

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dichloro-N-cyclohexylbenzamide

Aamer Saeed,^a* Naeem Abbas,^a Shahid Hussain^a and Ulrich Flörke^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and ^bDepartment für Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 22 March 2008; accepted 26 March 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.111; data-to-parameter ratio = 20.4.

In the title molecule, $C_{13}H_{15}Cl_2NO$, the cyclohexane ring adopts a chair conformation. The aromatic ring plane is oriented with respect to the N/O/C plane at a dihedral angle of 51.88 (7)°. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into infinite chains along the [010] direction.

Related literature

For related literature, see: Makino *et al.* (2001, 2003); Ho *et al.* (2002); Zhichkin *et al.* (2007); Jackson *et al.* (1994); Capdeville *et al.* (2002); Manley *et al.* (2002); Igawa *et al.* (1999); Jones & Kuś (2004). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{15}Cl_2NO\\ M_r = 272.16\\ Monoclinic, \ C2/c\\ a = 26.135 \ (3) \ \text{\AA}\\ b = 4.9144 \ (6) \ \text{\AA}\\ c = 20.449 \ (2) \ \text{\AA}\\ \beta = 90.167 \ (3)^{\circ} \end{array}$

$V = 2626.4 (5) \text{ Å}^3$	
Z = 8	
Mo Kα radiation	
$\mu = 0.48 \text{ mm}^{-1}$	
T = 120 (2) K	
$0.48 \times 0.17 \times 0.12$ r	nm

10950 measured reflections

 $R_{\rm int} = 0.041$

3141 independent reflections

2389 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
T_{min} = 0.803, T_{max} = 0.945
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	154 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
3141 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$M1 - H1B \cdots O1^{i}$	0.88	1.95	2.796 (3)	161	
ymmetry code: (i) $x, y - 1, z$.					

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

AS gratefully acknowledges a research grant from Quaid-i-Azam University, Islamabad.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2439).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, J. (2002). Nat. Rev. Drug. Discov. 1, 493–502.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). *Heterocycles*, **57**, 1501–1506.
- Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.
- Jackson, S., Degrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220–3230.
- Jones, P. G. & Kuś, P. (2004). Acta Cryst. E60, o1299-o1300.
- Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392.
- Makino, S., Suzuki, N., Nakanishi, E. & Tsuji, T. (2001). Synlett, pp. 333-336.
- Manley, P. W., Furet, P., Bold, G., Brüggen, J., Mestan, J., Meyer, T., Schnell, C. R., Wood, J., Haberey, M., Huth, A., Krüger, M., Menrad, A., Ottow, E., Seidelmann, D., Siemeister, G. & Thierauch, K.-H. (2002). J. Med. Chem. 45, 5687–5693.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L. M., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.

supporting information

Acta Cryst. (2008). E64, o773 [doi:10.1107/S1600536808008131]

2,4-Dichloro-N-cyclohexylbenzamide

Aamer Saeed, Naeem Abbas, Shahid Hussain and Ulrich Flörke

S1. Comment

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino *et al.*, 2003), quinazoline-2,4-diones (Makino *et al.*, 2001), benzodiazepine-2,5-diones (Ho *et al.*, 2002) and 2,3-disubstituted-3H-quinazoline-4-ones (Zhichkin *et al.*, 2007). Benzanilides have established their efficancy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson *et al.*, 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville *et al.*, 2002). Pyridylmethyl containing benzanilides are vascular endothelial growth factor receptor and tyrosine kinase inhibitor (Manley *et al.*, 2002). Furthermore, benzamides have been reported to have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa *et al.*, 1999). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. Ring A (C1–C6) is not planar, having total puckering amplitude, Q_T, of 0.575 (3) Å. It adopts chair conformation [φ = -177.97 (2)° and θ = 176.74 (3)°] (Cremer & Pople, 1975). Ring B (C8–C13) is, of course, planar and it is oriented with respect to the (N1/O1/C7) plane at a dihedral angle of 51.88 (7)°. The N1–C7–C8–C9 torsion angle is -130.16 (18)°. In N-cyclo-hexyl-4-(methoxycarbonyl)benzamide (Jones & Kuś, 2004), the corresponding torsion angles are reported as -17.9 (2)° and -45.2 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [010] direction (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

A mixture of 2,4-dichlorobenzoyl chloride (65.7 mmol), cyclohexyl amine (86.9 mmol) and pyridine (20 ml) was left at 298 K for 15 h. Then, water (100 ml) was added and the resulting precipitates were collected. Recrystallization of the precipitates from benzene gave the title compound (yield; 75%).

S3. Refinement

H atoms were positioned geometrically, with N—H = 0.88 Å (for NH) and C—H = 0.95, 0.99 and 1.00 Å for aromatic, methylene and methine H and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H-atoms not involved in hydrogen bonding are omitted for clarity.

2,4-Dichloro-N-cyclohexylbenzamide

Crystal data	
$C_{13}H_{15}Cl_2NO$	V = 2626.4 (5) Å ³
$M_r = 272.16$	Z = 8
Monoclinic, C2/c	F(000) = 1136
Hall symbol: -C 2yc	$D_{\rm x} = 1.377 {\rm ~Mg} {\rm ~m}^{-3}$
a = 26.135 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 4.9144 (6) Å	Cell parameters from 978 reflections
c = 20.449 (2) Å	$\theta = 2.5 - 25.9^{\circ}$
$\beta = 90.167 \ (3)^{\circ}$	$\mu=0.48~\mathrm{mm^{-1}}$

T = 120 KPrism, colorless

Data collection

Bruker SMART APEX	10950 measured reflections
diffractometer	3141 independent reflections
Radiation source: sealed tube	2389 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
φ and ω scans	$\theta_{\rm max} = 27.9^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -34 \rightarrow 34$
(SADABS; Sheldrick, 2004)	$k = -6 \rightarrow 6$
$T_{\min} = 0.803, T_{\max} = 0.945$	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference F
Least-squares matrix: full	map

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0561P)^2 + 0.7836P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$

 $0.48 \times 0.17 \times 0.12 \text{ mm}$

Special details

direct methods

 $R[F^2 > 2\sigma(F^2)] = 0.043$

Primary atom site location: structure-invariant

 $wR(F^2) = 0.110$

3141 reflections

154 parameters

0 restraints

S = 1.02

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.55602 (2)	0.84379 (11)	0.19724 (2)	0.03406 (16)	
Cl2	0.683870 (19)	0.21813 (13)	0.05939 (3)	0.04287 (18)	
01	0.45551 (5)	0.8154 (2)	0.11531 (7)	0.0276 (3)	
N1	0.43595 (6)	0.3718 (3)	0.12891 (8)	0.0251 (4)	
H1B	0.4481	0.2049	0.1303	0.030*	
C1	0.38119 (6)	0.4124 (4)	0.13939 (10)	0.0246 (4)	
H1A	0.3743	0.6126	0.1403	0.029*	
C2	0.35016 (7)	0.2882 (5)	0.08417 (9)	0.0309 (5)	
H2A	0.3568	0.0901	0.0821	0.037*	
H2B	0.3607	0.3698	0.0421	0.037*	
C3	0.29284 (8)	0.3379 (5)	0.09487 (10)	0.0375 (5)	
H3A	0.2858	0.5356	0.0927	0.045*	
H3B	0.2731	0.2480	0.0595	0.045*	
C4	0.27550 (7)	0.2290 (5)	0.16035 (10)	0.0333 (5)	

H4A	0.2780	0.0280	0.1602	0.040*
H4B	0.2392	0.2784	0.1673	0.040*
C5	0.30768 (8)	0.3422 (5)	0.21592 (10)	0.0382 (5)
H5A	0.2973	0.2548	0.2575	0.046*
H5B	0.3014	0.5401	0.2200	0.046*
C6	0.36460 (7)	0.2927 (5)	0.20447 (9)	0.0317 (5)
H6A	0.3847	0.3769	0.2403	0.038*
H6B	0.3715	0.0946	0.2048	0.038*
C7	0.46841 (7)	0.5748 (4)	0.11741 (8)	0.0193 (4)
C8	0.52252 (6)	0.4894 (3)	0.10407 (8)	0.0179 (4)
C9	0.56448 (7)	0.6043 (4)	0.13615 (8)	0.0214 (4)
C10	0.61389 (7)	0.5236 (4)	0.12231 (9)	0.0256 (4)
H10A	0.6421	0.6031	0.1447	0.031*
C11	0.62169 (7)	0.3258 (4)	0.07559 (9)	0.0256 (4)
C12	0.58138 (7)	0.2087 (4)	0.04197 (9)	0.0247 (4)
H12A	0.5873	0.0740	0.0096	0.030*
C13	0.53219 (7)	0.2924 (4)	0.05662 (9)	0.0213 (4)
H13A	0.5042	0.2134	0.0337	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0376 (3)	0.0338 (3)	0.0307 (3)	-0.0036 (2)	-0.0058 (2)	-0.0119 (2)
Cl2	0.0182 (2)	0.0630 (4)	0.0474 (3)	0.0106 (2)	0.0028 (2)	0.0024 (3)
01	0.0274 (7)	0.0119 (7)	0.0436 (8)	0.0027 (5)	0.0016 (6)	0.0005 (6)
N1	0.0181 (8)	0.0111 (7)	0.0463 (10)	0.0031 (6)	0.0046 (7)	-0.0003 (7)
C1	0.0170 (8)	0.0140 (9)	0.0428 (11)	0.0028 (7)	0.0061 (8)	0.0019 (8)
C2	0.0229 (10)	0.0470 (13)	0.0229 (10)	0.0073 (9)	0.0017 (8)	0.0067 (9)
C3	0.0219 (10)	0.0570 (15)	0.0335 (11)	0.0077 (10)	-0.0015 (9)	0.0059 (10)
C4	0.0191 (9)	0.0394 (13)	0.0413 (12)	-0.0002 (9)	0.0046 (8)	0.0033 (10)
C5	0.0295 (11)	0.0534 (15)	0.0318 (11)	0.0005 (10)	0.0091 (9)	-0.0050 (10)
C6	0.0243 (10)	0.0472 (14)	0.0237 (9)	-0.0002 (9)	-0.0003 (8)	-0.0091 (9)
C7	0.0220 (9)	0.0160 (9)	0.0199 (8)	0.0007 (7)	-0.0008 (7)	-0.0017 (7)
C8	0.0202 (8)	0.0142 (8)	0.0195 (8)	0.0000(7)	0.0002 (7)	0.0041 (7)
C9	0.0254 (9)	0.0178 (9)	0.0209 (8)	-0.0027 (7)	-0.0007 (7)	0.0025 (7)
C10	0.0207 (9)	0.0320 (11)	0.0242 (9)	-0.0058 (8)	-0.0045 (7)	0.0053 (8)
C11	0.0170 (9)	0.0342 (11)	0.0256 (9)	0.0044 (8)	0.0023 (7)	0.0070 (8)
C12	0.0239 (9)	0.0269 (11)	0.0235 (9)	0.0047 (8)	0.0016 (7)	0.0003 (8)
C13	0.0190 (9)	0.0206 (10)	0.0244 (9)	0.0006 (7)	-0.0021 (7)	-0.0008 (7)

Geometric parameters (Å, °)

Cl1—C9	1.7310 (19)	C4—H4B	0.9900	
Cl2—C11	1.7419 (19)	С5—С6	1.526 (3)	
O1—C7	1.231 (2)	C5—H5A	0.9900	
N1—C7	1.331 (2)	C5—H5B	0.9900	
N1-C1	1.461 (2)	C6—H6A	0.9900	
N1—H1B	0.8800	С6—Н6В	0.9900	

C1—C2	1.517 (3)	C7—C8	1.501 (2)
C1—C6	1.519 (3)	C8—C13	1.394 (2)
C1—H1A	1.0000	C8—C9	1.396 (2)
C2—C3	1.534 (3)	C9—C10	1.381 (3)
С2—Н2А	0.9900	C10-C11	1.378 (3)
C2—H2B	0.9900	C10—H10A	0.9500
$C_3 - C_4$	1 513 (3)	C11-C12	1.382(3)
C3—H3A	0.9900	C12-C13	1.382(3)
C3—H3B	0.9900	C12—H12A	0.9500
C4-C5	1 518 (3)	C12—H12A	0.9500
C4—H4A	0.9900		0.9500
C+-11+/1	0.9900		
C7—N1—C1	123.28 (15)	C4—C5—H5B	109.3
C7—N1—H1B	118.4	C6—C5—H5B	109.3
C1—N1—H1B	118.4	H5A—C5—H5B	108.0
N1—C1—C2	110.95 (16)	C1—C6—C5	110.70 (17)
N1—C1—C6	110.96 (16)	C1—C6—H6A	109.5
C2-C1-C6	110.05 (15)	C5—C6—H6A	109.5
N1—C1—H1A	108.3	C1—C6—H6B	109.5
C^2 — C^1 — H^1A	108.3	C5—C6—H6B	109.5
C6-C1-H1A	108.3	H6A—C6—H6B	108.1
C1 - C2 - C3	110 49 (17)	01	123 48 (16)
C1 - C2 - H2A	109.6	01 - C7 - C8	121.36 (16)
C_{3} C_{2} H_{2} A	109.6	N1	115 11 (15)
C1 - C2 - H2B	109.6	C13 - C8 - C9	117.66 (16)
$C_1 - C_2 - H_2 B$	109.6	$C_{13} = C_{8} = C_{7}$	119 55 (15)
$H_{2A} = C_2 = H_{2B}$	109.0	$C_{13} = C_{8} = C_{7}$	119.55(15) 122.76(15)
$\begin{array}{c} 112 \text{A} \\ \hline \\ C4 \\ \hline \\ C3 \\ \hline \\ C2 \\ \hline \hline \\ C2 \\ \hline \hline C2 \\ \hline \\ C2 \\ \hline \hline C2 \\ \hline \hline C2 \\ \hline \hline C2 \\ \hline \hline C2 \\ \hline C2 \\ \hline \hline \hline C2 \\ \hline \hline \hline C2 \\ \hline \hline C2 \\ \hline \hline C2 \\ \hline \hline C2 \\ \hline \hline C2 $	111 41 (16)	$C_{2} = C_{3} = C_{7}$	122.70(13) 121.43(17)
$C_4 = C_3 = C_2$	111.41 (10)	$C_{10} = C_{9} = C_{8}$	121.43(17) 117.70(14)
C_{4} C_{5} H_{2A}	109.3	$C_{10} - C_{2} - C_{11}$	117.70(14) 120.82(14)
$C_2 = C_3 = H_3 R$	109.3	C_{8} C_{9} C_{11} C_{10} C_{0}	120.82(14) 110.00(17)
$C_4 - C_5 - H_3 B$	109.3	$C_{11} = C_{10} = C_{9}$	119.00 (17)
	109.3	C_{11} C_{10} H_{10A}	120.5
$H_{3A} = C_{3} = H_{3B}$	100.0	$C_9 = C_{10} = HI0A$	120.3
$C_3 = C_4 = C_3$	111.30 (18)	C10-C11-C12	121.04(17)
C_{3} C_{4} H_{4}	109.3	C10-C11-C12	119.08 (14)
$C_3 - C_4 - H_4 A$	109.3	C12 - C11 - C12	119.28 (13)
$C_5 = C_4 = H_4B$	109.3	C11 - C12 - C13	118.45 (18)
	109.3	C12 - C12 - H12A	120.8
H4A - C4 - H4B	108.0	C13 - C12 - H12A	120.8
C4 - C5 - C6	111.40 (17)	C12 - C13 - C8	121.83 (17)
С4—С5—Н5А	109.3	C12—C13—H13A	119.1
С6—С5—Н5А	109.3	C8—C13—H13A	119.1
C7-N1-C1-C2	113.7 (2)	N1—C7—C8—C9	-130 16 (18)
C7-N1-C1-C6	-123.64(19)	C13—C8—C9—C10	-1.0(3)
N1-C1-C2-C3	-17866(16)	C7-C8-C9-C10	-179 29 (16)
C6-C1-C2-C3	58 1 (2)	C_{13} C_{8} C_{9} C_{11}	-17828(13)
C1-C2-C3-C4	-56.3(2)	C7-C8-C9-C11	3.4 (2)
	(-)	· · · · · · · · · · · · · · · · · · ·	··· \=/

supporting information

C2—C3—C4—C5	54.1 (3)	C8-C9-C10-C11	0.2 (3)
C3—C4—C5—C6	-54.1 (3)	Cl1-C9-C10-C11	177.62 (14)
N1-C1-C6-C5	178.53 (16)	C9—C10—C11—C12	0.6 (3)
C2-C1-C6-C5	-58.3 (2)	C9—C10—C11—Cl2	-178.55 (14)
C4—C5—C6—C1	56.2 (2)	C10-C11-C12-C13	-0.7 (3)
C1—N1—C7—O1	0.9 (3)	Cl2—C11—C12—C13	178.49 (14)
C1—N1—C7—C8	-176.58 (16)	C11—C12—C13—C8	-0.1 (3)
O1—C7—C8—C13	-126.00 (18)	C9—C8—C13—C12	0.9 (3)
N1—C7—C8—C13	51.5 (2)	C7—C8—C13—C12	179.29 (17)
O1—C7—C8—C9	52.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1B···O1 ⁱ	0.88	1.95	2.796 (3)	161

Symmetry code: (i) x, y-1, z.