Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Hydroxy-7,8-dimethoxyquinolin-2(1*H*)-one

Jian Song,^a Yongcheng Lin^{b*} and Wing Lai Chan^c

^aSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, ^bSchool of Chemistry and Chemical Engineering, Sun Yat-sun University, Guangzhou 510275, People's Republic of China, and ^cDepartment of Applied Biology and Chemistry Technology, Polytechnic University of Hong Kong, Hong Kong, People's Republic of China Correspondence e-mail: zsusj@yahoo.com.cn

Received 21 April 2008; accepted 22 April 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.175; data-to-parameter ratio = 14.9.

In the crystal structure of the title compound, $C_{11}H_{11}NO_4$, intramolecular $O-H\cdots O$ hydrogen bonding results in the formation of a planar five-membered ring, which is nearly coplanar with the quinoline group. Intermolecular $N-H\cdots O$ hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For general background, see: Beak (1977); Nimlos *et al.* (1987); Rajnikant *et al.* (2002); Johnson (1996). For related literature, see: Lin *et al.* (2000); Song *et al.* (2006).

Experimental

Crystal data $C_{11}H_{11}NO_4$ $M_r = 221.21$ Monoclinic, $P2_1/n$ a = 4.9655 (16) Å b = 14.084 (5) Å c = 14.888 (5) Å $\beta = 96.208$ (6)°

 $V = 1035.1 (6) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.11 mm^{-1} T = 294 (2) K 0.60 \times 0.37 \times 0.31 mm

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.937, T<sub>max</sub> = 0.967
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.174$	independent and constrained
S = 1.08	refinement
2228 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

6788 measured reflections

 $R_{\rm int} = 0.015$

2228 independent reflections

1761 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	0.90 (3)	2.07 (3)	2.938 (2)	161 (2)
	0.82	2.33	2.756 (2)	113

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Science Foundation of China (grant No. 20072058), the 863 Foundation of China (grant No. 2003 A A624010) and Guangdong Pharmaceutical University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2455).

References

- Beak, P. (1977). Acc. Chem. Res. 10, 186-192.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. D. (1996). Comprehesive Heterocyclic Chemistry II, Vol. 5, edited by A. R. Katritzky, C. W Rees & E. F. V. Scriven, pp. 15–18. New York: Pergamon.
- Lin, Y. C., Shao, Z., Jiang, G., Zhou, S., Cai, J., Vrijmoedand, L. L. P. & Jones, E. B. G. (2000). *Tetrahedron*, 56, 9607–9609.
- Nimlos, M. R., Kelley, D. F. & Bernstein, E. R. (1987). J. Phys. Chem. 91, 6610– 6614.
- Rajnikant, G. V. K., Deshmukh, M. B. & Varghese, B. (2002). Dinesh Crystallogr. Rep. 47, 449–496.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, J., Lin, Y. C. & Chan, W. L. (2006). Heterocycles, 68, 1185-1190.

supporting information

Acta Cryst. (2008). E64, o934 [doi:10.1107/S1600536808011549]

3-Hydroxy-7,8-dimethoxyquinolin-2(1H)-one

Jian Song, Yongcheng Lin and Wing Lai Chan

S1. Comment

Quinolin-2(1*H*)-ones can exist in both the lactam and lactim forms (Beak, 1977; Nimlos *et al.*, 1987; Rajnikant *et al.*, 2002). The tautomeric equilibrium of lactam-lactim attracts attention owing to its chemical, biological and theoretical importantce (Johnson, 1996). The title compound, (I), which is a part of the marine natural compound penicilliazine (Lin *et al.*, 2000), was synthesized and characterized by our research group toward the natural product total synthesis. As part of our ongoing studies, we report herein the crystal structure of (I).

The molecule of the title compound, (I), (Fig. 1) adopts a bicyclic lactam-form with one hydroxy and two methoxy groups attached to atoms C2, C8 and C9, respectively. Rings A (N1/C1-C5) and B (C4-C9) are, of course, planar and the dihedral angle between them is $A/B = 2.18 (3)^{\circ}$. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring C (O1/O2/H2/C1/C2). Ring C is oriented with respect to the adjacent rings A and B at dihedral angles of $A/C = 1.99 (3)^{\circ}$ and $B/C = 3.96 (3)^{\circ}$. So, rings A, B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

The title compound, (I), was prepared according to our reported procedure (Song *et al.*, 2006). Suitable crystals were obtained by recrystallization from chloroform/ethyl acetate (1:1) solution (m.p. 436-437 K). Spectroscopic analysis: IR (KBr, vcm⁻¹): 3442, 3169, 1665, 1638, 1116; ¹H NMR (CDCl₃, δ , p.p.m.): 7.14–7.17(d, 1H, J = 9.0 Hz), 7.07(s, 1H), 6.85-6.88 (d, 1H, J = 9.0 Hz), 6.61(br, OH),3.97 (s, 3H), 3.93 (s, 3H); ¹³C NMR (CDCl₃, δ , p.p.m.): 159.0, 150.2, 143.7, 134.2,127.2,121.1,115.7,112.2, 108.8,60.6,56.0; analysis, calculated for C₁₁H₁₁N₁O₄: C 59.73, H 5.01, N 6.33%; found: C 59.98, H 5.23, N 6.14%.

S3. Refinement

H atom (for NH) was located in a difference syntheses and refined [N-H = 0.90 (3) Å and $U_{iso}(H) = 0.068$ (7) Å²]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

3-Hydroxy-7,8-dimethoxyquinolin-2(1H)-one

Crystal data

C₁₁H₁₁NO₄ $M_r = 221.21$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.9655 (16) Å b = 14.084 (5) Å c = 14.888 (5) Å $\beta = 96.208$ (6)° V = 1035.1 (6) Å³ Z = 4

Data collection

Bruker CCD area-detector	6788 measured reflections
diffractometer	2228 independent reflections
Radiation source: fine-focus sealed tube	1761 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
φ and ω scans	$\theta_{\rm max} = 27.1^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 5$
(SADABS; Sheldrick, 1996)	$k = -17 \rightarrow 15$
$T_{\min} = 0.937, \ T_{\max} = 0.967$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.174$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
2228 reflections	and constrained refinement
150 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0907P)^2 + 0.3738P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

F(000) = 464

 $\theta = 3.1 - 27.1^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless

 $0.60 \times 0.37 \times 0.31 \text{ mm}$

T = 294 K

 $D_{\rm x} = 1.420 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 886 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$
01	-0.1615 (3)	0 30255 (11)	1 01266 (11)	0.0616 (5)
0^{2}	-0.2273(3)	0.20136 (9)	0.97741(9)	0.0514(4)
H2	-0.2816	0.2327	1.0182	0.077*

03	0.6647 (4)	0.48962 (12)	0.67193 (12)	0.0681 (5)
O4	0.3678 (3)	0.54717 (9)	0.80367 (10)	0.0498 (4)
N1	0.1136 (3)	0.41905 (11)	0.90243 (11)	0.0439 (4)
H1	0.119 (5)	0.481 (2)	0.9155 (17)	0.068 (7)*
C1	-0.0380 (4)	0.36225 (14)	0.95063 (13)	0.0458 (5)
C2	-0.0452 (4)	0.26212 (14)	0.92587 (13)	0.0483 (5)
C3	0.0957 (4)	0.22783 (14)	0.86147 (14)	0.0500 (5)
H3A	0.0912	0.1632	0.8488	0.060*
C4	0.2532 (4)	0.28997 (13)	0.81204 (13)	0.0442 (4)
C5	0.2543 (4)	0.38754 (13)	0.83327 (12)	0.0404 (4)
C6	0.4035 (5)	0.26022 (15)	0.74343 (15)	0.0535 (5)
H6A	0.4079	0.1960	0.7290	0.064*
C7	0.5456 (5)	0.32376 (16)	0.69650 (15)	0.0544 (5)
H7A	0.6462	0.3021	0.6514	0.065*
C8	0.5392 (4)	0.42049 (15)	0.71632 (14)	0.0490 (5)
C9	0.3942 (4)	0.45222 (12)	0.78474 (13)	0.0427 (4)
C10	0.6032 (5)	0.58783 (16)	0.85291 (18)	0.0617 (6)
H10A	0.5711	0.6538	0.8638	0.093*
H10B	0.7547	0.5816	0.8184	0.093*
H10C	0.6416	0.5554	0.9095	0.093*
C11	0.8222 (6)	0.4614 (2)	0.60194 (19)	0.0789 (8)
H11A	0.8986	0.5166	0.5766	0.118*
H11B	0.7088	0.4286	0.5557	0.118*
H11C	0.9653	0.4200	0.6265	0.118*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0712 (10)	0.0546 (9)	0.0639 (9)	-0.0102 (7)	0.0302 (8)	-0.0133 (7)
O2	0.0809 (10)	0.0349 (7)	0.0397 (7)	-0.0015 (6)	0.0119 (6)	-0.0009(5)
O3	0.0819 (12)	0.0579 (10)	0.0713 (10)	0.0009 (8)	0.0395 (9)	0.0048 (7)
O4	0.0549 (8)	0.0341 (7)	0.0615 (8)	0.0020 (6)	0.0117 (6)	-0.0013 (6)
N1	0.0498 (9)	0.0337 (8)	0.0496 (9)	-0.0009 (6)	0.0118 (7)	-0.0058 (6)
C1	0.0491 (10)	0.0431 (10)	0.0463 (10)	-0.0035 (8)	0.0096 (8)	-0.0056 (8)
C2	0.0559 (12)	0.0403 (10)	0.0488 (10)	-0.0069 (8)	0.0063 (9)	0.0001 (8)
C3	0.0620 (12)	0.0332 (9)	0.0552 (11)	-0.0018 (8)	0.0076 (9)	-0.0039 (8)
C4	0.0489 (10)	0.0360 (9)	0.0480 (10)	0.0022 (8)	0.0058 (8)	-0.0042 (7)
C5	0.0415 (9)	0.0371 (9)	0.0427 (9)	0.0037 (7)	0.0045 (7)	-0.0038 (7)
C6	0.0606 (13)	0.0398 (10)	0.0611 (12)	0.0061 (9)	0.0115 (10)	-0.0110 (9)
C7	0.0580 (12)	0.0521 (12)	0.0557 (11)	0.0083 (9)	0.0177 (9)	-0.0081 (9)
C8	0.0507 (11)	0.0471 (11)	0.0507 (11)	0.0033 (8)	0.0129 (9)	0.0029 (8)
C9	0.0452 (10)	0.0353 (9)	0.0480 (10)	0.0039 (7)	0.0061 (8)	-0.0005 (7)
C10	0.0622 (14)	0.0469 (11)	0.0779 (15)	-0.0108 (10)	0.0157 (11)	-0.0078 (10)
C11	0.0848 (18)	0.0863 (19)	0.0728 (16)	-0.0045 (15)	0.0419 (14)	0.0001 (14)

Geometric parameters (Å, °)

02—H2	0.8200	C5—C4	1.410 (3)
O3—C11	1.425 (3)	C6—C7	1.376 (3)
O4—C9	1.376 (2)	C6—C4	1.393 (3)
O4—C10	1.430 (3)	С6—Н6А	0.9300
N1-C1	1.356 (3)	С7—Н7А	0.9300
N1—C5	1.379 (2)	C8—O3	1.365 (3)
N1—H1	0.90 (3)	C8—C9	1.384 (3)
C1—01	1.238 (2)	C8—C7	1.395 (3)
C1—C2	1.457 (3)	C10—H10A	0.9600
C2—O2	1.513 (2)	C10—H10B	0.9600
C3—C2	1.337 (3)	C10—H10C	0.9600
C3—C4	1.430 (3)	C11—H11A	0.9600
С3—НЗА	0.9300	C11—H11B	0.9600
С5—С9	1.394 (3)	C11—H11C	0.9600
C2—O2—H2	109.5	C4—C6—H6A	119.3
C8—O3—C11	118.1 (2)	C6—C7—C8	120.21 (19)
C9—O4—C10	113.78 (16)	С6—С7—Н7А	119.9
C1—N1—C5	124.09 (16)	C8—C7—H7A	119.9
C1—N1—H1	117.9 (17)	O3—C8—C9	115.29 (18)
C5—N1—H1	118.0 (17)	O3—C8—C7	124.92 (19)
01—C1—N1	122.64 (18)	C9—C8—C7	119.78 (19)
01—C1—C2	121.43 (18)	O4—C9—C8	122.25 (17)
N1—C1—C2	115.93 (17)	O4—C9—C5	117.72 (17)
C3—C2—C1	122.03 (18)	C8—C9—C5	119.91 (17)
C3—C2—O2	123.18 (17)	O4—C10—H10A	109.5
C1—C2—O2	114.78 (17)	O4—C10—H10B	109.5
C2—C3—C4	120.40 (18)	H10A—C10—H10B	109.5
С2—С3—НЗА	119.8	O4—C10—H10C	109.5
С4—С3—Н3А	119.8	H10A—C10—H10C	109.5
C6—C4—C5	117.91 (18)	H10B—C10—H10C	109.5
C6—C4—C3	124.03 (18)	O3—C11—H11A	109.5
C5—C4—C3	118.06 (17)	O3—C11—H11B	109.5
N1—C5—C9	119.87 (16)	H11A—C11—H11B	109.5
N1—C5—C4	119.41 (17)	O3—C11—H11C	109.5
C9—C5—C4	120.72 (17)	H11A—C11—H11C	109.5
C7—C6—C4	121.43 (18)	H11B—C11—H11C	109.5
С7—С6—Н6А	119.3		
C10-04-C9-C8	-77 3 (2)	<u>C9</u> _C5_C4_C3	-177 13 (18)
C10-04-C9-C5	106.8 (2)	N1-C5-C9-04	-5.1 (3)
C5-N1-C1-O1	179.73 (19)	C4—C5—C9—O4	174.46 (17)
$C_{5}-N_{1}-C_{1}-C_{2}$	0.4 (3)	N1 - C5 - C9 - C8	178.93 (17)
C1 - N1 - C5 - C9	176.93 (18)	C4-C5-C9-C8	-1.6(3)
C1—N1—C5—C4	-2.6(3)	C7—C6—C4—C5	-1.1(3)
01-C1-C2-C3	-177.3(2)	C7-C6-C4-C3	178.2 (2)
	1,,,,,, (2)	2. 20 0. 00	(-)

N1—C1—C2—C3	2.0 (3)	C4—C6—C7—C8	-0.7 (3)	
O1—C1—C2—O2	3.7 (3)	C9—C8—O3—C11	178.7 (2)	
N1-C1-C2-O2	-176.97 (16)	C7—C8—O3—C11	-2.2 (4)	
C4—C3—C2—C1	-2.1 (3)	O3—C8—C7—C6	-177.6 (2)	
C4—C3—C2—O2	176.75 (17)	C9—C8—C7—C6	1.4 (3)	
C2—C3—C4—C6	-179.4 (2)	O3—C8—C9—O4	3.0 (3)	
C2—C3—C4—C5	-0.1 (3)	C7—C8—C9—O4	-176.09 (19)	
N1—C5—C4—C6	-178.29 (18)	O3—C8—C9—C5	178.85 (17)	
C9—C5—C4—C6	2.2 (3)	C7—C8—C9—C5	-0.3 (3)	
N1—C5—C4—C3	2.4 (3)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.90 (3)	2.07 (3)	2.938 (2)	161 (2)
02—H2···01	0.82	2.33	2.756(2)	113

Symmetry code: (i) -x, -y+1, -z+2.