Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,6-Dichloro-2-(2-hydroxyphenyl)isoindoline-1,3-dione

Orhan Büyükgüngör^a* and Mustafa Odabaşoğlu^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey Correspondence e-mail: muodabas@omu.edu.tr

Received 25 March 2008; accepted 26 March 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.096; data-to-parameter ratio = 15.3.

In the molecule of the title compound, $C_{14}H_7Cl_2NO_3$, the phthalimide ring system is virtually planar, with a dihedral angle between the fused five- and six-membered rings of 4.02 (3)°. In the crystal structure, intermolecular $C-H\cdots O$ and $O-H\cdots O$ hydrogen bonds and $C-Cl\cdots O$ close contacts $[Cl\cdots O = 3.0123 (13) \text{ Å}$ and $C-Cl\cdots O = 171.14 (7)^\circ]$ link the molecules, generating $R_2^2(16)$, $R_4^2(19)$ and $R_4^4(22)$ ring motifs by C(6) chains to form a three-dimensional network. A weak $\pi-\pi$ interaction between the six-membered rings of the phthalimide ring systems further stabilizes the structure, with a centroid–centroid distance of 3.666 (3) Å and an interplanar separation of 3.568 Å.

Related literature

For general background, see: Chapman *et al.* (1979); Hall *et al.* (1983, 1987); Srivastava *et al.* (2001); Cechinel *et al.* (2003); Abdel-Hafez (2004); Antunes *et al.* (2003); Sena *et al.* (2007). For ring motif details, see: Bernstein *et al.* (1995); Etter (1990).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{7}Cl_{2}NO_{3}\\ M_{r}=308.11\\ Monoclinic, P2_{1}/c\\ a=7.5993~(2)~\text{\AA}\\ b=19.4088~(5)~\text{\AA}\\ c=9.5086~(3)~\text{\AA}\\ \beta=110.842~(2)^{\circ} \end{array}$

 $V = 1310.68 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.50 \text{ mm}^{-1}$ T = 296 K $0.63 \times 0.43 \times 0.24 \text{ mm}$

Data collection

Stoe IPDSII diffractometer	
Absorption correction: integration	
(X-RED32; Stoe & Cie, 2002)	
$T_{\rm min} = 0.759, T_{\rm max} = 0.881$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	182 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2783 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

20050 measured reflections

 $R_{\rm int} = 0.057$

2783 independent reflections 2341 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry (Å	, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots O2^{i}$	0.82	1.90	2.7235 (18)	177
C3−H3···O3 ⁱⁱ	0.93	2.55	3.397 (2)	152
$C13-H13\cdots O3^{iii}$	0.93	2.59	3.505 (2)	168

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2440).

References

- Abdel-Hafez, A. A. M. (2004). Arch. Pharm. Res. 27, 495-501.
- Antunes, R., Batista, H., Srivastava, R. M., Thomas, G., Araújo, C. C., Longo, R. L., Magalhães, H., Leão, M. B. C. & Pavão, A. C. (2003). *J. Mol. Struct.* 660, 1–13.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cechinel, V., de Campos, F., Correa, R., Yunes, R. A. & Nunes, R. J. (2003). *Quím. Nova*, 26, 230–241.
- Chapman, J. M., Cocolas, G. H. & Hall, I. H. (1979). J. Med. Chem. 22, 1399–1402.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). *Pharm. Res.* 4, 472–479.
- Hall, I. H., Voorstad, P. J., Chapman, J. M. & Cocolas, G. H. (1983). J. Pharm. Sci. 72, 845–851.
- Sena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc. 18, 1224–1234. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Srivastava, R. M., Oliveira, F. J. S., da Silva, L. P., de Freitas Filho, J. R., Oliveira, S. P. & Lima, V. L. M. (2001). *Carbohydr. Res.* 332, 335–340.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2008). E64, o778 [doi:10.1107/S1600536808008180]

5,6-Dichloro-2-(2-hydroxyphenyl)isoindoline-1,3-dione

Orhan Büyükgüngör and Mustafa Odabaşoğlu

S1. Comment

Phthalimide derivatives have been gaining considerable interest since 1979, when Chapman *et al.* tested the hypolipidemic activity of 23 N-substituted phthalimide derivatives (Chapman *et al.*, 1979). Later on, Hall and co-workers reported the antihyperlipidemic activity of phthalimide analogs in rodents and also the same activity was found by the administration of *ortho*-(N-phthalimido) acetophenone in sprague dawley rats (Hall *et al.*, 1983; 1987). In 2001, Srivastava *et al.* reported hypolipidemic activity in α -D-mannopyranosides containing phthalimidomethyl function as aglycone (Srivastava *et al.*, 2001). There are other interesting biological aspects of these compounds which have been reviewed in 2003 (Cechinel *et al.*, 2003). A recent paper cites the synthesis and anticonvulsant behavior of N-substituted phthalimides (Abdel-Hafez, 2004). Besides, certain phthalimide derivatives are synthetically important, and can be transformed to other useful products (Antunes *et al.*, 2003). In 2007, Sena *et al.* prepared ten *N*-arylaminomethyl-aryl-aminomethyl- and two [1,2,4-triazol-3- and 4-yl]phthalimides that these imides are potential candidates for biological evaluations (Sena *et al.*, 2007). In view of the importance of the *N*-arylphthalimides, we herein report the crystal structure of the title compound, (I).

The molecule of (I), (Fig. 1), is built up from a phthalimide unit connected to a *o*-hydroxyphenyl group through a nitrogen atom. Rings A (C2-C7), B (C1/C2/C7/C8/N1) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 4.02 (3)°, A/C = 75.55 (3)° and B/C = 75.13 (3)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 75.37 (3)°.

In the crystal structure, intermolecular C-H···O and O-H···O hydrogen bonds (Table 1) and C-Cl···O close contacts $[Cl2^{i}...O1^{ii} = 3.0123 (13) \text{ Å} and C5-Cl2^{i}...O1^{ii} = 171.14 (7)^{\circ}; symmetry codes: (i) x, 3/2 - y, z - 1/2 and (ii) x + 1, 3/2 - y, z + 1/2] link the molecules, generating R₂²(16) (Fig. 3), R₄²(19) (Fig. 4) and R₄⁴(22) (Fig. 5) ring motifs by C(6) chains (Fig. 2) (Bernstein$ *et al.* $, 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure. A weak <math>\pi$ ··· π interaction between the A rings, at x, y, z and 1 - x, 1 - y, 2 - z, further stabilizes the structure, with a centroid-centroid distance of 3.666 (3) Å and plane-plane separation of 3.568 Å.

S2. Experimental

A mixture of 4,5-dichlorophthalic acid (1.175 g, 5 mmol) and 2-aminophenol (0.545 g, 20 mmol) in DMF (1.5 ml) was heated at boiling temperature for 15 min, and then ethanol (50 ml, 95%) was added. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the mixture at room temperature (yield; 80%, m.p. 546-548 K).

S3. Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A partial packing diagram of (I), showing the formation of C(6) chain [symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.

Figure 3

A partial packing diagram of (I), showing the formation of centro- symmetric $R_2^2(16)$ ring motifs. Hydrogen bonds are shown as dashed lines [symmetry code: (i) x + 1/2, 1 - y, 1 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity.

Figure 4

A partial packing diagram of (I), showing the formation of $R_2^2(16)$ and $R_4^2(19)$ ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x + 1/2, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) x - 1, y, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.

Figure 5

A partial packing diagram of (I), showing the formation of $R_4^4(22)$ ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) x + 1, 3/2 - y, z + 1/2; (iii) x, 3/2 - y, z + 1/2].

5,6-dichloro-2-(2-hydroxyphenyl)isoindoline-1,3-dione

Crystal data

 $C_{14}H_7Cl_2NO_3$ $M_r = 308.11$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.5993 (2) Å b = 19.4088 (5) Å c = 9.5086 (3) Å $\beta = 110.842$ (2)° V = 1310.68 (7) Å³ Z = 4

Data collection

Stoe IPDSII
diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm ⁻¹
w-scan rotation method
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0491P)^2 + 0.2555P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 624

 $\theta = 2.1 - 27.2^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.057$

 $h = -9 \rightarrow 9$ $k = -24 \rightarrow 24$ $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

Prism, light yellow

 $0.63 \times 0.43 \times 0.24 \text{ mm}$

 $T_{\min} = 0.759, T_{\max} = 0.881$ 20050 measured reflections 2783 independent reflections 2341 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 26.7^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 20050 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivale	nt isotropic displacement	parameters $(Å^2)$)
-----------------------------------	-----------------------	---------------------------	--------------------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.80274 (8)	0.37446 (3)	1.02115 (6)	0.07009 (18)	
Cl2	0.94040 (7)	0.51106 (3)	1.20351 (5)	0.06418 (17)	
01	0.26937 (18)	0.49684 (6)	0.49490 (13)	0.0517 (3)	
O2	0.47116 (19)	0.69592 (7)	0.75853 (16)	0.0587 (3)	

O3	0.40599 (18)	0.69007 (7)	0.39975 (18)	0.0624 (4)
H3A	0.4209	0.7246	0.3554	0.094*
N1	0.33154 (18)	0.60578 (7)	0.60028 (15)	0.0420 (3)
C1	0.3563 (2)	0.53405 (8)	0.59612 (17)	0.0398 (3)
C2	0.5079 (2)	0.51681 (8)	0.74085 (17)	0.0392 (3)
C3	0.5789 (2)	0.45386 (9)	0.79893 (18)	0.0458 (4)
Н3	0.5389	0.4135	0.7440	0.055*
C4	0.7133 (2)	0.45279 (10)	0.94342 (19)	0.0471 (4)
C5	0.7747 (2)	0.51343 (10)	1.02414 (18)	0.0480 (4)
C6	0.7042 (2)	0.57666 (10)	0.96318 (18)	0.0482 (4)
H6	0.7463	0.6173	1.0162	0.058*
C7	0.5688 (2)	0.57720 (9)	0.82043 (17)	0.0411 (3)
C8	0.4593 (2)	0.63491 (9)	0.73015 (19)	0.0433 (4)
C9	0.1835 (2)	0.64372 (8)	0.49155 (18)	0.0424 (4)
C10	0.2248 (2)	0.68665 (9)	0.3911 (2)	0.0467 (4)
C11	0.0805 (3)	0.72369 (10)	0.2877 (2)	0.0589 (5)
H11	0.1058	0.7522	0.2185	0.071*
C12	-0.1002 (3)	0.71844 (11)	0.2873 (3)	0.0682 (6)
H12	-0.1962	0.7440	0.2187	0.082*
C13	-0.1400 (3)	0.67573 (12)	0.3875 (3)	0.0683 (6)
H13	-0.2625	0.6724	0.3864	0.082*
C14	0.0020 (3)	0.63797 (11)	0.4894 (2)	0.0562 (5)
H14	-0.0247	0.6087	0.5565	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0715 (3)	0.0663 (3)	0.0640 (3)	0.0148 (2)	0.0136 (2)	0.0208 (2)
C12	0.0489 (2)	0.0998 (4)	0.0362 (2)	0.0005 (2)	0.00566 (17)	0.0018 (2)
O1	0.0567 (7)	0.0453 (7)	0.0417 (6)	-0.0052 (5)	0.0037 (5)	-0.0066 (5)
O2	0.0618 (8)	0.0423 (7)	0.0678 (8)	-0.0033 (6)	0.0181 (6)	-0.0142 (6)
O3	0.0524 (7)	0.0550 (8)	0.0860 (10)	0.0091 (6)	0.0323 (7)	0.0242 (7)
N1	0.0434 (7)	0.0367 (7)	0.0412 (7)	-0.0020(5)	0.0095 (6)	-0.0002 (5)
C1	0.0419 (8)	0.0395 (8)	0.0372 (8)	-0.0037 (6)	0.0131 (6)	-0.0015 (6)
C2	0.0397 (7)	0.0433 (8)	0.0339 (7)	-0.0042 (6)	0.0122 (6)	-0.0022 (6)
C3	0.0488 (9)	0.0427 (9)	0.0434 (8)	-0.0011 (7)	0.0134 (7)	-0.0002 (7)
C4	0.0448 (8)	0.0557 (10)	0.0418 (8)	0.0044 (7)	0.0165 (7)	0.0089 (7)
C5	0.0398 (8)	0.0694 (12)	0.0341 (7)	-0.0010 (8)	0.0122 (6)	-0.0010 (8)
C6	0.0443 (8)	0.0584 (11)	0.0391 (8)	-0.0062 (7)	0.0114 (7)	-0.0101 (7)
C7	0.0399 (8)	0.0443 (9)	0.0388 (8)	-0.0035 (6)	0.0136 (6)	-0.0057 (6)
C8	0.0420 (8)	0.0426 (9)	0.0453 (8)	-0.0053 (6)	0.0155 (7)	-0.0073 (7)
C9	0.0401 (8)	0.0377 (8)	0.0450 (8)	0.0004 (6)	0.0096 (7)	-0.0021 (6)
C10	0.0447 (8)	0.0387 (8)	0.0551 (10)	0.0038 (7)	0.0160 (7)	0.0014 (7)
C11	0.0621 (11)	0.0437 (10)	0.0633 (11)	0.0079 (8)	0.0129 (9)	0.0098 (8)
C12	0.0504 (11)	0.0565 (12)	0.0786 (14)	0.0129 (9)	-0.0007 (10)	-0.0018 (10)
C13	0.0374 (9)	0.0718 (13)	0.0878 (15)	-0.0009 (9)	0.0126 (9)	-0.0096 (12)
C14	0.0462 (9)	0.0581 (11)	0.0640 (11)	-0.0077 (8)	0.0191 (8)	-0.0053(9)

Geometric parameters (Å, °)

03—H3A	0.8200	C8—O2	1.211 (2)
C1—O1	1.1967 (19)	C8—N1	1.391 (2)
C1—N1	1.407 (2)	C9—C14	1.376 (2)
C1—C2	1.485 (2)	C9—C10	1.385 (2)
C2—C3	1.370 (2)	C9—N1	1.431 (2)
C2—C7	1.382 (2)	C10—O3	1.351 (2)
C3—C4	1.390 (2)	C10-C11	1.385 (2)
С3—Н3	0.9300	C11—C12	1.375 (3)
C4—C5	1.392 (3)	C11—H11	0.9300
C4—Cl1	1.7213 (18)	C12—C13	1.375 (3)
C5—C6	1.381 (3)	C12—H12	0.9300
C5—Cl2	1.7229 (17)	C13—C14	1.377 (3)
C6—C7	1.381 (2)	C13—H13	0.9300
С6—Н6	0.9300	C14—H14	0.9300
C7—C8	1.475 (2)		
С10—О3—НЗА	109.5	C6—C7—C8	130.28 (15)
C8—N1—C1	111.65 (13)	C2—C7—C8	108.41 (14)
C8—N1—C9	123.59 (13)	O2—C8—N1	124.64 (16)
C1—N1—C9	124.56 (13)	O2—C8—C7	129.15 (16)
O1—C1—N1	125.34 (15)	N1	106.20 (13)
O1—C1—C2	129.33 (15)	C14—C9—C10	120.68 (16)
N1—C1—C2	105.33 (13)	C14—C9—N1	119.67 (16)
C3—C2—C7	121.90 (15)	C10—C9—N1	119.64 (14)
C3—C2—C1	129.71 (15)	O3—C10—C11	123.37 (17)
C7—C2—C1	108.32 (14)	O3—C10—C9	117.63 (15)
C2—C3—C4	117.19 (16)	C11—C10—C9	119.00 (16)
С2—С3—Н3	121.4	C12—C11—C10	120.09 (19)
С4—С3—Н3	121.4	C12—C11—H11	120.0
C3—C4—C5	121.12 (16)	C10-C11-H11	120.0
C3—C4—Cl1	118.46 (14)	C13—C12—C11	120.52 (18)
C5—C4—Cl1	120.42 (13)	C13—C12—H12	119.7
C6—C5—C4	121.06 (15)	C11—C12—H12	119.7
C6—C5—Cl2	118.48 (14)	C12—C13—C14	119.85 (18)
C4—C5—Cl2	120.46 (14)	C12—C13—H13	120.1
C7—C6—C5	117.47 (16)	C14—C13—H13	120.1
С7—С6—Н6	121.3	C9—C14—C13	119.84 (19)
С5—С6—Н6	121.3	C9—C14—H14	120.1
C6—C7—C2	121.24 (16)	C13—C14—H14	120.1
O1—C1—C2—C3	-4.3 (3)	C14—C9—C10—O3	179.76 (17)
N1—C1—C2—C3	175.38 (16)	N1—C9—C10—O3	0.7 (2)
01—C1—C2—C7	178.66 (16)	C14—C9—C10—C11	-0.2 (3)
N1-C1-C2-C7	-1.70(17)	N1—C9—C10—C11	-179.21 (16)
C7—C2—C3—C4	1.2 (2)	O3—C10—C11—C12	-178.91 (19)
C1—C2—C3—C4	-175.57 (16)	C9—C10—C11—C12	1.0 (3)
-			× /

3)
)
3)
4 (17)
)
4 (16)
(17)
3)
1 (14)
39 (15)
17)
)
02 (14)
12 (19)
2)
2)
70 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3 <i>A</i> ···O2 ⁱ	0.82	1.90	2.7235 (18)	177
С3—Н3…О3 ^{іі}	0.93	2.55	3.397 (2)	152
С13—Н13…ОЗііі	0.93	2.59	3.505 (2)	168

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*.