Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-3,4-Dihydroxybenzaldehyde 4-ethylthiosemicarbazone

Safa'a Fares Kayed,^a Yang Farina,^a Ibrahim Baba^a and Jim Simpson^b*

^aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 3 April 2008; accepted 4 April 2008

Key indicators: single-crystal X-ray study; T = 91 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.059; wR factor = 0.169; data-to-parameter ratio = 12.1.

The title compound, C₁₀H₁₃N₃O₂S, was prepared by condensation of 3,4-dihydroxybenzaldehyde with 4-ethyl-3-thiosemicarbazide. The molecule adopts an E configuration with respect to the C=N bond. One of the OH substituents on the dihydroxybenzene ring is disordered over the two possible 3positions on either side of the ordered 4-hydroxy group. The occupancy of the major disorder component refined to 0.633 (7). The molecule is essentially planar, with an r.m.s. deviation through all non-H atoms of 0.0862 Å. An intramolecular $N-H \cdots N$ hydrogen bond forms between the outer amine residue and the imine N atom, generating an S(5) ring motif and contributing to the planarity of the molecule. In the crystal structure, an extensive network of classical $O-H \cdots O$, $O-H \cdots S$ and $N-H \cdots S$ hydrogen bonds and weak C- $H \cdots O$ and $S \cdots O$ [3.301 (3) Å] interactions link molecules into sheets running approximately parallel to the *ab* plane.

Related literature

For related structures, see: Swesi *et al.* (2006); Kovala-Demertzi *et al.* (2004); Jian & Li (2006). For reference structural data, see: Allen *et al.* (1987). For ring motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{10}H_{13}N_3O_2S$ $V = 1129.9 (2) Å^3$
 $M_r = 239.29$ Z = 4

 Monoclinic, $P2_1/c$ Mo K α radiation

 a = 10.6549 (12) Å $\mu = 0.28 \text{ mm}^{-1}$

 b = 12.9020 (16) Å T = 91 (2) K

 c = 8.6375 (11) Å $0.44 \times 0.11 \times 0.09$
 $\beta = 107.910 (4)^{\circ}$ $0.44 \times 0.11 \times 0.09$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\rm min} = 0.818, \ T_{\rm max} = 0.975$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$
$wR(F^2) = 0.168$
S = 1.05
1998 reflections
165 parameters
2 restraints

T = 91 (2) K0.44 × 0.11 × 0.09 mm

12327 measured reflections 1998 independent reflections 1507 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.040$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 1.41 \text{ e } \text{ \AA}^{-3}$ $\Delta \rho_{min} = -0.64 \text{ e } \text{ \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3B\cdots N1$	0.88	2.23	2.626 (4)	107
$O5-H5A\cdots S1^{i}$	0.84	2.82	3.106 (9)	102
$C2-H2\cdots O5^{ii}$	0.95	2.65	3.335 (8)	129
$N2 - H2A \cdots S1^{iii}$	0.88	2.52	3.392 (4)	172
O4−H4···O4 ^{iv}	0.84	2.16	2.988 (5)	169
$C9-H9A\cdots O3^{v}$	0.99	2.46	2.985 (5)	113

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y + 1, -z; (v) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker 2006); cell refinement: *APEX2* and *SAINT* (Bruker 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) and *TITAN2000* (Hunter & Simpson, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *TITAN2000*; molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004) and *PLATON* (Spek, 2003).

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant UKM-ST-01-FRGS0022–2006. We also thank the University of Otago for purchase of the diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2389).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Jian, F.-F. & Li, Y. (2006). Acta Cryst. E62, 04563-04564.
- Kovala-Demertzi, D., Yadav, P. N., Demertzis, M. A., Jasiski, J. P., Andreadaki, F. J. & Kostas, I. D. (2004). *Tetrahedron Lett.* **45**, 2923–2926.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453– 457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, 05457– 05458.

supporting information

Acta Cryst. (2008). E64, 0824–0825 [doi:10.1107/S1600536808009148]

(E)-3,4-Dihydroxybenzaldehyde 4-ethylthiosemicarbazone

Safa'a Fares Kayed, Yang Farina, Ibrahim Baba and Jim Simpson

S1. Comment

For example the structure of the related molecule 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate has been reported by Swesi *et al.* (2006) as have the structures of a phenylthiocarbazole with a single hydroxy-substituent on the benzylidene ring (Jian & Li, 2006) and of a palladium(II) complex of an ethylthiosemicarbonate ligand deprotonated at the phenolate ring (Kovala-Demertzi *et al.*, 2004).

The molecule adopts an *E* configuration with respect to the C=N bond and bond distances and angles are normal (Allen *et al.*, 1987). One of the OH substituents on the dihydroxy benzene ring is disordered over the two possible 3-positions (labelled O3 and O5) on either side of the ordered O4 hydroxo group. Occupancy of the O3 and H5 atoms of the major disorder component refines to 0.633 (7). The molecule is essentially planar with an r.m.s. deviation through all non-hydrogen atoms of 0.0862 Å. An intramolecular N3—H3B···N1 hydrogen bond forms between the outer amine residue and the imine N atom generating an S(5) ring motif (Bernstein *et al.*, 1995) which contributes to the planarity of the molecule.

In the crystal structure N2—H2A···S1 hydrogen bonds, Table 1, generate centrosymmetric $R^2_2(8)$ rings. Other classical O—H···O and O—H···S hydrogen bonds combine with weak C—H···O and S1···O4ⁱ interactions (d(S1···O4) = 3.301 (3) Å; i = -1 + x, 1/2 - y, 1/2 + z) to form sheets running approximately parallel to the *ac* diagonal, Fig 2.

S2. Experimental

The title compound $C_{10}H_{13}N_3O_2S$ was prepared by heating an ethanolic (35 ml) solution of 3,4-dihydroxybenzaldehyde (1.4 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 1 h. The resulting product was isolated and recrystallized from ethanol to afford red block-shaped crystals in 71% yield (m.p. 464–467 K).

S3. Refinement

The aromatic H atoms of the two disorder components were located in a difference Fourier map and refined with fixed isotropic displacement parameters with C—H distances restrained to 0.95 (1) Å. All other H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic 0.99 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂, 0.98 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ 0.88 Å, $U_{iso} = 1.2U_{eq}$ (N) for NH and 0.84 Å, $U_{iso} = 1.5U_{eq}$ (O) for the OH atoms. Close contacts involving the H atoms of the OH substituents, suggest that there may be unresolved disorder particularly with the location of the H atoms. The highest residual electron density peak is located at 2.56 Å from O5 and the deepest hole is located at 0.81 Å from S1.

Figure 1

The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The intramolecular N —H…N hydrogen bond is drawn as a dashed line. For clarity only the major disorder component of the disordered OH groups is shown.

Figure 2

Crystal packing of (I) viewed down the *b* axis with hydrogen bonds drawn as dashed lines.

(E)-3,4-Dihydroxybenzaldehyde 4-ethylthiosemicarbazone

Crystal data	
$C_{10}H_{13}N_3O_2S$	F(000) = 504
$M_r = 239.29$	$D_{\rm x} = 1.407 { m ~Mg} { m m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3071 reflections
a = 10.6549 (12) Å	$\theta = 2.6 - 25.0^{\circ}$
b = 12.9020 (16) Å	$\mu=0.28~\mathrm{mm^{-1}}$
c = 8.6375 (11) Å	T = 91 K
$\beta = 107.910 \ (4)^{\circ}$	Block, red
V = 1129.9 (2) Å ³	$0.44 \times 0.11 \times 0.09 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006) $T_{\min} = 0.818, T_{\max} = 0.975$ <i>Refinement</i>	12327 measured reflections 1998 independent reflections 1507 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -10 \rightarrow 8$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.168$ S = 1.05 1998 reflections 165 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0718P)^2 + 1.7231P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.41 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.64 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.7990 (3)	0.2409 (2)	0.2636 (3)	0.0304 (7)	
C2	0.9009 (3)	0.1922 (2)	0.2235 (3)	0.0342 (7)	
H2	0.9097	0.1190	0.2323	0.041*	
C3	0.9897 (3)	0.2493 (3)	0.1712 (4)	0.0382 (8)	
H3	1.048 (11)	0.201 (8)	0.147 (17)	0.046*	0.367 (7)
O3	1.0884 (4)	0.2059 (4)	0.1330 (6)	0.0525 (14)	0.633 (7)
H3A	1.1301	0.2516	0.0999	0.079*	0.633 (7)
C5	0.8761 (3)	0.4051 (3)	0.1995 (4)	0.0394 (8)	
H5	0.862 (11)	0.477 (2)	0.177 (13)	0.047*	0.633 (7)
05	0.8733 (10)	0.5042 (5)	0.1953 (12)	0.045 (2)	0.367 (7)
H5A	0.8856	0.5248	0.1089	0.068*	0.367 (7)
C4	0.9776 (3)	0.3557 (3)	0.1580 (4)	0.0381 (8)	
O4	1.0659 (2)	0.4115 (2)	0.1053 (3)	0.0503 (7)	
H4	1.0294	0.4656	0.0584	0.075*	
C6	0.7871 (3)	0.3484 (2)	0.2514 (3)	0.0334 (7)	

H6	0.7178	0.3825	0.2787	0.040*
C7	0.7094 (3)	0.1775 (3)	0.3225 (3)	0.0357 (7)
H7	0.7228	0.1047	0.3322	0.043*
N1	0.6134 (2)	0.2175 (2)	0.3612 (3)	0.0390 (7)
N2	0.5403 (3)	0.1489 (3)	0.4216 (3)	0.0442 (7)
H2A	0.5567	0.0819	0.4244	0.053*
C8	0.4433 (3)	0.1862 (3)	0.4763 (4)	0.0458 (9)
S1	0.36442 (11)	0.10262 (10)	0.56744 (13)	0.0685 (4)
N3	0.4168 (3)	0.2853 (3)	0.4565 (3)	0.0506 (8)
H3B	0.4660	0.3233	0.4133	0.061*
C9	0.3112 (4)	0.3371 (4)	0.5010 (5)	0.0678 (13)
H9A	0.3118	0.3133	0.6102	0.081*
H9B	0.2252	0.3177	0.4224	0.081*
C10	0.3260 (5)	0.4506 (5)	0.5024 (6)	0.0804 (15)
H10A	0.4042	0.4708	0.5917	0.121*
H10B	0.2476	0.4831	0.5179	0.121*
H10C	0.3361	0.4735	0.3987	0.121*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0251 (14)	0.0466 (18)	0.0195 (14)	-0.0048 (12)	0.0069 (11)	0.0028 (12)
C2	0.0353 (16)	0.0376 (17)	0.0304 (15)	0.0009 (13)	0.0112 (13)	0.0039 (13)
C3	0.0292 (16)	0.057 (2)	0.0319 (16)	0.0021 (14)	0.0146 (13)	0.0001 (15)
O3	0.037 (3)	0.075 (3)	0.059 (3)	0.009 (2)	0.036 (2)	-0.002(2)
C5	0.0427 (18)	0.0392 (18)	0.0365 (17)	-0.0057 (15)	0.0122 (14)	0.0051 (15)
05	0.048 (4)	0.035 (4)	0.053 (5)	-0.010 (4)	0.015 (3)	0.013 (4)
C4	0.0331 (16)	0.056 (2)	0.0265 (15)	-0.0149 (15)	0.0113 (13)	0.0037 (14)
O4	0.0449 (14)	0.0657 (17)	0.0471 (14)	-0.0192 (12)	0.0241 (12)	0.0093 (12)
C6	0.0304 (15)	0.0422 (17)	0.0295 (16)	0.0020 (13)	0.0119 (13)	0.0009 (13)
C7	0.0348 (16)	0.0476 (19)	0.0252 (15)	-0.0110 (14)	0.0099 (13)	0.0018 (13)
N1	0.0281 (13)	0.0639 (18)	0.0267 (13)	-0.0131 (12)	0.0110 (11)	0.0059 (12)
N2	0.0380 (14)	0.0675 (19)	0.0319 (14)	-0.0205 (14)	0.0178 (12)	-0.0021 (13)
C8	0.0331 (17)	0.082 (3)	0.0250 (16)	-0.0237 (18)	0.0133 (13)	-0.0102 (17)
S 1	0.0738 (7)	0.0931 (9)	0.0585 (7)	-0.0513 (6)	0.0497 (6)	-0.0299 (6)
N3	0.0305 (14)	0.092 (3)	0.0352 (15)	-0.0037 (15)	0.0181 (12)	0.0076 (16)
C9	0.038 (2)	0.131 (4)	0.039 (2)	0.008 (2)	0.0176 (16)	0.000(2)
C10	0.076 (3)	0.122 (5)	0.053 (3)	0.036 (3)	0.034 (2)	0.000 (3)

Geometric parameters (Å, °)

C1—C2	1.388 (4)	C7—N1	1.278 (4)	
C1—C6	1.395 (5)	C7—H7	0.9500	
C1—C7	1.462 (4)	N1—N2	1.384 (3)	
C2—C3	1.380 (4)	N2—C8	1.350 (4)	
С2—Н2	0.9500	N2—H2A	0.8800	
C3—O3	1.319 (5)	C8—N3	1.310 (5)	
C3—C4	1.380 (5)	C8—S1	1.702 (3)	

supporting information

C3—H3	0.950 (10) 0 8400	S1—O4 ⁱ N3—C9	3.301 (2)
C505	1.279 (7)	N3—H3B	0.8800
C5—C6	1.376 (4)	C9—C10	1.473 (7)
C5—C4	1.394 (5)	C9—H9A	0.9900
C5—H5	0.950(10)	C9—H9B	0.9900
05—H5A	0.8400	C10—H10A	0.9800
C4—O4	1.369 (3)	C10—H10B	0.9800
O4—H4	0.8400	C10—H10C	0.9800
С6—Н6	0.9500		
C2—C1—C6	119.4 (3)	N1—C7—C1	121.7 (3)
C2—C1—C7	118.6 (3)	N1—C7—H7	119.1
C6—C1—C7	121.9 (3)	С1—С7—Н7	119.1
C3—C2—C1	120.6 (3)	C7—N1—N2	115.4 (3)
C3—C2—H2	119.7	C8—N2—N1	119.0 (3)
C1—C2—H2	119.7	C8—N2—H2A	120.5
O3—C3—C4	117.6 (3)	N1—N2—H2A	120.5
O3—C3—C2	122.3 (4)	N3—C8—N2	117.4 (3)
C4—C3—C2	120.1 (3)	N3—C8—S1	124.2 (3)
С4—С3—Н3	133 (8)	N2—C8—S1	118.4 (3)
С2—С3—Н3	107 (8)	C8—N3—C9	124.5 (3)
С3—О3—НЗА	109.5	C8—N3—H3B	117.8
O5—C5—C6	121.9 (5)	C9—N3—H3B	117.8
O5—C5—C4	117.6 (5)	N3—C9—C10	111.6 (4)
C6—C5—C4	120.5 (3)	N3—C9—H9A	109.3
С6—С5—Н5	120 (7)	С10—С9—Н9А	109.3
C4—C5—H5	119 (7)	N3—C9—H9B	109.3
С5—О5—Н5А	109.5	С10—С9—Н9В	109.3
O4—C4—C3	119.6 (3)	H9A—C9—H9B	108.0
O4—C4—C5	120.8 (3)	С9—С10—Н10А	109.5
C3—C4—C5	119.6 (3)	C9—C10—H10B	109.5
C4—O4—H4	109.5	H10A—C10—H10B	109.5
C5—C6—C1	119.9 (3)	C9—C10—H10C	109.5
С5—С6—Н6	120.1	H10A—C10—H10C	109.5
С1—С6—Н6	120.1	H10B-C10-H10C	109.5

Symmetry code: (i) x-1, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N3—H3 <i>B</i> …N1	0.88	2.23	2.626 (4)	107
O5—H5A····S1 ⁱⁱ	0.84	2.82	3.106 (9)	102
С2—Н2…О5 ^{ііі}	0.95	2.65	3.335 (8)	129
$N2$ — $H2A$ ···· $S1^{iv}$	0.88	2.52	3.392 (4)	172

supporting information

$O4$ — $H4$ ··· $O4^{v}$	0.84	2.16	2.988 (5)	169	
C9—H9A···O3 ⁱ	0.99	2.46	2.985 (5)	113	

Symmetry codes: (i) x-1, -y+1/2, z+1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+2, y-1/2, -z+1/2; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z.