804 (3)	0.66594 (11)	0.5986 (3)	0.0150 (8)
H32	0.1091	0.6407	0.5572	0.018*
C33	0.0139 (3)	0.70032 (12)	0.5291 (3)	0.0185 (8)
H33	-0.0051	0.6980	0.4408	0.022*
C34	-0.0247 (3)	0.73794 (12)	0.5880 (3)	0.0205 (8)
H34	-0.0711	0.7614	0.5405	0.025*
C35	0.0044 (3)	0.74128 (11)	0.7162 (3)	0.0192 (8)
H35	-0.0199	0.7676	0.7567	0.023*
C36	0.0686 (3)	0.70657 (11)	0.7865 (3)	0.0159 (8)
H36	0.0873	0.7092	0.8749	0.019*
C41	0.1856 (3)	0.63076 (11)	0.9778 (3)	0.0130 (7)
C42	0.0678 (3)	0.63315 (11)	1.0099 (3)	0.0138 (7)
H42	-0.0036	0.6317	0.9463	0.017*
C43	0.0553 (3)	0.63756 (11)	1.1325 (3)	0.0170 (8)

H43	-0.0244	0.6399	1.1531	0.020*
C44	0.1591 (3)	0.63864 (11)	1.2259 (3)	0.0157 (8)
H44	0.1502	0.6407	1.3107	0.019*
C45	0.2758 (3)	0.63666 (11)	1.1963 (3)	0.0153 (8)
H45	0.3467	0.6378	1.2606	0.018*
C46	0.2888 (3)	0.63291 (11)	1.0721 (3)	0.0131 (7)
H46	0.3688	0.6318	1.0518	0.016*
C51	0.0968 (3)	0.56975 (11)	0.7843 (3)	0.0135 (7)
C52	0.0065 (3)	0.56312 (12)	0.6782 (3)	0.0196 (8)
H52	-0.0116	0.5869	0.6183	0.024*
C53	-0.0570 (3)	0.52218 (12)	0.6594 (3)	0.0241 (9)
H53	-0.1173	0.5178	0.5860	0.029*
C54	-0.0332 (3)	0.48759 (12)	0.7471 (4)	0.0254 (9)
H54	-0.0778	0.4597	0.7343	0.030*
C55	0.0555 (3)	0.49360 (12)	0.8532 (3)	0.0239 (9)
H55	0.0713	0.4701	0.9142	0.029*
C56	0.1210 (3)	0.53417 (11)	0.8701 (3)	0.0189 (8)
H56	0.1839	0.5378	0.9417	0.023*
S5	0.71566 (8)	0.65888 (3)	0.32134 (8)	0.0176 (2)
01	0.7829 (2)	0.68745 (8)	0.2496 (2)	0.0249 (6)
O2	0.59310 (19)	0.64632 (8)	0.2590 (2)	0.0201 (6)
O3	0.7252 (2)	0.67193 (9)	0.4504 (2)	0.0260 (6)
C60	0.7989 (3)	0.60449 (13)	0.3295 (3)	0.0221 (8)
F1	0.78346 (19)	0.58458 (7)	0.21758 (19)	0.0351 (6)
F2	0.92021 (16)	0.61032 (7)	0.36923 (18)	0.0264 (5)
F3	0.76096 (18)	0.57506 (7)	0.4081 (2)	0.0321 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0146 (4)	0.0129 (5)	0.0127 (4)	-0.0008 (3)	0.0039 (3)	-0.0018 (3)
Fe1	0.0111 (3)	0.0106 (3)	0.0116 (3)	-0.0004 (2)	0.00340 (19)	0.0001 (2)
Co1	0.0102 (2)	0.0157 (3)	0.0112 (2)	-0.00022 (19)	0.00134 (18)	-0.00025 (19)
Co2	0.0121 (2)	0.0103 (2)	0.0113 (2)	-0.00045 (19)	0.00221 (18)	0.00090 (19)
C1	0.0094 (17)	0.0112 (18)	0.0156 (18)	0.0009 (13)	0.0038 (14)	0.0007 (14)
S2	0.0156 (4)	0.0144 (5)	0.0144 (4)	-0.0022 (4)	0.0057 (4)	-0.0032 (3)
C2	0.0123 (17)	0.0109 (18)	0.0148 (18)	0.0048 (14)	0.0035 (14)	0.0019 (14)
S3	0.0193 (5)	0.0198 (5)	0.0198 (5)	-0.0038 (4)	0.0044 (4)	-0.0074 (4)
C3	0.024 (2)	0.025 (2)	0.017 (2)	0.0017 (16)	0.0063 (16)	-0.0051 (16)
S4	0.0140 (4)	0.0157 (5)	0.0188 (5)	-0.0029 (4)	0.0055 (4)	-0.0033 (4)
C4	0.0149 (19)	0.019 (2)	0.019 (2)	0.0005 (15)	0.0081 (15)	-0.0054 (17)
O4	0.0319 (15)	0.0215 (15)	0.0268 (15)	0.0092 (12)	0.0052 (12)	0.0096 (12)
C11	0.0101 (18)	0.043 (3)	0.0125 (19)	-0.0021 (16)	0.0019 (14)	0.0019 (17)
C12	0.0089 (18)	0.024 (2)	0.034 (2)	-0.0051 (15)	-0.0029 (16)	0.0023 (18)
C13	0.0138 (19)	0.044 (3)	0.0131 (19)	0.0004 (17)	-0.0028 (15)	-0.0050 (17)
C14	0.0151 (19)	0.033 (2)	0.023 (2)	0.0009 (17)	-0.0054 (16)	0.0120 (17)
C15	0.0099 (18)	0.033 (2)	0.030 (2)	0.0071 (16)	-0.0024 (16)	-0.0062 (18)
C21	0.024 (2)	0.0151 (19)	0.0141 (19)	0.0052 (15)	0.0093 (15)	0.0054 (15)

C22	0.0197 (19)	0.0156 (19)	0.0129 (18)	0.0019 (15)	-0.0014 (15)	0.0047 (15)
C23	0.0200 (19)	0.0093 (18)	0.023 (2)	0.0055 (15)	0.0046 (15)	0.0030 (15)
C24	0.026 (2)	0.0075 (18)	0.020 (2)	0.0002 (15)	-0.0021 (16)	0.0012 (14)
C25	0.0144 (18)	0.018 (2)	0.025 (2)	-0.0035 (15)	0.0024 (15)	0.0113 (16)
P1	0.0109 (4)	0.0114 (5)	0.0117 (5)	-0.0007 (4)	0.0025 (3)	-0.0005 (4)
C31	0.0084 (17)	0.0115 (18)	0.0165 (19)	-0.0022 (14)	0.0050 (14)	0.0015 (14)
C32	0.0137 (18)	0.0134 (18)	0.0170 (19)	-0.0028 (14)	0.0005 (15)	-0.0010 (15)
C33	0.0173 (19)	0.023 (2)	0.0133 (18)	-0.0009 (16)	-0.0017 (15)	0.0038 (15)
C34	0.0126 (18)	0.024 (2)	0.024 (2)	0.0012 (15)	-0.0001 (15)	0.0086 (16)
C35	0.0207 (19)	0.0122 (19)	0.026 (2)	0.0035 (15)	0.0072 (16)	-0.0013 (16)
C36	0.0184 (19)	0.0155 (19)	0.0151 (18)	-0.0010 (15)	0.0066 (15)	-0.0001 (15)
C41	0.0133 (18)	0.0101 (18)	0.0168 (18)	-0.0008 (14)	0.0057 (14)	0.0011 (14)
C42	0.0125 (18)	0.0143 (19)	0.0138 (18)	-0.0005 (14)	0.0004 (14)	-0.0007 (14)
C43	0.0180 (19)	0.0154 (19)	0.021 (2)	-0.0017 (15)	0.0115 (16)	0.0017 (15)
C44	0.024 (2)	0.0146 (19)	0.0096 (17)	-0.0041 (15)	0.0059 (15)	-0.0016 (14)
C45	0.0166 (19)	0.0146 (19)	0.0132 (18)	-0.0028 (15)	-0.0012 (15)	0.0022 (14)
C46	0.0118 (17)	0.0112 (18)	0.0177 (19)	-0.0010 (14)	0.0059 (14)	-0.0019 (14)
C51	0.0084 (17)	0.0157 (19)	0.0188 (19)	0.0009 (14)	0.0088 (14)	-0.0008 (15)
C52	0.0192 (19)	0.018 (2)	0.021 (2)	-0.0019 (16)	0.0028 (15)	0.0031 (16)
C53	0.0167 (19)	0.024 (2)	0.030 (2)	-0.0065 (16)	-0.0004 (16)	-0.0021 (18)
C54	0.022 (2)	0.016 (2)	0.040 (2)	-0.0047 (16)	0.0102 (18)	-0.0036 (18)
C55	0.025 (2)	0.017 (2)	0.030 (2)	0.0007 (16)	0.0063 (17)	0.0038 (17)
C56	0.0191 (19)	0.017 (2)	0.021 (2)	-0.0005 (16)	0.0035 (15)	0.0013 (16)
S5	0.0152 (5)	0.0214 (5)	0.0160 (5)	-0.0011 (4)	0.0028 (4)	0.0013 (4)
01	0.0238 (14)	0.0281 (15)	0.0232 (14)	-0.0080 (11)	0.0052 (11)	0.0041 (11)
O2	0.0150 (13)	0.0223 (14)	0.0216 (14)	-0.0027 (10)	-0.0005 (10)	0.0039 (11)
03	0.0248 (14)	0.0368 (16)	0.0171 (14)	0.0012 (12)	0.0054 (11)	-0.0063 (12)
C60	0.015 (2)	0.034 (2)	0.018 (2)	0.0016 (17)	0.0050 (16)	0.0002 (17)
F1	0.0359 (13)	0.0377 (14)	0.0288 (13)	0.0105 (11)	-0.0013 (10)	-0.0149 (11)
F2	0.0148 (11)	0.0381 (13)	0.0267 (12)	0.0016 (9)	0.0046 (9)	-0.0003 (10)
F3	0.0258 (12)	0.0291 (13)	0.0442 (14)	0.0049 (10)	0.0136 (10)	0.0168 (11)

Geometric parameters (Å, °)

Co2—S1	2.1275 (9)	C22—C23	1.410 (5)
Co1—S1	2.1564 (9)	C22—H22	0.9500
Fe1—S1	2.1836 (9)	C23—C24	1.425 (4)
Fe1—C4	1.751 (4)	С23—Н23	0.9500
Fe1—C1	1.891 (3)	C24—C25	1.413 (5)
Fe1—S4	2.2572 (9)	C24—H24	0.9500
Fe1—P1	2.2634 (10)	С25—Н25	0.9500
Fe1—Co1	2.5035 (6)	P1—C31	1.824 (3)
Fe1—Co2	2.6149 (6)	P1—C41	1.827 (3)
Co1—C1	1.867 (3)	P1—C51	1.835 (3)
Col—Cl1	2.052 (3)	C31—C36	1.389 (4)
Col—C15	2.056 (3)	C31—C32	1.398 (4)
Co1—C12	2.060 (3)	C32—C33	1.384 (4)
Co1-C14	2.079 (3)	С32—Н32	0.9500

C_{01} - C_{13}	2 086 (3)	C_{33} C_{34}	1 380 (5)
$Col - Co^2$	2.000 (3)	C33_H33	0.9500
$C_{01} = C_{02}$	1 880 (3)	C_{34} C_{35}	1 379 (5)
$C_{02} = C_{11}$	2.065 (3)	C_{34} H34	0.9500
$C_{02} = C_{21}$	2.005(3)	C_{35} C_{36}	1.385(4)
$C_{02} = C_{22}$	2.007(3)	$C_{25} = C_{25}$	1.385 (4)
$C_{02} = C_{23}$	2.008(3)	C35—H35	0.9300
$C_{02} = C_{23}$	2.075(3)	C30—H30	0.9300
$C_{02} = C_{24}$	2.079(3)	C41 - C40	1.388 (4)
C1 - S2	1.743 (3)	C41 - C42	1.410 (4)
S2	1.702 (3)	C42—C43	1.375 (4)
S2—F3	3.198 (2)	C42—H42	0.9500
S2-03	3.317 (3)	C43—C44	1.385 (4)
S2—S5	3.7879 (12)	С43—Н43	0.9500
S2—C60	4.032 (4)	C44—C45	1.387 (4)
C2—S4	1.688 (3)	C44—H44	0.9500
C2—S3	1.728 (3)	C45—C46	1.392 (4)
S3—C3	1.805 (3)	C45—H45	0.9500
С3—НЗА	0.9800	C46—H46	0.9500
С3—Н3В	0.9800	C51—C56	1.391 (4)
С3—Н3С	0.9800	C51—C52	1.394 (4)
C4—O4	1.158 (4)	C52—C53	1.382 (5)
C4—O4 ⁱ	4.040 (5)	С52—Н52	0.9500
O4—O4 ⁱ	2.941 (5)	C53—C54	1.383 (5)
C11—C15	1.410 (5)	С53—Н53	0.9500
C11—C12	1.416 (5)	C54—C55	1.382 (5)
C11—H11	0.9500	С54—Н54	0.9500
C12—C13	1.421 (5)	C55—C56	1.383 (5)
C12—H12	0.9500	С55—Н55	0.9500
C13—C14	1.401 (5)	С56—Н56	0.9500
С13—Н13	0.9500	S5—O1	1.440 (2)
C14—C15	1.416 (5)	S5—O3	1.443 (2)
C14—H14	0.9500	S5—O2	1.445 (2)
С15—Н15	0.9500	S5—C60	1.829 (4)
C21—C22	1.414 (4)	C60—F1	1.334 (4)
$C_{21} - C_{25}$	1.415 (5)	C60—F3	1.335 (4)
$C_{21} = H_{21}$	0.9500	C60—F2	1.340 (4)
	0.7200	000 12	1.5 10 (1)
$C_{0}^{2} = 81 = C_{0}^{1}$	68 64 (3)	C13—C12—Co1	70 94 (19)
C_{02} S1 C_{01}	74 67 (3)	C_{11} C_{12} H_{12}	126.2
Col = Sl = Fel	70.45 (3)	C13 - C12 - H12	126.2
C_{A} Fe1 C1	114.96(14)	C_{01} C_{12} H_{12}	120.2
$C_4 = 101 = C_1$	114.90(14) 105.04(11)	$C_{14} C_{12} C_{12} C_{12}$	124.9
$C_1 = C_1 = S_1$	103.94(11) 86.02(10)	C14 - C13 - C12	70.05(10)
$C_1 = 1 C_1 = S_1$	05.02(10)	C_{12} C_{13} C_{21}	(0.03(19))
$C_{4} = F_{C1} = S_{4}$	93.02(11) 94.22(10)	C_{12} C_{13} C_{01} C_{14} C_{12} H_{12}	125.0
$C_1 = \Gamma c_1 = 54$	04.22(10)	$C_{14} = C_{13} = D_{13}$	123.9
51—re1— 54	139.02(4)	C_{12} — C_{13} — H_{13}	125.9
C_4 — $re1$ — r_1	94.37 (11) 150.28 (10)	C12 - C14 - C15	120.0
CI-FeI-FI	150.38 (10)	013-014-015	108.2 (3)

S1—Fe1—P1	89.92 (3)	C13—C14—Co1	70.6 (2)
S4—Fe1—P1	89.44 (3)	C15-C14-Co1	69.12 (19)
C4—Fe1—Co1	88.38 (11)	C13—C14—H14	125.9
C1—Fe1—Co1	47.82 (9)	C15—C14—H14	125.9
S1—Fe1—Co1	54.27 (3)	Co1—C14—H14	125.9
S4—Fe1—Co1	127.00 (3)	C11—C15—C14	108.1 (3)
P1—Fe1—Co1	143.12 (3)	C11—C15—Co1	69.8 (2)
C4—Fe1—Co2	144.34 (11)	C14—C15—Co1	70.84 (19)
C1—Fe1—Co2	45.92 (9)	C11—C15—H15	126.0
S1—Fe1—Co2	51.69 (3)	C14—C15—H15	126.0
S4—Fe1—Co2	109.44 (3)	Co1—C15—H15	125.0
P1—Fe1—Co2	110.91 (3)	C22—C21—C25	107.7 (3)
Co1—Fe1—Co2	56.263 (16)	C22—C21—Co2	70.06 (18)
C1—Co1—C11	104.89 (14)	C25—C21—Co2	70.28 (19)
C1—Co1—C15	103.48 (14)	C22—C21—H21	126.1
$C_{11} - C_{01} - C_{15}$	40.14 (14)	C25—C21—H21	126.1
C1-Co1-C12	136.54 (15)	Co2—C21—H21	125.1
$C_{11} - C_{01} - C_{12}$	40.27 (14)	C_{23} C_{22} C_{21}	108.9 (3)
$C_{15} - C_{01} - C_{12}$	67.43 (14)	C_{23} C_{22} C_{02}	70.08 (18)
C1-C01-C14	133.31 (14)	C21—C22—Co2	69.91 (18)
$C_{11} - C_{01} - C_{14}$	67.24 (14)	C23—C22—H22	125.6
C15—Co1—C14	40.04 (14)	C21—C22—H22	125.6
C12—Co1—C14	67.03 (14)	Со2—С22—Н22	126.0
C1—Co1—C13	170.24 (14)	C22—C23—C24	107.1 (3)
C11—Co1—C13	67.19 (14)	C22—C23—Co2	70.05 (18)
C15—Co1—C13	66.83 (14)	C24—C23—Co2	70.33 (18)
C12—Co1—C13	40.08 (14)	С22—С23—Н23	126.5
C14—Co1—C13	39.32 (14)	С24—С23—Н23	126.5
C1—Co1—S1	87.40 (10)	Со2—С23—Н23	124.8
C11—Co1—S1	150.50 (11)	C25—C24—C23	108.4 (3)
C15—Co1—S1	162.20 (11)	C25—C24—Co2	69.87 (19)
C12—Co1—S1	114.00 (11)	C23—C24—Co2	69.47 (18)
C14—Co1—S1	122.79 (11)	C25—C24—H24	125.8
C13—Co1—S1	102.27 (10)	C23—C24—H24	125.8
C1—Co1—Co2	50.10 (10)	Co2—C24—H24	126.4
C11—Co1—Co2	113.13 (10)	C24—C25—C21	107.9 (3)
C15—Co1—Co2	142.31 (11)	C24—C25—Co2	70.35 (19)
C12—Co1—Co2	110.88 (10)	C21—C25—Co2	69.72 (19)
C14—Co1—Co2	176.57 (11)	C24—C25—H25	126.0
C13—Co1—Co2	137.37 (11)	C21—C25—H25	126.0
S1—Co1—Co2	55.12 (3)	Со2—С25—Н25	125.5
C1—Co1—Fe1	48.64 (10)	C31—P1—C41	105.44 (15)
C11—Co1—Fe1	149.80 (10)	C31—P1—C51	106.86 (14)
C15—Co1—Fe1	122.58 (11)	C41—P1—C51	99.61 (15)
C12—Co1—Fe1	169.27 (10)	C31—P1—Fe1	110.52 (11)
C14—Co1—Fe1	117.35 (10)	C41—P1—Fe1	118.79 (11)
C13—Co1—Fe1	136.90 (10)	C51—P1—Fe1	114.43 (11)
S1—Co1—Fe1	55.28 (3)	C36—C31—C32	118.3 (3)

Co2—Co1—Fe1	64.199 (18)	C36—C31—P1	123.5 (2)
C1—Co2—C21	99.18 (14)	C32—C31—P1	118.1 (2)
C1—Co2—C22	114.54 (13)	C33—C32—C31	120.8 (3)
C21—Co2—C22	40.03 (12)	С33—С32—Н32	119.6
C1—Co2—C23	152.15 (13)	С31—С32—Н32	119.6
C21—Co2—C23	67.54 (13)	C34—C33—C32	120.1 (3)
C22—Co2—C23	39.88 (13)	С34—С33—Н33	119.9
C1—Co2—C25	118.61 (14)	С32—С33—Н33	119.9
C21—Co2—C25	40.00 (13)	C35—C34—C33	119.6 (3)
C22—Co2—C25	67.01 (13)	С35—С34—Н34	120.2
C23—Co2—C25	67.53 (13)	С33—С34—Н34	120.2
C1—Co2—C24	157.72 (14)	C34—C35—C36	120.6 (3)
C21—Co2—C24	66.98 (14)	С34—С35—Н35	119.7
$C_{22} = C_{02} = C_{24}$	66.74 (13)	С36—С35—Н35	119.7
C23—Co2—C24	40.20 (12)	C35—C36—C31	120.5 (3)
$C_{25} - C_{02} - C_{24}$	39.79 (13)	С35—С36—Н36	119.7
$C1 - Co^2 - S1$	87.93 (10)	C31—C36—H36	119.7
$C_{21} - C_{02} - S_{1}$	170 52 (10)	C46-C41-C42	118.8 (3)
$C^{22} - C^{2} - S^{1}$	141 40 (10)	C46-C41-P1	123.5(2)
$C_{23} = C_{02} = S_{1}$	108 56 (10)	C42-C41-P1	1175(2)
$C_{25} = C_{02} = S_{1}$	130 76 (10)	C43 - C42 - C41	120.6(3)
C_{24} C_{02} S_{1}	104.29 (10)	C43—C42—H42	119.7
C1 - Co2 - Co1	49 63 (9)	C41 - C42 - H42	119.7
$C_{21} - C_{02} - C_{01}$	124 51 (9)	C42 - C43 - C44	119.7 119.9(3)
$C_{22} = C_{02} = C_{01}$	160.72(10)	C42—C43—H43	120.0
C_{23} — C_{02} — C_{01}	157.87 (9)	C44—C43—H43	120.0
$C_{25} = C_{02} = C_{01}$	108 60 (9)	C43 - C44 - C45	120.0 120.4(3)
$C_{24} - C_{02} - C_{01}$	122.85 (9)	C43—C44—H44	119.8
S1—Co2—Co1	56.25 (3)	C45—C44—H44	119.8
C1— $Co2$ — $Fe1$	46.27 (10)	C44-C45-C46	119.8 (3)
C_21 — C_02 —Fe1	135.74 (10)	C44—C45—H45	120.1
C22— $Co2$ —Fe1	120.30 (10)	C46—C45—H45	120.1
C23— $Co2$ —Fe1	127.53 (10)	C41—C46—C45	120.4 (3)
C25— $Co2$ —Fe1	164.27 (10)	C41—C46—H46	119.8
C24— $Co2$ —Fe1	154.27 (10)	C45—C46—H46	119.8
S1—Co2—Fe1	53.64 (3)	C56—C51—C52	118.2 (3)
Co1—Co2—Fe1	59.538 (17)	C56—C51—P1	117.4 (2)
S2—C1—Co1	130.47 (17)	C52—C51—P1	124.2 (3)
S2—C1—Co2	129.07 (18)	C53—C52—C51	120.6 (3)
Co1—C1—Co2	80.27 (13)	С53—С52—Н52	119.7
S2—C1—Fe1	128.84 (18)	С51—С52—Н52	119.7
Co1—C1—Fe1	83.54 (13)	C52—C53—C54	120.2 (3)
Co2—C1—Fe1	87.81 (13)	С52—С53—Н53	119.9
C2—S2—C1	97.32 (15)	С54—С53—Н53	119.9
C2—S2—F3	122.72 (12)	C55—C54—C53	120.1 (3)
C1—S2—F3	136.38 (11)	С55—С54—Н54	120.0
C2—S2—O3	159.01 (12)	С53—С54—Н54	120.0
C1—S2—O3	95.49 (11)	C54—C55—C56	119.5 (3)

52.94 (6)	С54—С55—Н55	120.3
138.33 (11)	С56—С55—Н55	120.3
115.77 (11)	C55—C56—C51	121.4 (3)
130.20 (12)	С55—С56—Н56	119.3
132.48 (12)	С51—С56—Н56	119.3
120.38 (19)	O1—S5—O3	115.12 (15)
118.30 (18)	O1—S5—O2	115.05 (14)
121.31 (19)	O3—S5—O2	114.79 (14)
104.35 (16)	O1—S5—C60	103.03 (16)
109.5	O3—S5—C60	103.68 (15)
109.5	O2—S5—C60	102.73 (15)
109.5	O1—S5—S2	172.58 (11)
109.5	O3—S5—S2	60.23 (10)
109.5	O2—S5—S2	64.80 (10)
109.5	C60—S5—S2	84.03 (12)
106.84 (11)	S5—O3—S2	97.59 (12)
177.4 (3)	F1—C60—F3	107.7 (3)
165.73 (15)	F1C60F2	107.5 (3)
158.3 (3)	F3—C60—F2	106.7 (3)
107.9 (3)	F1C60S5	110.9 (2)
70.08 (19)	F3—C60—S5	112.1 (2)
70.18 (19)	F2—C60—S5	111.6 (2)
126.0	F1C60S2	118.6 (2)
126.0	F2—C60—S2	130.3 (2)
125.3	S5—C60—S2	69.14 (10)
107.7 (3)	C60—F3—S2	119.84 (19)
69.55 (19)		
	52.94 (6) 138.33 (11) 115.77 (11) 130.20 (12) 132.48 (12) 120.38 (19) 118.30 (18) 121.31 (19) 104.35 (16) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 106.84 (11) 177.4 (3) 165.73 (15) 158.3 (3) 107.9 (3) 70.08 (19) 70.18 (19) 126.0 126.0 125.3 107.7 (3) 69.55 (19)	52.94 (6) $C54-C55-H55$ 138.33 (11) $C56-C55-H55$ 115.77 (11) $C55-C56-C51$ 130.20 (12) $C55-C56-H56$ 132.48 (12) $C51-C56-H56$ 120.38 (19) $01-S5-O3$ 118.30 (18) $01-S5-O2$ 121.31 (19) $03-S5-O2$ 104.35 (16) $01-S5-C60$ 109.5 $03-S5-C60$ 109.5 $02-S5-C60$ 109.5 $03-S5-S2$ 109.5 $02-S5-S2$ 109.5 $02-S5-S2$ 109.5 $O2-S5-S2$ 109.5 $C60-S5-S2$ 109.5 $C60-F3$ 165.73 (15) $F1-C60-F3$ 165.73 (15) $F1-C60-F2$ 158.3 (3) $F3-C60-S5$ 70.08 (19) $F3-C60-S5$ 70.18 (19) $F2-C60-S5$ 126.0 $F1-C60-S2$ 126.0 $F2-C60-S2$ 125.3 $S5-C60-S2$ 107.7 (3) $C60-F3-S2$ 107.7 (3) $C60-F3-S2$

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C3—H3 <i>A</i> ···O2	0.98	2.56	3.477 (4)	156
C3—H3 <i>C</i> …F3	0.98	2.62	3.297 (4)	127
C11—H11…O3	0.95	2.41	3.293 (4)	154
C21—H21···O2	0.95	2.64	3.588 (4)	174
C21—H21···O3	0.95	2.64	3.235 (4)	121
C13—H13…O1 ⁱⁱ	0.95	2.42	3.288 (4)	152
C14—H14····F1 ⁱⁱ	0.95	2.56	3.248 (4)	129
C35—H35…O1 ⁱⁱⁱ	0.95	2.53	3.283 (4)	136
C24—H24····O2 ^{iv}	0.95	2.49	3.298 (4)	143

Symmetry codes: (ii) x, y, z+1; (iii) x-1, -y+3/2, z+1/2; (iv) x, -y+3/2, z+1/2.