organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl]isoindoline-1,3-dione

Mehmet Akkurt,^a* Selvi Karaca,^a Ali Asghar Jarrahpour,^b Maaroof Zarei^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 4 April 2008; accepted 22 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.100; data-to-parameter ratio = 16.5.

The title compound, $C_{27}H_{22}N_2O_4$, contains a nearly planar four-membered β -lactam ring, which makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system, the benzene ring and the phenyl ring, respectively. The crystal structure is stabilized by $C-H\cdots O$ and $C-H\cdots \pi$ interactions and a π - π interaction [centroid–centroid distance = 3.4505 (19) Å] is also present.

Related literature

For related structures, see: Pinar *et al.* (2006); Akkurt *et al.* (2007). For background, see: Halve *et al.* (2007); Aoyama *et al.* (2001). For related literature, see: Jarrahpour & Zarei (2007).

 $M_{r} = 438.47$

Experimental

Crystal data C₂₇H₂₂N₂O₄ Monoclinic, C2/c a = 33.7560 (17) Å b = 7.0403 (2) Å c = 31.0482 (17) Å $\beta = 140.454 (3)^{\circ}$ $V = 4698.0 (5) \text{ Å}^{3}$

Data collection

Stoe IPDS-2 diffractometer Absorption correction: none 22562 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.099$ S = 0.964934 reflections

Table 1Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.93	2.53	3.283 (3)	138
0.93	2.47	3.257 (3)	142
0.93	2.53	3.139 (2)	123
0.93	2.51	3.374 (2)	156
0.98	2.84	3.7938 (16)	166
0.96	2.82	3.633 (4)	143
	<i>D</i> -H 0.93 0.93 0.93 0.93 0.93 0.98 0.96	D-H H···A 0.93 2.53 0.93 2.47 0.93 2.53 0.93 2.51 0.98 2.84 0.96 2.82	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Z = 8

Mo $K\alpha$ radiation

 $0.53 \times 0.45 \times 0.14 \text{ mm}$

4934 independent reflections

3071 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int}=0.052$

299 parameters

 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$. Cg1 is the centroid of atoms C12–C17 and Cg2 is the centroid of atoms C2–C7.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2715).

References

- Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, 03729–03730.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Aoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki-Kajiwara, Y., Naya, N. & Nakajima, M. (2001). *Bioorg. Med. Chem.* 9, 3065– 3075.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Halve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett. 17, 341–345.
- Jarrahpour, A. A. & Zarei, M. (2007). Molecules, 12, 2364–2379.
- Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, 0804–0806.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2008). E64, o924 [doi:10.1107/S1600536808011586]

2-[1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl]isoindoline-1,3-dione

Mehmet Akkurt, Selvi Karaca, Ali Asghar Jarrahpour, Maaroof Zarei and Orhan Büyükgüngör

S1. Comment

The 2-azetidinone ring system is the common structural feature of a number of broad spectrum β -lactam antibiotics (Halve *et al.*, 2007) and also possesses other pharmalogical properties (Aoyama *et al.*, 2001). As part of our onging studies of such materials (Pinar *et al.*, 2006; Akkurt *et al.*, 2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The four-membered β -lactam ring in (I) is nearly planar, with maximum deviations of 0.022 (1) Å for N2 and -0.021 (2) Å for C10. Within the lactam ring, the bond lengths are similar to those observed in our previous studies (Pınar *et al.*, 2006; Akkurt *et al.*, 2007).

The four-membered β -lactam ring (N2/C9–C11) in (I) makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system (A: N1/C1–C8) {max. deviations from planarity = 0.048 (2) for N1 and -0.029 (3) Å for C2 and C7}, the benzene ring (B: C12–C17) and the phenyl ring (C: C22–C27), respectively. The other dihedral angles are A/B = 74.74 (9), A/C = 55.97 (11) and B/C = 74.84 (10)°. The sum of the bond angles about atom N2 is 360.0°.

The packing and hydrogen bonding of the title compound is shown in Fig. 2. The crystal structure is stabilized by interand intramolecular C—H···O interactions and C—H··· π contacts (Table 1). Finally, an aromatic π — π stacking interaction $\{C_g 3 \cdots C_g 2(1-x, 2-y, 1-z) = 3.4505 (19)$ Å, where $C_g 3$ is the centroid of the N1/C1/C2/C7/C8 five-membered ring} is observed in the crystal structure.

S2. Experimental

A solution of Schiff base (4-cinnamylidene)-(4-ethoxyphenyl)amine (1.0 eq.) was stirred with Phthaloylglycine (1.5 eq.), p-toluenesulfonyl chloride (1.5 eq.) and triethylamine (5 eq.) in dry CH₂Cl₂ at room temperature. After 10 h, the mixture was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and the solvent was evaporated to give the crude product which was then purified by recrystalization from EtOAc (Jarrahpour & Zarei, 2007) [mp: 434 -436 K]. IR (CHCl₃) cm⁻¹: 1724.2, 1758.5 (CO, phth), 1774.7 (CO, β -lactam); ¹H NMR (250 MHz, CDCl₃) δ 1.37 (Me, t, 3H), 2.33 (Me, s, 3H), 3.97 (OCH₂, q, 2H), 5.03 (H-4, dd, 1H, J=5.5, 8.5), 5.68 (H-3, d, 1H, J=5.5), 6.32 (H-5, dd, J=8.5, 16.0), 6.85 (H-6, d, 1H, J=9.0), 7.19-7.82 (ArH, m, 13H); ¹³C NMR (62.9 MHz, CDCl₃) δ 14.78 (Me), 57.69 (OCH₂), 61.04 (C-4), 63.67 (C-3), 114.99-155.82 (C=C, aromatic carbons), 160.56 (CO, phth), 167.28 (CO, β -lactam); GC-MS m/z = 438 [M⁺]. Analysis calculated for C₂₇H₂₂N₂O₄: C 73.96, H 5.06, N 6.39%. Found: C 74.02, H 5.09, N 6.33%.

S3. Refinement

All the H atoms were geometrically generated (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

View of the molecular structure of (I), with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Figure 2

View of the packing and hydrogen bonding interactions for (I). H atoms not involved in hydrogen bonding have been omitted for clarity.

2-[1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl]isoindoline-1,3-dione

Crystal data	
$C_{27}H_{22}N_{2}O_{4}$ $M_{r} = 438.47$ Monoclinic, C2/c Hall symbol: -C 2yc a = 33.7560 (17) Å b = 7.0403 (2) Å c = 31.0482 (17) Å $\beta = 140.454 (3)^{\circ}$ $V = 4698.0 (5) \text{ Å}^{3}$ Z = 8	F(000) = 1840 $D_x = 1.240 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 19454 reflections $\theta = 1.3-27.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.53 \times 0.45 \times 0.14 \text{ mm}$
Data collection	
 Stoe IPDS-2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ ω scans 22562 measured reflections 	4934 independent reflections 3071 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.8^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -42 \rightarrow 42$ $k = -8 \rightarrow 8$ $l = -39 \rightarrow 39$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.099$ S = 0.97 4934 reflections 299 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.11$ e Å ⁻³

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*= $kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0032 (2)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.52753 (6)	0.55052 (15)	0.57556 (7)	0.0765 (5)	
O2	0.54065 (6)	1.14698 (16)	0.64241 (7)	0.0887 (5)	
03	0.67821 (7)	0.6142 (2)	0.70712 (8)	0.1034 (6)	
O4	0.74347 (5)	-0.13874 (15)	0.89253 (6)	0.0729 (4)	
N1	0.54930 (5)	0.83949 (16)	0.62525 (6)	0.0555 (4)	
N2	0.64313 (6)	0.53412 (18)	0.74672 (7)	0.0617 (4)	
C1	0.51510(7)	0.7165 (2)	0.57070 (8)	0.0562 (5)	
C2	0.46331 (7)	0.8305 (2)	0.50943 (8)	0.0554 (5)	
C3	0.41750 (8)	0.7826 (3)	0.44180 (9)	0.0708 (6)	
C4	0.37641 (8)	0.9267 (3)	0.39554 (10)	0.0814 (8)	
C5	0.38151 (9)	1.1085 (3)	0.41602 (11)	0.0795 (8)	
C6	0.42714 (8)	1.1549 (2)	0.48327 (10)	0.0714 (7)	
C7	0.46791 (7)	1.0133 (2)	0.52986 (8)	0.0566 (5)	
C8	0.52172 (7)	1.0197 (2)	0.60414 (9)	0.0598 (5)	
C9	0.60433 (7)	0.7905 (2)	0.69508 (8)	0.0641 (5)	
C10	0.64799 (8)	0.6362 (3)	0.71402 (9)	0.0719 (6)	
C11	0.59771 (7)	0.6599 (2)	0.72999 (8)	0.0597 (5)	
C12	0.67075 (7)	0.3647 (2)	0.78458 (8)	0.0567 (5)	
C13	0.71296 (7)	0.2662 (2)	0.79469 (8)	0.0597 (5)	
C14	0.73897 (7)	0.0980 (2)	0.83145 (8)	0.0601 (5)	
C15	0.72250 (7)	0.0284 (2)	0.85749 (8)	0.0580 (5)	
C16	0.68038 (7)	0.1281 (2)	0.84731 (9)	0.0639 (6)	
C17	0.65484 (7)	0.2938 (2)	0.81140 (8)	0.0640 (6)	
C18	0.79389 (8)	-0.2335 (3)	0.91444 (10)	0.0753 (7)	
C19	0.81168 (9)	-0.3978 (3)	0.95687 (10)	0.0799 (7)	
C20	0.53523 (7)	0.5771 (2)	0.68565 (8)	0.0564 (5)	
C21	0.49520 (7)	0.6482 (2)	0.67920 (9)	0.0672 (6)	
C22	0.43110 (8)	0.5844 (2)	0.63340 (9)	0.0655 (6)	
C23	0.40642 (9)	0.4242 (3)	0.59366 (12)	0.0936 (8)	
C24	0.34510 (11)	0.3722 (3)	0.54989 (13)	0.1084 (10)	
C25	0.30869 (9)	0.4779 (3)	0.54607 (12)	0.0919 (8)	
C26	0.33206 (9)	0.6339 (3)	0.58488 (10)	0.0815 (7)	
C27	0.39250 (8)	0.6879 (3)	0.62798 (9)	0.0726 (6)	

H3	0.41420	0.66050	0.42780	0.0850*
H4	0.34460	0.89950	0.34950	0.0980*
H5	0.35350	1.20120	0.38360	0.0950*
H6	0.43060	1.27740	0.49710	0.0860*
H9	0.62800	0.90510	0.72220	0.0770*
H11	0.61500	0.71940	0.77040	0.0720*
H13	0.72390	0.31270	0.77680	0.0720*
H14	0.76750	0.03250	0.83850	0.0720*
H16	0.66940	0.08180	0.86510	0.0770*
H17	0.62660	0.35940	0.80490	0.0770*
H18A	0.82890	-0.14760	0.94060	0.0900*
H18B	0.78150	-0.27720	0.87570	0.0900*
H19A	0.77670	-0.48160	0.93060	0.0960*
H19B	0.82430	-0.35290	0.99530	0.0960*
H19C	0.84560	-0.46500	0.97210	0.0960*
H20	0.52400	0.46840	0.66110	0.0680*
H21	0.50880	0.75120	0.70680	0.0810*
H23	0.43100	0.35050	0.59620	0.1120*
H24	0.32880	0.26450	0.52300	0.1300*
H25	0.26760	0.44230	0.51660	0.1100*
H26	0.30720	0.70510	0.58250	0.0980*
H27	0.40790	0.79670	0.65410	0.0870*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0929 (9)	0.0524 (6)	0.0847 (9)	0.0128 (6)	0.0686 (8)	0.0056 (6)
O2	0.0932 (9)	0.0554 (6)	0.0838 (9)	0.0000 (6)	0.0594 (8)	-0.0081 (7)
O3	0.0824 (9)	0.1325 (11)	0.1212 (12)	0.0437 (8)	0.0853 (10)	0.0642 (9)
O4	0.0679 (7)	0.0707 (7)	0.0925 (9)	0.0208 (6)	0.0651 (7)	0.0242 (6)
N1	0.0501 (7)	0.0471 (6)	0.0569 (8)	0.0026 (5)	0.0380 (7)	0.0046 (6)
N2	0.0499 (7)	0.0691 (8)	0.0602 (8)	0.0122 (6)	0.0409 (7)	0.0166 (7)
C1	0.0574 (9)	0.0528 (8)	0.0646 (10)	0.0019 (7)	0.0487 (9)	0.0029 (8)
C2	0.0488 (8)	0.0622 (9)	0.0601 (10)	0.0012 (7)	0.0433 (8)	0.0039 (8)
C3	0.0620 (10)	0.0890 (11)	0.0675 (12)	-0.0043 (9)	0.0515 (10)	-0.0026 (10)
C4	0.0527 (10)	0.1283 (17)	0.0578 (11)	0.0072 (11)	0.0412 (10)	0.0174 (11)
C5	0.0597 (11)	0.0968 (14)	0.0827 (15)	0.0211 (10)	0.0551 (12)	0.0319 (11)
C6	0.0641 (10)	0.0658 (10)	0.0866 (14)	0.0161 (8)	0.0587 (11)	0.0234 (9)
C7	0.0491 (8)	0.0547 (8)	0.0671 (10)	0.0053 (7)	0.0451 (9)	0.0103 (7)
C8	0.0593 (9)	0.0477 (8)	0.0698 (11)	-0.0010 (7)	0.0491 (10)	0.0023 (8)
C9	0.0488 (8)	0.0616 (9)	0.0589 (10)	-0.0025 (7)	0.0355 (8)	0.0039 (8)
C10	0.0504 (9)	0.0870 (12)	0.0687 (11)	0.0113 (8)	0.0434 (9)	0.0225 (9)
C11	0.0522 (8)	0.0608 (8)	0.0548 (9)	0.0044 (7)	0.0383 (8)	0.0025 (7)
C12	0.0421 (7)	0.0642 (9)	0.0496 (9)	0.0026 (7)	0.0316 (7)	0.0061 (7)
C13	0.0462 (8)	0.0729 (9)	0.0568 (9)	0.0006 (7)	0.0389 (8)	0.0050 (8)
C14	0.0456 (8)	0.0676 (9)	0.0649 (10)	0.0045 (7)	0.0420 (8)	0.0050 (8)
C15	0.0477 (8)	0.0627 (9)	0.0574 (10)	0.0050 (7)	0.0389 (8)	0.0057 (7)
C16	0.0607 (9)	0.0717 (10)	0.0670 (11)	0.0111 (8)	0.0513 (9)	0.0141 (8)

supporting information

C17	0.0562 (9)	0.0744 (10)	0.0639 (10)	0.0152 (8)	0.0470 (9)	0.0130 (8)
C18	0.0659 (10)	0.0775 (11)	0.0890 (13)	0.0206 (9)	0.0614 (11)	0.0174 (10)
C19	0.0763 (12)	0.0824 (11)	0.0857 (13)	0.0266 (9)	0.0637 (12)	0.0206 (10)
C20	0.0555 (9)	0.0539 (8)	0.0560 (9)	0.0039 (7)	0.0420 (8)	0.0030 (7)
C21	0.0574 (9)	0.0721 (10)	0.0643 (11)	-0.0014 (8)	0.0449 (9)	-0.0129 (8)
C22	0.0579 (9)	0.0755 (10)	0.0638 (10)	-0.0002 (8)	0.0471 (9)	-0.0060(8)
C23	0.0762 (13)	0.0912 (13)	0.1146 (17)	-0.0156 (10)	0.0739 (14)	-0.0352 (12)
C24	0.0876 (15)	0.1084 (16)	0.124 (2)	-0.0347 (13)	0.0802 (16)	-0.0474 (14)
C25	0.0647 (11)	0.1170 (16)	0.0931 (15)	-0.0159 (12)	0.0606 (12)	-0.0111 (13)
C26	0.0662 (11)	0.1067 (14)	0.0831 (13)	0.0048 (11)	0.0606 (11)	0.0017 (12)
C27	0.0659 (11)	0.0863 (11)	0.0715 (11)	0.0024 (9)	0.0545 (10)	-0.0063 (9)

Geometric parameters (Å, °)

01—C1	1.211 (2)	C21—C22	1.470 (4)
O2—C8	1.205 (2)	C22—C23	1.380 (3)
O3—C10	1.203 (5)	C22—C27	1.385 (4)
O4—C15	1.3717 (18)	C23—C24	1.388 (5)
O4—C18	1.421 (4)	C24—C25	1.362 (6)
N1—C1	1.3913 (19)	C25—C26	1.347 (3)
N1—C8	1.402 (2)	C26—C27	1.374 (4)
N1—C9	1.435 (2)	С3—Н3	0.9300
N2—C10	1.353 (3)	C4—H4	0.9300
N2—C11	1.475 (3)	С5—Н5	0.9300
N2—C12	1.408 (2)	С6—Н6	0.9300
C1—C2	1.480 (2)	С9—Н9	0.9800
C2—C3	1.381 (2)	C11—H11	0.9800
C2—C7	1.390 (2)	С13—Н13	0.9300
C3—C4	1.394 (3)	C14—H14	0.9300
C4—C5	1.380 (3)	C16—H16	0.9300
C5—C6	1.371 (3)	C17—H17	0.9300
C6—C7	1.382 (2)	C18—H18A	0.9700
С7—С8	1.470 (2)	C18—H18B	0.9700
C9—C10	1.537 (4)	C19—H19A	0.9600
C9—C11	1.563 (3)	C19—H19B	0.9600
C11—C20	1.485 (3)	C19—H19C	0.9600
C12—C13	1.386 (4)	С20—Н20	0.9300
C12—C17	1.386 (4)	C21—H21	0.9300
C13—C14	1.389 (2)	С23—Н23	0.9300
C14—C15	1.377 (4)	C24—H24	0.9300
C15—C16	1.386 (4)	С25—Н25	0.9300
C16—C17	1.366 (2)	С26—Н26	0.9300
C18—C19	1.488 (3)	С27—Н27	0.9300
C20—C21	1.304 (4)		
C15—O4—C18	118.5 (2)	C24—C25—C26	120.1 (3)
C1—N1—C8	111.45 (13)	C25—C26—C27	120.2 (3)
C1—N1—C9	125.59 (13)	C22—C27—C26	121.6 (2)

C8—N1—C9	122.91 (13)	С2—С3—Н3	122.00
C10—N2—C11	96.40 (17)	С4—С3—Н3	122.00
C10—N2—C12	133.7 (3)	C3—C4—H4	119.00
C11—N2—C12	129.9 (2)	C5—C4—H4	119.00
01—C1—N1	124.49 (15)	С4—С5—Н5	119.00
O1—C1—C2	129.48 (15)	С6—С5—Н5	119.00
N1—C1—C2	106.03 (13)	С5—С6—Н6	121.00
C1—C2—C3	130.54 (16)	С7—С6—Н6	121.00
C1—C2—C7	108.06 (14)	N1—C9—H9	110.00
C3—C2—C7	121.35 (16)	С10—С9—Н9	110.00
C2—C3—C4	116.54 (19)	С11—С9—Н9	110.00
C3—C4—C5	121.93 (19)	N2—C11—H11	112.00
C4—C5—C6	121.16 (19)	С9—С11—Н11	112.00
C5—C6—C7	117.70 (16)	C20—C11—H11	112.00
C2—C7—C6	121.31 (15)	C12—C13—H13	120.00
C2—C7—C8	108.22 (14)	C14—C13—H13	120.00
C6—C7—C8	130.44 (15)	C13—C14—H14	120.00
O2—C8—N1	123.78 (16)	C15—C14—H14	120.00
O2—C8—C7	130.10 (16)	C15—C16—H16	120.00
N1—C8—C7	106.12 (13)	C17—C16—H16	120.00
N1—C9—C10	119.36 (17)	C12—C17—H17	120.00
N1—C9—C11	118.6 (2)	С16—С17—Н17	120.00
C10—C9—C11	85.79 (16)	O4—C18—H18A	110.00
O3—C10—N2	132.5 (2)	O4—C18—H18B	110.00
O3—C10—C9	135.9 (2)	C19—C18—H18A	110.00
N2—C10—C9	91.6 (2)	C19—C18—H18B	110.00
N2—C11—C9	86.09 (19)	H18A—C18—H18B	109.00
N2—C11—C20	115.99 (14)	C18—C19—H19A	109.00
C9—C11—C20	116.63 (14)	C18—C19—H19B	110.00
N2—C12—C13	121.1 (2)	C18—C19—H19C	109.00
N2—C12—C17	119.5 (2)	H19A—C19—H19B	110.00
C13—C12—C17	119.40 (16)	H19A—C19—H19C	109.00
C12—C13—C14	120.1 (2)	H19B—C19—H19C	109.00
C13—C14—C15	120.0 (2)	С11—С20—Н20	118.00
O4—C15—C14	125.2 (2)	C21—C20—H20	118.00
O4—C15—C16	115.3 (2)	C20—C21—H21	116.00
C14—C15—C16	119.57 (16)	C22—C21—H21	116.00
C15—C16—C17	120.6 (3)	С22—С23—Н23	120.00
C12—C17—C16	120.3 (3)	С24—С23—Н23	120.00
O4—C18—C19	107.8 (3)	C23—C24—H24	120.00
C11—C20—C21	123.68 (16)	C25—C24—H24	120.00
C20—C21—C22	127.56 (17)	C24—C25—H25	120.00
C21—C22—C23	122.6 (3)	C26—C25—H25	120.00
C21—C22—C27	120.12 (16)	C25—C26—H26	120.00
C23—C22—C27	117.3 (3)	C27—C26—H26	120.00
C22—C23—C24	120.5 (3)	С22—С27—Н27	119.00
C23—C24—C25	120.4 (2)	С26—С27—Н27	119.00

C18—O4—C15—C16	-170.02 (15)	C4—C5—C6—C7	0.1 (5)
C18—O4—C15—C14	11.6 (2)	C5—C6—C7—C8	178.3 (3)
C15—O4—C18—C19	174.18 (14)	C5—C6—C7—C2	0.6 (5)
C9—N1—C1—C2	-179.5 (2)	C6—C7—C8—N1	-175.1 (3)
C9—N1—C1—O1	0.5 (5)	C2C7C8N1	2.8 (3)
C1—N1—C9—C10	30.8 (4)	C6—C7—C8—O2	5.8 (6)
C8—N1—C9—C10	-152.3 (2)	C2—C7—C8—O2	-176.3 (3)
C8—N1—C1—C2	3.2 (3)	C10—C9—C11—C20	-114.35 (19)
C1—N1—C8—O2	175.4 (3)	N1-C9-C10-O3	60.1 (3)
C9—N1—C8—O2	-1.9 (5)	N1—C9—C11—C20	7.0 (3)
C1—N1—C8—C7	-3.8 (3)	C11—C9—C10—O3	-179.3 (2)
C9—N1—C8—C7	178.9 (2)	N1—C9—C11—N2	124.16 (17)
C8—N1—C1—O1	-176.8 (3)	C10—C9—C11—N2	2.85 (12)
C8—N1—C9—C11	105.6 (2)	N1-C9-C10-N2	-123.7 (2)
C1—N1—C9—C11	-71.3 (3)	C11—C9—C10—N2	-3.10 (13)
C10—N2—C12—C17	-179.02 (18)	C9—C11—C20—C21	-98.1 (3)
C11—N2—C12—C17	0.9 (3)	N2-C11-C20-C21	162.74 (18)
C12—N2—C11—C9	176.79 (16)	C13—C12—C17—C16	-0.2 (2)
C10—N2—C12—C13	0.1 (3)	N2-C12-C13-C14	-179.13 (15)
C11—N2—C12—C13	-179.98 (15)	N2-C12-C17-C16	178.93 (15)
C12—N2—C10—O3	-0.4 (4)	C17—C12—C13—C14	0.0 (2)
C12—N2—C11—C20	-65.4 (2)	C12—C13—C14—C15	0.4 (2)
C10—N2—C11—C20	114.56 (19)	C13—C14—C15—C16	-0.6 (2)
C10—N2—C11—C9	-3.25 (13)	C13—C14—C15—O4	177.73 (15)
C11—N2—C10—O3	179.7 (2)	C14—C15—C16—C17	0.4 (3)
C11—N2—C10—C9	3.30 (14)	O4—C15—C16—C17	-178.09 (15)
C12—N2—C10—C9	-176.74 (17)	C15—C16—C17—C12	0.0 (3)
N1—C1—C2—C7	-1.4 (3)	C11—C20—C21—C22	175.49 (18)
N1—C1—C2—C3	176.2 (3)	C20—C21—C22—C23	5.4 (3)
O1—C1—C2—C7	178.6 (3)	C20—C21—C22—C27	-173.5 (2)
O1—C1—C2—C3	-3.8 (6)	C21—C22—C23—C24	-178.4 (2)
C3—C2—C7—C6	-0.6 (5)	C27—C22—C23—C24	0.6 (4)
C1—C2—C3—C4	-177.3 (3)	C21—C22—C27—C26	179.0 (2)
C7—C2—C3—C4	-0.1 (5)	C23—C22—C27—C26	0.0 (3)
C3—C2—C7—C8	-178.7 (3)	C22—C23—C24—C25	-0.6 (4)
C1—C2—C7—C8	-0.9 (3)	C23—C24—C25—C26	0.0 (4)
C1—C2—C7—C6	177.2 (3)	C24—C25—C26—C27	0.6 (4)
C2—C3—C4—C5	0.7 (5)	C25—C26—C27—C22	-0.6 (4)
C3—C4—C5—C6	-0.7 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C3—H3…O1 ⁱ	0.93	2.53	3.283 (3)	138
С5—Н5…ОЗ ^{іі}	0.93	2.47	3.257 (3)	142
С13—Н13…О3	0.93	2.53	3.139 (2)	123
C20—H20···O2 ⁱⁱⁱ	0.93	2.51	3.374 (2)	156

C9—H9…Cg1^{iv} 0.98 2.84 3.7938 (16) 166 C19—H19C…Cg2^v 0.96 2.82 3.633 (4) 143

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*; (v) *x*+1/2, -*y*+1/2, *z*+1/2.