organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(4-Eth­oxy­phen­yl)-2-oxo-4-styryl­azetidin-3-yl]isoindoline-1,3-dione

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 April 2008; accepted 22 April 2008; online 26 April 2008)

The title compound, C27H22N2O4, contains a nearly planar four-membered β-lactam ring, which makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system, the benzene ring and the phenyl ring, respectively. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions and a ππ inter­action [centroid–centroid distance = 3.4505 (19) Å] is also present.

Related literature

For related structures, see: Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]); Akkurt et al. (2007[Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729-o3730.]). For background, see: Halve et al. (2007[Halve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett. 17, 341-345.]); Aoyama et al. (2001[Aoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki-Kajiwara, Y., Naya, N. & Nakajima, M. (2001). Bioorg. Med. Chem. 9, 3065-3075.]). For related literature, see: Jarrahpour & Zarei (2007[Jarrahpour, A. A. & Zarei, M. (2007). Molecules, 12, 2364-2379.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22N2O4

  • Mr = 438.47

  • Monoclinic, C 2/c

  • a = 33.7560 (17) Å

  • b = 7.0403 (2) Å

  • c = 31.0482 (17) Å

  • β = 140.454 (3)°

  • V = 4698.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.53 × 0.45 × 0.14 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: none

  • 22562 measured reflections

  • 4934 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 0.96

  • 4934 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.53 3.283 (3) 138
C5—H5⋯O3ii 0.93 2.47 3.257 (3) 142
C13—H13⋯O3 0.93 2.53 3.139 (2) 123
C20—H20⋯O2iii 0.93 2.51 3.374 (2) 156
C9—H9⋯Cg1iv 0.98 2.84 3.7938 (16) 166
C19—H19CCg2v 0.96 2.82 3.633 (4) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) x, y+1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of atoms C12–C17 and Cg2 is the centroid of atoms C2–C7.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 2-azetidinone ring system is the common structural feature of a number of broad spectrum β-lactam antibiotics (Halve et al., 2007) and also possesses other pharmalogical properties (Aoyama et al., 2001). As part of our onging studies of such materials (Pınar et al., 2006; Akkurt et al., 2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The four-membered β-lactam ring in (I) is nearly planar, with maximum deviations of 0.022 (1) Å for N2 and -0.021 (2) Å for C10. Within the lactam ring, the bond lengths are similar to those observed in our previous studies (Pınar et al., 2006; Akkurt et al., 2007).

The four-membered β-lactam ring (N2/C9–C11) in (I) makes dihedral angles of 74.64 (12), 1.70 (11) and 73.67 (12)° with the nine-membered ring system (A: N1/C1–C8) {max. deviations from planarity = 0.048 (2) for N1 and -0.029 (3) Å for C2 and C7}, the benzene ring (B: C12–C17) and the phenyl ring (C: C22–C27), respectively. The other dihedral angles are A/B = 74.74 (9), A/C = 55.97 (11) and B/C = 74.84 (10)°. The sum of the bond angles about atom N2 is 360.0°.

The packing and hydrogen bonding of the title compound is shown in Fig. 2. The crystal structure is stabilized by inter- and intramolecular C—H···O interactions and C—H···π contacts (Table 1). Finally, an aromatic ππ stacking interaction {Cg3···Cg2(1 – x, 2 – y,1 – z) = 3.4505 (19)Å, where Cg3 is the centroid of the N1/C1/C2/C7/C8 five-membered ring} is observed in the crystal structure.

Related literature top

For related structures, see: Pınar et al. (2006); Akkurt et al. (2007). For background, see: Halve et al. (2007); Aoyama et al. (2001). For related literature, see: Jarrahpour & Zarei (2007).

Experimental top

A solution of Schiff base (4-cinnamylidene)-(4-ethoxyphenyl)amine (1.0 eq.) was stirred with Phthaloylglycine (1.5 eq.), p-toluenesulfonyl chloride (1.5 eq.) and triethylamine (5 eq.) in dry CH2Cl2 at room temperature. After 10 h, the mixture was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and the solvent was evaporated to give the crude product which was then purified by recrystalization from EtOAc (Jarrahpour & Zarei, 2007) [mp: 434 -436 K]. IR (CHCl3) cm-1: 1724.2, 1758.5 (CO, phth), 1774.7 (CO, β-lactam); 1H NMR (250 MHz, CDCl3) δ 1.37 (Me, t, 3H), 2.33 (Me, s, 3H), 3.97 (OCH2, q, 2H), 5.03 (H-4, dd, 1H, J=5.5, 8.5), 5.68 (H-3, d, 1H, J=5.5), 6.32 (H-5, dd, J=8.5, 16.0), 6.85 (H-6, d, 1H, J=9.0), 7.19-7.82 (ArH, m, 13H); 13C NMR (62.9 MHz, CDCl3) δ 14.78 (Me), 57.69 (OCH2), 61.04 (C-4), 63.67 (C-3), 114.99-155.82 (C=C, aromatic carbons), 160.56 (CO, phth), 167.28 (CO, β-lactam); GC-MS m/z = 438 [M+]. Analysis calculated for C27H22N2O4: C 73.96, H 5.06, N 6.39%. Found: C 74.02, H 5.09, N 6.33%.

Refinement top

All the H atoms were geometrically generated (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), with 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions for (I). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-[1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl]isoindoline-1,3-dione top
Crystal data top
C27H22N2O4F(000) = 1840
Mr = 438.47Dx = 1.240 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 19454 reflections
a = 33.7560 (17) Åθ = 1.3–27.3°
b = 7.0403 (2) ŵ = 0.08 mm1
c = 31.0482 (17) ÅT = 293 K
β = 140.454 (3)°Prism, colourless
V = 4698.0 (5) Å30.53 × 0.45 × 0.14 mm
Z = 8
Data collection top
Stoe IPDS-2
diffractometer
3071 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.052
Plane graphite monochromatorθmax = 26.8°, θmin = 1.4°
Detector resolution: 6.67 pixels mm-1h = 4242
ω scansk = 88
22562 measured reflectionsl = 3939
4934 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4934 reflectionsΔρmax = 0.17 e Å3
299 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (2)
Crystal data top
C27H22N2O4V = 4698.0 (5) Å3
Mr = 438.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.7560 (17) ŵ = 0.08 mm1
b = 7.0403 (2) ÅT = 293 K
c = 31.0482 (17) Å0.53 × 0.45 × 0.14 mm
β = 140.454 (3)°
Data collection top
Stoe IPDS-2
diffractometer
3071 reflections with I > 2σ(I)
22562 measured reflectionsRint = 0.052
4934 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.97Δρmax = 0.17 e Å3
4934 reflectionsΔρmin = 0.11 e Å3
299 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52753 (6)0.55052 (15)0.57556 (7)0.0765 (5)
O20.54065 (6)1.14698 (16)0.64241 (7)0.0887 (5)
O30.67821 (7)0.6142 (2)0.70712 (8)0.1034 (6)
O40.74347 (5)0.13874 (15)0.89253 (6)0.0729 (4)
N10.54930 (5)0.83949 (16)0.62525 (6)0.0555 (4)
N20.64313 (6)0.53412 (18)0.74672 (7)0.0617 (4)
C10.51510 (7)0.7165 (2)0.57070 (8)0.0562 (5)
C20.46331 (7)0.8305 (2)0.50943 (8)0.0554 (5)
C30.41750 (8)0.7826 (3)0.44180 (9)0.0708 (6)
C40.37641 (8)0.9267 (3)0.39554 (10)0.0814 (8)
C50.38151 (9)1.1085 (3)0.41602 (11)0.0795 (8)
C60.42714 (8)1.1549 (2)0.48327 (10)0.0714 (7)
C70.46791 (7)1.0133 (2)0.52986 (8)0.0566 (5)
C80.52172 (7)1.0197 (2)0.60414 (9)0.0598 (5)
C90.60433 (7)0.7905 (2)0.69508 (8)0.0641 (5)
C100.64799 (8)0.6362 (3)0.71402 (9)0.0719 (6)
C110.59771 (7)0.6599 (2)0.72999 (8)0.0597 (5)
C120.67075 (7)0.3647 (2)0.78458 (8)0.0567 (5)
C130.71296 (7)0.2662 (2)0.79469 (8)0.0597 (5)
C140.73897 (7)0.0980 (2)0.83145 (8)0.0601 (5)
C150.72250 (7)0.0284 (2)0.85749 (8)0.0580 (5)
C160.68038 (7)0.1281 (2)0.84731 (9)0.0639 (6)
C170.65484 (7)0.2938 (2)0.81140 (8)0.0640 (6)
C180.79389 (8)0.2335 (3)0.91444 (10)0.0753 (7)
C190.81168 (9)0.3978 (3)0.95687 (10)0.0799 (7)
C200.53523 (7)0.5771 (2)0.68565 (8)0.0564 (5)
C210.49520 (7)0.6482 (2)0.67920 (9)0.0672 (6)
C220.43110 (8)0.5844 (2)0.63340 (9)0.0655 (6)
C230.40642 (9)0.4242 (3)0.59366 (12)0.0936 (8)
C240.34510 (11)0.3722 (3)0.54989 (13)0.1084 (10)
C250.30869 (9)0.4779 (3)0.54607 (12)0.0919 (8)
C260.33206 (9)0.6339 (3)0.58488 (10)0.0815 (7)
C270.39250 (8)0.6879 (3)0.62798 (9)0.0726 (6)
H30.414200.660500.427800.0850*
H40.344600.899500.349500.0980*
H50.353501.201200.383600.0950*
H60.430601.277400.497100.0860*
H90.628000.905100.722200.0770*
H110.615000.719400.770400.0720*
H130.723900.312700.776800.0720*
H140.767500.032500.838500.0720*
H160.669400.081800.865100.0770*
H170.626600.359400.804900.0770*
H18A0.828900.147600.940600.0900*
H18B0.781500.277200.875700.0900*
H19A0.776700.481600.930600.0960*
H19B0.824300.352900.995300.0960*
H19C0.845600.465000.972100.0960*
H200.524000.468400.661100.0680*
H210.508800.751200.706800.0810*
H230.431000.350500.596200.1120*
H240.328800.264500.523000.1300*
H250.267600.442300.516600.1100*
H260.307200.705100.582500.0980*
H270.407900.796700.654100.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0929 (9)0.0524 (6)0.0847 (9)0.0128 (6)0.0686 (8)0.0056 (6)
O20.0932 (9)0.0554 (6)0.0838 (9)0.0000 (6)0.0594 (8)0.0081 (7)
O30.0824 (9)0.1325 (11)0.1212 (12)0.0437 (8)0.0853 (10)0.0642 (9)
O40.0679 (7)0.0707 (7)0.0925 (9)0.0208 (6)0.0651 (7)0.0242 (6)
N10.0501 (7)0.0471 (6)0.0569 (8)0.0026 (5)0.0380 (7)0.0046 (6)
N20.0499 (7)0.0691 (8)0.0602 (8)0.0122 (6)0.0409 (7)0.0166 (7)
C10.0574 (9)0.0528 (8)0.0646 (10)0.0019 (7)0.0487 (9)0.0029 (8)
C20.0488 (8)0.0622 (9)0.0601 (10)0.0012 (7)0.0433 (8)0.0039 (8)
C30.0620 (10)0.0890 (11)0.0675 (12)0.0043 (9)0.0515 (10)0.0026 (10)
C40.0527 (10)0.1283 (17)0.0578 (11)0.0072 (11)0.0412 (10)0.0174 (11)
C50.0597 (11)0.0968 (14)0.0827 (15)0.0211 (10)0.0551 (12)0.0319 (11)
C60.0641 (10)0.0658 (10)0.0866 (14)0.0161 (8)0.0587 (11)0.0234 (9)
C70.0491 (8)0.0547 (8)0.0671 (10)0.0053 (7)0.0451 (9)0.0103 (7)
C80.0593 (9)0.0477 (8)0.0698 (11)0.0010 (7)0.0491 (10)0.0023 (8)
C90.0488 (8)0.0616 (9)0.0589 (10)0.0025 (7)0.0355 (8)0.0039 (8)
C100.0504 (9)0.0870 (12)0.0687 (11)0.0113 (8)0.0434 (9)0.0225 (9)
C110.0522 (8)0.0608 (8)0.0548 (9)0.0044 (7)0.0383 (8)0.0025 (7)
C120.0421 (7)0.0642 (9)0.0496 (9)0.0026 (7)0.0316 (7)0.0061 (7)
C130.0462 (8)0.0729 (9)0.0568 (9)0.0006 (7)0.0389 (8)0.0050 (8)
C140.0456 (8)0.0676 (9)0.0649 (10)0.0045 (7)0.0420 (8)0.0050 (8)
C150.0477 (8)0.0627 (9)0.0574 (10)0.0050 (7)0.0389 (8)0.0057 (7)
C160.0607 (9)0.0717 (10)0.0670 (11)0.0111 (8)0.0513 (9)0.0141 (8)
C170.0562 (9)0.0744 (10)0.0639 (10)0.0152 (8)0.0470 (9)0.0130 (8)
C180.0659 (10)0.0775 (11)0.0890 (13)0.0206 (9)0.0614 (11)0.0174 (10)
C190.0763 (12)0.0824 (11)0.0857 (13)0.0266 (9)0.0637 (12)0.0206 (10)
C200.0555 (9)0.0539 (8)0.0560 (9)0.0039 (7)0.0420 (8)0.0030 (7)
C210.0574 (9)0.0721 (10)0.0643 (11)0.0014 (8)0.0449 (9)0.0129 (8)
C220.0579 (9)0.0755 (10)0.0638 (10)0.0002 (8)0.0471 (9)0.0060 (8)
C230.0762 (13)0.0912 (13)0.1146 (17)0.0156 (10)0.0739 (14)0.0352 (12)
C240.0876 (15)0.1084 (16)0.124 (2)0.0347 (13)0.0802 (16)0.0474 (14)
C250.0647 (11)0.1170 (16)0.0931 (15)0.0159 (12)0.0606 (12)0.0111 (13)
C260.0662 (11)0.1067 (14)0.0831 (13)0.0048 (11)0.0606 (11)0.0017 (12)
C270.0659 (11)0.0863 (11)0.0715 (11)0.0024 (9)0.0545 (10)0.0063 (9)
Geometric parameters (Å, º) top
O1—C11.211 (2)C21—C221.470 (4)
O2—C81.205 (2)C22—C231.380 (3)
O3—C101.203 (5)C22—C271.385 (4)
O4—C151.3717 (18)C23—C241.388 (5)
O4—C181.421 (4)C24—C251.362 (6)
N1—C11.3913 (19)C25—C261.347 (3)
N1—C81.402 (2)C26—C271.374 (4)
N1—C91.435 (2)C3—H30.9300
N2—C101.353 (3)C4—H40.9300
N2—C111.475 (3)C5—H50.9300
N2—C121.408 (2)C6—H60.9300
C1—C21.480 (2)C9—H90.9800
C2—C31.381 (2)C11—H110.9800
C2—C71.390 (2)C13—H130.9300
C3—C41.394 (3)C14—H140.9300
C4—C51.380 (3)C16—H160.9300
C5—C61.371 (3)C17—H170.9300
C6—C71.382 (2)C18—H18A0.9700
C7—C81.470 (2)C18—H18B0.9700
C9—C101.537 (4)C19—H19A0.9600
C9—C111.563 (3)C19—H19B0.9600
C11—C201.485 (3)C19—H19C0.9600
C12—C131.386 (4)C20—H200.9300
C12—C171.386 (4)C21—H210.9300
C13—C141.389 (2)C23—H230.9300
C14—C151.377 (4)C24—H240.9300
C15—C161.386 (4)C25—H250.9300
C16—C171.366 (2)C26—H260.9300
C18—C191.488 (3)C27—H270.9300
C20—C211.304 (4)
C15—O4—C18118.5 (2)C24—C25—C26120.1 (3)
C1—N1—C8111.45 (13)C25—C26—C27120.2 (3)
C1—N1—C9125.59 (13)C22—C27—C26121.6 (2)
C8—N1—C9122.91 (13)C2—C3—H3122.00
C10—N2—C1196.40 (17)C4—C3—H3122.00
C10—N2—C12133.7 (3)C3—C4—H4119.00
C11—N2—C12129.9 (2)C5—C4—H4119.00
O1—C1—N1124.49 (15)C4—C5—H5119.00
O1—C1—C2129.48 (15)C6—C5—H5119.00
N1—C1—C2106.03 (13)C5—C6—H6121.00
C1—C2—C3130.54 (16)C7—C6—H6121.00
C1—C2—C7108.06 (14)N1—C9—H9110.00
C3—C2—C7121.35 (16)C10—C9—H9110.00
C2—C3—C4116.54 (19)C11—C9—H9110.00
C3—C4—C5121.93 (19)N2—C11—H11112.00
C4—C5—C6121.16 (19)C9—C11—H11112.00
C5—C6—C7117.70 (16)C20—C11—H11112.00
C2—C7—C6121.31 (15)C12—C13—H13120.00
C2—C7—C8108.22 (14)C14—C13—H13120.00
C6—C7—C8130.44 (15)C13—C14—H14120.00
O2—C8—N1123.78 (16)C15—C14—H14120.00
O2—C8—C7130.10 (16)C15—C16—H16120.00
N1—C8—C7106.12 (13)C17—C16—H16120.00
N1—C9—C10119.36 (17)C12—C17—H17120.00
N1—C9—C11118.6 (2)C16—C17—H17120.00
C10—C9—C1185.79 (16)O4—C18—H18A110.00
O3—C10—N2132.5 (2)O4—C18—H18B110.00
O3—C10—C9135.9 (2)C19—C18—H18A110.00
N2—C10—C991.6 (2)C19—C18—H18B110.00
N2—C11—C986.09 (19)H18A—C18—H18B109.00
N2—C11—C20115.99 (14)C18—C19—H19A109.00
C9—C11—C20116.63 (14)C18—C19—H19B110.00
N2—C12—C13121.1 (2)C18—C19—H19C109.00
N2—C12—C17119.5 (2)H19A—C19—H19B110.00
C13—C12—C17119.40 (16)H19A—C19—H19C109.00
C12—C13—C14120.1 (2)H19B—C19—H19C109.00
C13—C14—C15120.0 (2)C11—C20—H20118.00
O4—C15—C14125.2 (2)C21—C20—H20118.00
O4—C15—C16115.3 (2)C20—C21—H21116.00
C14—C15—C16119.57 (16)C22—C21—H21116.00
C15—C16—C17120.6 (3)C22—C23—H23120.00
C12—C17—C16120.3 (3)C24—C23—H23120.00
O4—C18—C19107.8 (3)C23—C24—H24120.00
C11—C20—C21123.68 (16)C25—C24—H24120.00
C20—C21—C22127.56 (17)C24—C25—H25120.00
C21—C22—C23122.6 (3)C26—C25—H25120.00
C21—C22—C27120.12 (16)C25—C26—H26120.00
C23—C22—C27117.3 (3)C27—C26—H26120.00
C22—C23—C24120.5 (3)C22—C27—H27119.00
C23—C24—C25120.4 (2)C26—C27—H27119.00
C18—O4—C15—C16170.02 (15)C4—C5—C6—C70.1 (5)
C18—O4—C15—C1411.6 (2)C5—C6—C7—C8178.3 (3)
C15—O4—C18—C19174.18 (14)C5—C6—C7—C20.6 (5)
C9—N1—C1—C2179.5 (2)C6—C7—C8—N1175.1 (3)
C9—N1—C1—O10.5 (5)C2—C7—C8—N12.8 (3)
C1—N1—C9—C1030.8 (4)C6—C7—C8—O25.8 (6)
C8—N1—C9—C10152.3 (2)C2—C7—C8—O2176.3 (3)
C8—N1—C1—C23.2 (3)C10—C9—C11—C20114.35 (19)
C1—N1—C8—O2175.4 (3)N1—C9—C10—O360.1 (3)
C9—N1—C8—O21.9 (5)N1—C9—C11—C207.0 (3)
C1—N1—C8—C73.8 (3)C11—C9—C10—O3179.3 (2)
C9—N1—C8—C7178.9 (2)N1—C9—C11—N2124.16 (17)
C8—N1—C1—O1176.8 (3)C10—C9—C11—N22.85 (12)
C8—N1—C9—C11105.6 (2)N1—C9—C10—N2123.7 (2)
C1—N1—C9—C1171.3 (3)C11—C9—C10—N23.10 (13)
C10—N2—C12—C17179.02 (18)C9—C11—C20—C2198.1 (3)
C11—N2—C12—C170.9 (3)N2—C11—C20—C21162.74 (18)
C12—N2—C11—C9176.79 (16)C13—C12—C17—C160.2 (2)
C10—N2—C12—C130.1 (3)N2—C12—C13—C14179.13 (15)
C11—N2—C12—C13179.98 (15)N2—C12—C17—C16178.93 (15)
C12—N2—C10—O30.4 (4)C17—C12—C13—C140.0 (2)
C12—N2—C11—C2065.4 (2)C12—C13—C14—C150.4 (2)
C10—N2—C11—C20114.56 (19)C13—C14—C15—C160.6 (2)
C10—N2—C11—C93.25 (13)C13—C14—C15—O4177.73 (15)
C11—N2—C10—O3179.7 (2)C14—C15—C16—C170.4 (3)
C11—N2—C10—C93.30 (14)O4—C15—C16—C17178.09 (15)
C12—N2—C10—C9176.74 (17)C15—C16—C17—C120.0 (3)
N1—C1—C2—C71.4 (3)C11—C20—C21—C22175.49 (18)
N1—C1—C2—C3176.2 (3)C20—C21—C22—C235.4 (3)
O1—C1—C2—C7178.6 (3)C20—C21—C22—C27173.5 (2)
O1—C1—C2—C33.8 (6)C21—C22—C23—C24178.4 (2)
C3—C2—C7—C60.6 (5)C27—C22—C23—C240.6 (4)
C1—C2—C3—C4177.3 (3)C21—C22—C27—C26179.0 (2)
C7—C2—C3—C40.1 (5)C23—C22—C27—C260.0 (3)
C3—C2—C7—C8178.7 (3)C22—C23—C24—C250.6 (4)
C1—C2—C7—C80.9 (3)C23—C24—C25—C260.0 (4)
C1—C2—C7—C6177.2 (3)C24—C25—C26—C270.6 (4)
C2—C3—C4—C50.7 (5)C25—C26—C27—C220.6 (4)
C3—C4—C5—C60.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.533.283 (3)138
C5—H5···O3ii0.932.473.257 (3)142
C13—H13···O30.932.533.139 (2)123
C20—H20···O2iii0.932.513.374 (2)156
C9—H9···Cg1iv0.982.843.7938 (16)166
C19—H19C···Cg2v0.962.823.633 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H22N2O4
Mr438.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)33.7560 (17), 7.0403 (2), 31.0482 (17)
β (°) 140.454 (3)
V3)4698.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.45 × 0.14
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22562, 4934, 3071
Rint0.052
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 0.97
No. of reflections4934
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.533.283 (3)138
C5—H5···O3ii0.932.473.257 (3)142
C13—H13···O30.932.533.139 (2)123
C20—H20···O2iii0.932.513.374 (2)156
C9—H9···Cg1iv0.982.843.7938 (16)166
C19—H19C···Cg2v0.962.823.633 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki-Kajiwara, Y., Naya, N. & Nakajima, M. (2001). Bioorg. Med. Chem. 9, 3065–3075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHalve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett. 17, 341–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A. A. & Zarei, M. (2007). Molecules, 12, 2364–2379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds