organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*R*)-1-(4-Bromobenzovl)-4-(1-phenvlpropyl)thiosemicarbazide

Monazza Serwer,^a M. Khawar Rauf,^b Masahiro Ebihara^b and Shahid Hameed^a*

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan Correspondence e-mail: shameed@qau.edu.pk

Received 9 March 2008; accepted 11 March 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.074; data-to-parameter ratio = 17.5.

The title compound, C₁₇H₁₈BrN₃OS, is an important intermediate for the synthesis of biologically active heterocyclic compounds. The thiourea group is approximately planar. The crystal structure is stabilized by intermolecular N-H···O hydrogen-bonding interactions.

Related literature

For related literature, see: Akhtar et al. (2006, 2007); Cardia et al. (2006); Dolman et al. (2006); Hassan et al. (2006); Jalilian et al. (2000); Kucukguzel et al. (2006); Mohareb et al. (2007); Singh et al. (2003, 2005).

Experimental

Crystal data

C17H18BrN3OS $M_r = 392.31$ Orthorhombic, P212121 a = 6.263 (3) Å b = 9.698 (5) Å c = 27.651 (15) Å

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: integration (NUMABS; Higashi, 1999) $T_{\rm min}=0.512,\ T_{\rm max}=0.626$

 $V = 1679.5 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 2.58 \text{ mm}^{-1}$ T = 123 (2) K $0.30 \times 0.25 \times 0.20$ mm

13732 measured reflections 3824 independent reflections 3516 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.057$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.074$	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
S = 1.13	Absolute structure: Flack (1983),
3824 reflections	1584 Friedel pairs
219 parameters	Flack parameter: 0.020 (10)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1^i$	0.84 (4)	2.03 (4)	2.834 (4)	161 (4)
Symmetry code: (i)	$-r v + \frac{1}{2} - 7 + \frac{1}{2}$	<u>l</u>		

: (1) $-x, y + \frac{2}{2},$

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative program for Doctoral Fellowships at Gifu University, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2385).

References

- Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroatom. Chem. 18, 316-322.
- Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, 307-308.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Cardia, M. C., Distinto, S., Maccioni, E., Plumitallo, A., Saddi, M., Sanna, M. L. & DeLogu, A. (2006). J. Heterocycl. Chem. 43, 1337-1342.
- Dolman, S. J., Gosselin, F., O'Shea, P. D. & Davies, I. W. (2006). J. Org. Chem. 71, 9548-9551.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hassan, A. A., Mourad, A. E., El-Shaieb, K. M. & Abou-Zeid, A. H. (2006). J. Heterocycl. Chem. 43, 471-476.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Jalilian, A. R., Sattari, S., Bineshmarvasti, M., Shafiee, A. & Daneshtalab, M. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 347-354.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.
- Kucukguzel, G., Kocatepa, A., DeClercq, E., Sahin, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.
- Mohareb, R. M., Ho, J. Z. & Mohamed, A. A. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1661-1681.
- Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, S., Husain, K., Athar, F. & Azam, A. (2005). Eur. J. Pharm. Sci. 25, 255-262
- Singh, M. M., Rastogi, R. B., Upadhyay, B. N. & Yadav, M. (2003). Mater. Chem. Phys. 80, 283-293.

supporting information

Acta Cryst. (2008). E64, o812 [doi:10.1107/S1600536808006806]

(R)-1-(4-Bromobenzoyl)-4-(1-phenylpropyl)thiosemicarbazide

Monazza Serwer, M. Khawar Rauf, Masahiro Ebihara and Shahid Hameed

S1. Comment

Thiosemicarbazides have attracted much attention partly because of their biological activities such as antifungal (Mohareb *et al.*, 2007), antibacterial (Kucukguzel *et al.*, 2006), antiamoebic (Singh *et al.*, 2005) antitubercular (Cardia *et al.*, 2006), corrosion inhibitors (Singh *et al.*, 2003) and partly because of their use as intermediates in the synthesis of many biologically active heterocyclic compounds like 1,3,4-oxadiazoles (Dolman *et al.*, 2006), 1,3,4-thiadiazoles (Jalilian *et al.*, 2000) and 1,2,4-triazole (Akhtar *et al.*, 2007; Akhtar *et al.*, 2006). The other important biologically active compounds synthesized from thiosemicarbazides include thiazoles, thiazines, thiadiazines, pyrazines and indazoles (Hassan *et al.*, 2006). The C2—S1 and C1—O1 bonds both show the expected full double-bond character, while the short values for the C1—N1, C2—N2, N1—N2,C2—N3 and C9—N3 bond lengths also indicate partial double-bond character. The thiourea group is approximately planar. The crystal packing is stabilized by N(1)—H(1)···O(1) and N(3)—H(3)···S(1) hydrogen bonds.

S2. Experimental

The 4-bromobenzoic acid hydrazide (0.0068 moles) was dissolved in methanol (30ml) and a solution of 0.0066 moles of R-(+)-1-phenylpropylisothiocyanate, separately dissolved in 10 ml of methanol, was added drop wise with continuous stirring. The reaction mixture was refluxed and after consumption of the starting materials (tlc), the mixture was cooled to room temperature and methanol evaporated in vacuo. The crude thiosemicarbazide was recrystallized from a mixture of ethyl acetate and petroleum ether. Yield: 85%; m.p 160-161 °C; R_f: 0.34 (Petroleum ether: acetone; 6:4); IR (ν_{max} , KBr, cm⁻¹): 3378, 3273, 3191, 3033, 2967, 2877, 1669, 1238, 1591, 1528, 699; ¹H-NMR (Acetone-d₆): δ 9.81 (1H, s), 8.58 (1H, s), 8.06 (1H, s), 0.97 (3H, t, J = 7.5 Hz), 1.92-1.82 (2H, m), 5.58 (1H, dd, J = 15.6, 7.2 Hz), 7.39 (2H, dd, J = 7.2, 1.5 Hz), 7.30 (2H, dt, J = 7.5, 3.0 Hz), 7.22 (1H, dt, J = 7.2, 3.0 Hz), 7.92 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.7 Hz); ¹³C-NMR (Acetone-d₆): δ 183.51, 165.60, 142.88, 133.20, 131.64, 129.61, 128.10, 126.87, 126.74, 126.12, 59.55, 28.21, 10.47; EIMS: (m/z %) 214 (20), 183 (100), 155 (55), 104 (10), 76 (50), 50 (45). Elemental analysis for C₁₇H₁₈N₃SOBr (391):C, 52.05; H, 4.62; N, 10.71; S, 8.17. Found: C, 51.96; H, 4.70; N, 10.82; S, 8.07.

S3. Refinement

H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Figure 1

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.

F(000) = 800

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 2.58 \text{ mm}^{-1}$

Block, colourles

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

T = 123 K

 $D_x = 1.552 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71070$ Å

Cell parameters from 4820 reflections

Figure 2

Showing hydrogen bonded molecules through N-H···O.

(R)-1-(4-Bromobenzoyl)-4-(1-phenylpropyl)thiosemicarbazide

Crystal data $C_{17}H_{18}BrN_3OS$ $M_r = 392.31$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.263 (3) Å

b = 9.698 (5) Å c = 27.651 (15) Å $V = 1679.5 (15) \text{ Å}^3$ Z = 4

Data collection

Rigaku/MSC Mercury CCD	13732 measured reflections
diffractometer	3824 independent reflections
Radiation source: fine-focus sealed tube	3516 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.057$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: integration	$h = -8 \rightarrow 8$
(NUMABS; Higashi, 1999)	$k = -12 \rightarrow 8$
$T_{\min} = 0.512, T_{\max} = 0.627$	$l = -26 \rightarrow 35$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + 1.3691P]$
$wR(F^2) = 0.074$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
3824 reflections	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$
219 parameters	$\Delta ho_{ m min} = -0.35 \ m e \ m \AA^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0018 (4)
Secondary atom site location: difference Fourier map	Absolute structure: Flack (1983), 1584 Friedel pairs
Hydrogen site location: inferred from	Absolute structure parameter: 0.020 (10)
neighbouring sites	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0742 (6)	0.2098 (3)	0.24009 (12)	0.0141 (8)
O1	0.0089 (4)	0.0922 (2)	0.23367 (10)	0.0260 (7)
N1	-0.0306 (5)	0.3005 (3)	0.26956 (12)	0.0144 (7)
H1	0.006 (6)	0.384 (4)	0.2666 (13)	0.017*
C2	-0.2924 (6)	0.2804 (3)	0.33209 (13)	0.0124 (8)
S1	-0.55059 (15)	0.30911 (9)	0.34643 (4)	0.0169 (2)
N2	-0.2383 (5)	0.2701 (3)	0.28467 (12)	0.0144 (7)
H2	-0.319 (7)	0.288 (4)	0.2668 (15)	0.017*
N3	-0.1369 (5)	0.2639 (3)	0.36436 (12)	0.0146 (6)
Н3	-0.024 (6)	0.254 (3)	0.3547 (15)	0.017*
C3	0.2725 (6)	0.2613 (3)	0.21649 (13)	0.0134 (8)
C4	0.3408 (6)	0.3985 (4)	0.21787 (13)	0.0156 (8)
H4	0.2625	0.4643	0.2361	0.019*
C5	0.5216 (6)	0.4390 (3)	0.19285 (14)	0.0171 (8)
Н5	0.5681	0.5322	0.1939	0.020*
C6	0.6334 (7)	0.3426 (3)	0.16636 (12)	0.0153 (7)
C7	0.5710 (6)	0.2056 (4)	0.16486 (13)	0.0197 (8)
H7	0.6508	0.1401	0.1468	0.024*
C8	0.3915 (7)	0.1659 (3)	0.18998 (13)	0.0169 (8)
H8	0.3479	0.0721	0.1893	0.020*
Br1	0.87772 (7)	0.39971 (4)	0.131114 (15)	0.02482 (12)
C9	-0.1593 (6)	0.2802 (3)	0.41665 (12)	0.0152 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H9	-0.3033	0.3217	0.4224	0.018*
C10	-0.1581 (6)	0.1398 (3)	0.44199 (13)	0.0154 (8)
C11	-0.3136 (6)	0.0440 (3)	0.42905 (14)	0.0207 (9)
H11	-0.4171	0.0674	0.4053	0.025*
C12	-0.3188 (7)	-0.0852 (4)	0.45040 (15)	0.0258 (10)
H12	-0.4244	-0.1503	0.4410	0.031*
C13	-0.1711 (7)	-0.1193 (4)	0.48521 (14)	0.0273 (10)
H13	-0.1748	-0.2078	0.4999	0.033*
C14	-0.0166 (7)	-0.0245 (4)	0.49888 (16)	0.0305 (11)
H14	0.0848	-0.0475	0.5231	0.037*
C15	-0.0110 (6)	0.1039 (4)	0.47705 (14)	0.0231 (9)
H15	0.0956	0.1683	0.4863	0.028*
C16	0.0052 (6)	0.3842 (4)	0.43521 (13)	0.0200 (8)
H16A	0.1506	0.3475	0.4296	0.024*
H16B	-0.0137	0.3966	0.4705	0.024*
C17	-0.0165 (7)	0.5243 (4)	0.41003 (15)	0.0276 (10)
H17A	0.0209	0.5147	0.3758	0.041*
H17B	0.0798	0.5909	0.4254	0.041*
H17C	-0.1641	0.5569	0.4129	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.017 (2)	0.0147 (16)	0.0109 (19)	0.0004 (14)	0.0000 (16)	0.0045 (13)
O1	0.0226 (16)	0.0156 (12)	0.0397 (18)	-0.0052 (12)	0.0131 (13)	-0.0043 (12)
N1	0.0114 (16)	0.0133 (13)	0.0185 (19)	-0.0054 (12)	0.0049 (14)	0.0010 (12)
C2	0.0131 (19)	0.0096 (15)	0.015 (2)	-0.0006 (13)	0.0013 (16)	-0.0013 (13)
S 1	0.0102 (5)	0.0220 (4)	0.0184 (5)	0.0014 (4)	0.0029 (4)	0.0007 (4)
N2	0.0078 (17)	0.0215 (16)	0.0140 (19)	-0.0001 (13)	-0.0027 (14)	0.0057 (13)
N3	0.0102 (15)	0.0230 (13)	0.0105 (16)	0.0013 (12)	0.0013 (17)	-0.0019 (12)
C3	0.0120 (19)	0.0140 (16)	0.014 (2)	0.0009 (13)	-0.0015 (16)	0.0044 (13)
C4	0.015 (2)	0.0156 (15)	0.0165 (19)	0.0032 (17)	0.0005 (16)	0.0038 (15)
C5	0.018 (2)	0.0155 (17)	0.018 (2)	-0.0002 (14)	-0.0004 (18)	0.0023 (14)
C6	0.0116 (18)	0.0256 (16)	0.0087 (18)	0.0002 (15)	0.0002 (18)	0.0040 (13)
C7	0.020 (2)	0.0242 (17)	0.015 (2)	0.0037 (15)	0.0044 (17)	-0.0027 (15)
C8	0.016 (2)	0.0158 (15)	0.019 (2)	-0.0009 (15)	0.0043 (19)	0.0004 (13)
Br1	0.01688 (19)	0.03197 (19)	0.0256 (2)	-0.00092 (17)	0.0097 (2)	0.00672 (18)
C9	0.015 (2)	0.0230 (17)	0.0078 (19)	-0.0003 (15)	0.0031 (16)	-0.0007 (13)
C10	0.018 (2)	0.0194 (16)	0.0090 (18)	0.0018 (14)	0.0014 (17)	-0.0006 (12)
C11	0.020 (2)	0.0270 (18)	0.015 (2)	-0.0036 (15)	-0.0038 (17)	0.0045 (15)
C12	0.028 (3)	0.028 (2)	0.021 (2)	-0.0071 (18)	0.0013 (18)	-0.0019 (17)
C13	0.038 (3)	0.0230 (19)	0.021 (2)	0.0071 (18)	0.005 (2)	0.0009 (16)
C14	0.035 (3)	0.033 (2)	0.023 (3)	0.0116 (19)	-0.011 (2)	0.0005 (18)
C15	0.027 (2)	0.0242 (18)	0.018 (2)	-0.0021 (19)	-0.0045 (18)	0.0018 (18)
C16	0.020 (2)	0.0275 (18)	0.013 (2)	-0.0051 (16)	0.0007 (16)	-0.0030 (16)
C17	0.032 (3)	0.030 (2)	0.021 (2)	-0.0109 (18)	0.004 (2)	0.0027 (17)

Geometric parameters (Å, °)

C1-01	1.224 (4)	C8—H8	0.9500
C1—N1	1.367 (4)	C9—C16	1.531 (5)
C1—C3	1.489 (5)	C9—C10	1.532 (4)
N1—N2	1.397 (4)	С9—Н9	1.0000
N1—H1	0.84 (4)	C10—C15	1.382 (5)
C2—N3	1.330 (5)	C10—C11	1.393 (5)
C2—N2	1.358 (5)	C11—C12	1.386 (5)
C2—S1	1.688 (4)	C11—H11	0.9500
N2—H2	0.73 (4)	C12—C13	1.376 (6)
N3—C9	1.461 (5)	C12—H12	0.9500
N3—H3	0.76 (4)	C13—C14	1.387 (6)
С3—С8	1.396 (5)	C13—H13	0.9500
C3—C4	1.398 (5)	C14—C15	1.384 (5)
C4—C5	1.384 (5)	C14—H14	0.9500
C4—H4	0.9500	C15—H15	0.9500
С5—С6	1.379 (5)	C16—C17	1.532 (5)
С5—Н5	0.9500	C16—H16A	0.9900
С6—С7	1.386 (5)	C16—H16B	0.9900
C6—Br1	1.897 (4)	C17—H17A	0.9800
С7—С8	1.376 (5)	C17—H17B	0.9800
С7—Н7	0.9500	C17—H17C	0.9800
01 C1 N1	121 7 (3)	C16 C0 C10	115 A (3)
01 - C1 - C1	121.7(3) 121.8(3)	$N_{2} = C_{10} = C_{10}$	106.8
N1 C1 C3	121.6(3)	$C_{16} C_{9} H_{9}$	106.8
N1 - C1 - C3	110.3(3)	$C_{10} = C_{9} = H_{9}$	106.8
C1 - N1 - N2 C1 - N1 - H1	119.5 (3)	$C_{10} = C_{10} = C_{11}$	118 6 (3)
N2_N1_H1	119(3)	C15 - C10 - C9	123 3 (3)
$N_2 = N_1 = M_1$ $N_3 = C_2 = N_2$	117(5)	$C_{11} = C_{10} = C_{9}$	125.5(5) 118 2 (3)
$N_{3} - C_{2} - N_{2}$	117.1(3) 1243(3)	C12-C11-C10	110.2(5) 120 7 (4)
$N_2 C_2 S_1$	124.5(3)	C_{12} C_{11} H_{11}	110.6
$N_2 = C_2 = S_1$	110.0(3) 1204(3)	C_{12} C_{11} H_{11}	119.6
$C_2 = N_2 = N_1$	120.4(3)	C_{13} C_{12} C_{11}	120.0 (4)
N1 N2 H2	113(3)	C_{13} C_{12} H_{12}	120.0 (4)
$1 \times 1 - 1 \times 2 - 1 \times 2$	115(5) 1255(3)	$C_{11} = C_{12} = H_{12}$	120.0
$C_2 = N_3 = H_3$	123.3(3)	C12 C13 C14	120.0 (4)
$C_2 = N_3 = H_3$	117(3)	C12 - C13 - C14	120.0 (4)
C_{3} C_{3} C_{4}	117(3) 1188(3)	C12 - C13 - H13	120.0
C_{0} C_{3} C_{1}	110.0(3)	$C_{14} = C_{13} = 1113$	120.0
$C_0 = C_3 = C_1$	117.0(3) 124.2(3)	C15 C14 H14	119.7 (4)
C4 - C3 - C1	124.2(3) 1204(3)	$C_{13} = C_{14} = H_{14}$	120.2
$C_{5} = C_{4} = C_{5}$	120.4 (3)	C_{13} $-C_{14}$ $-\Pi_{14}$ C_{10} C_{15} C_{14}	120.2 121 1 (4)
C_{3} C_{4} H_{4}	117.0	C10 - C13 - C14 C10 - C15 - H15	121.1 (4)
$C_{5} = C_{7} = 114$	117.0 110.2(2)	C_{10} C_{13} $- \overline{C_{13}}$ C_{13} C_{14} C_{15} U_{15} U_{15}	119.5
C0-C3-C4 C6-C5-H5	119.2 (5)	$C_{14} - C_{13} - \Pi_{13}$	117.5
C0-C5-H5	120.4	C_{9} C_{10} C_{17} C_{9} C_{16} H_{16A}	100 3
UT-UJ-11J	120.4	UJ-UIU-1110A	107.3

C5—C6—C7	121.5 (4)	C17—C16—H16A	109.3	
C5—C6—Br1	119.0 (3)	C9—C16—H16B	109.3	
C7—C6—Br1	119.5 (3)	C17—C16—H16B	109.3	
C8—C7—C6	118.9 (3)	H16A—C16—H16B	107.9	
С8—С7—Н7	120.5	C16—C17—H17A	109.5	
С6—С7—Н7	120.5	C16—C17—H17B	109.5	
C7—C8—C3	121.0 (3)	H17A—C17—H17B	109.5	
С7—С8—Н8	119.5	C16—C17—H17C	109.5	
С3—С8—Н8	119.5	H17A—C17—H17C	109.5	
N3—C9—C16	109.8 (3)	H17B—C17—H17C	109.5	
N3—C9—C10	110.8 (3)			
01—C1—N1—N2	-13.7 (5)	C4—C3—C8—C7	-1.1 (6)	
C3—C1—N1—N2	166.7 (3)	C1—C3—C8—C7	176.6 (3)	
N3—C2—N2—N1	-26.7 (4)	C2—N3—C9—C16	-125.2 (3)	
S1—C2—N2—N1	154.7 (2)	C2—N3—C9—C10	106.1 (4)	
C1—N1—N2—C2	131.2 (3)	N3—C9—C10—C15	121.4 (4)	
N2—C2—N3—C9	175.6 (3)	C16—C9—C10—C15	-4.2 (5)	
S1—C2—N3—C9	-6.0 (4)	N3-C9-C10-C11	-58.7 (4)	
O1—C1—C3—C8	-5.4 (5)	C16—C9—C10—C11	175.7 (3)	
N1—C1—C3—C8	174.2 (3)	C15—C10—C11—C12	-0.8 (6)	
O1—C1—C3—C4	172.1 (3)	C9—C10—C11—C12	179.3 (3)	
N1—C1—C3—C4	-8.3 (5)	C10-C11-C12-C13	0.8 (6)	
C8—C3—C4—C5	0.8 (5)	C11—C12—C13—C14	-0.1 (6)	
C1—C3—C4—C5	-176.7 (3)	C12—C13—C14—C15	-0.5 (6)	
C3—C4—C5—C6	0.2 (5)	C11—C10—C15—C14	0.2 (6)	
C4—C5—C6—C7	-1.1 (6)	C9-C10-C15-C14	-180.0 (4)	
C4—C5—C6—Br1	178.7 (3)	C13—C14—C15—C10	0.5 (6)	
С5—С6—С7—С8	0.8 (6)	N3-C9-C16-C17	57.4 (4)	
Br1—C6—C7—C8	-179.0 (3)	C10—C9—C16—C17	-176.5 (3)	
C6—C7—C8—C3	0.3 (6)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.84 (4)	2.03 (4)	2.834 (4)	161 (4)

Symmetry code: (i) -x, y+1/2, -z+1/2.