organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-7,8-di­meth­oxy­quinolin-2(1H)-one

aSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Sun Yat-sun University, Guangzhou 510275, People's Republic of China, and cDepartment of Applied Biology and Chemistry Technology, Polytechnic University of Hong Kong, Hong Kong, People's Republic of China
*Correspondence e-mail: zsusj@yahoo.com.cn

(Received 21 April 2008; accepted 22 April 2008; online 30 April 2008)

In the crystal structure of the title compound, C11H11NO4, intra­molecular O—H⋯O hydrogen bonding results in the formation of a planar five-membered ring, which is nearly coplanar with the quinoline group. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Beak (1977[Beak, P. (1977). Acc. Chem. Res. 10, 186-192.]); Nimlos et al. (1987[Nimlos, M. R., Kelley, D. F. & Bernstein, E. R. (1987). J. Phys. Chem. 91, 6610-6614.]); Rajnikant et al. (2002[Rajnikant, G. V. K., Deshmukh, M. B. & Varghese, B. (2002). Dinesh Crystallogr. Rep. 47, 449-496.]); Johnson (1996[Johnson, C. D. (1996). Comprehesive Heterocyclic Chemistry II, Vol. 5, edited by A. R. Katritzky, C. W Rees & E. F. V. Scriven, pp. 15-18. New York: Pergamon.]). For related literature, see: Lin et al. (2000[Lin, Y. C., Shao, Z., Jiang, G., Zhou, S., Cai, J., Vrijmoedand, L. L. P. & Jones, E. B. G. (2000). Tetrahedron, 56, 9607-9609.]); Song et al. (2006[Song, J., Lin, Y. C. & Chan, W. L. (2006). Heterocycles, 68, 1185-1190.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO4

  • Mr = 221.21

  • Monoclinic, P 21 /n

  • a = 4.9655 (16) Å

  • b = 14.084 (5) Å

  • c = 14.888 (5) Å

  • β = 96.208 (6)°

  • V = 1035.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 (2) K

  • 0.60 × 0.37 × 0.31 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.967

  • 6788 measured reflections

  • 2228 independent reflections

  • 1761 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.174

  • S = 1.08

  • 2228 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (3) 2.07 (3) 2.938 (2) 161 (2)
O2—H2⋯O1 0.82 2.33 2.756 (2) 113
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinolin-2(1H)-ones can exist in both the lactam and lactim forms (Beak, 1977; Nimlos et al., 1987; Rajnikant et al., 2002). The tautomeric equilibrium of lactam-lactim attracts attention owing to its chemical, biological and theoretical importantce (Johnson, 1996). The title compound, (I), which is a part of the marine natural compound penicilliazine (Lin et al., 2000), was synthesized and characterized by our research group toward the natural product total synthesis. As part of our ongoing studies, we report herein the crystal structure of (I).

The molecule of the title compound, (I), (Fig. 1) adopts a bicyclic lactam-form with one hydroxy and two methoxy groups attached to atoms C2, C8 and C9, respectively. Rings A (N1/C1-C5) and B (C4-C9) are, of course, planar and the dihedral angle between them is A/B = 2.18 (3)°. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring C (O1/O2/H2/C1/C2). Ring C is oriented with respect to the adjacent rings A and B at dihedral angles of A/C = 1.99 (3)° and B/C = 3.96 (3)°. So, rings A, B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Beak (1977); Nimlos et al. (1987); Rajnikant et al. (2002); Johnson (1996). For related literature, see: Lin et al. (2000); Song et al. (2006).

Experimental top

The title compound, (I), was prepared according to our reported procedure (Song et al., 2006). Suitable crystals were obtained by recrystallization from chloroform/ethyl acetate (1:1) solution (m.p. 436-437 K). Spectroscopic analysis: IR (KBr, νcm-1): 3442, 3169, 1665, 1638, 1116; 1H NMR (CDCl3, δ, p.p.m.): 7.14–7.17(d, 1H, J = 9.0 Hz), 7.07(s, 1H), 6.85-6.88 (d, 1H, J = 9.0 Hz), 6.61(br, OH),3.97 (s, 3H), 3.93 (s, 3H); 13C NMR (CDCl3, δ, p.p.m.): 159.0, 150.2, 143.7, 134.2,127.2,121.1,115.7,112.2, 108.8,60.6,56.0; analysis, calculated for C11H11N1O4: C 59.73, H 5.01, N 6.33%; found: C 59.98, H 5.23, N 6.14%.

Refinement top

H atom (for NH) was located in a difference syntheses and refined [N-H = 0.90 (3) Å and Uiso(H) = 0.068 (7) Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
3-Hydroxy-7,8-dimethoxyquinolin-2(1H)-one top
Crystal data top
C11H11NO4F(000) = 464
Mr = 221.21Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 886 reflections
a = 4.9655 (16) Åθ = 3.1–27.1°
b = 14.084 (5) ŵ = 0.11 mm1
c = 14.888 (5) ÅT = 294 K
β = 96.208 (6)°Block, colorless
V = 1035.1 (6) Å30.60 × 0.37 × 0.31 mm
Z = 4
Data collection top
Bruker CCD area-detector
diffractometer
2228 independent reflections
Radiation source: fine-focus sealed tube1761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.937, Tmax = 0.967k = 1715
6788 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0907P)2 + 0.3738P]
where P = (Fo2 + 2Fc2)/3
2228 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H11NO4V = 1035.1 (6) Å3
Mr = 221.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9655 (16) ŵ = 0.11 mm1
b = 14.084 (5) ÅT = 294 K
c = 14.888 (5) Å0.60 × 0.37 × 0.31 mm
β = 96.208 (6)°
Data collection top
Bruker CCD area-detector
diffractometer
2228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1761 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.967Rint = 0.015
6788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.50 e Å3
2228 reflectionsΔρmin = 0.25 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1615 (3)0.39255 (11)1.01266 (11)0.0616 (5)
O20.2273 (3)0.20136 (9)0.97741 (9)0.0514 (4)
H20.28160.23271.01820.077*
O30.6647 (4)0.48962 (12)0.67193 (12)0.0681 (5)
O40.3678 (3)0.54717 (9)0.80367 (10)0.0498 (4)
N10.1136 (3)0.41905 (11)0.90243 (11)0.0439 (4)
H10.119 (5)0.481 (2)0.9155 (17)0.068 (7)*
C10.0380 (4)0.36225 (14)0.95063 (13)0.0458 (5)
C20.0452 (4)0.26212 (14)0.92587 (13)0.0483 (5)
C30.0957 (4)0.22783 (14)0.86147 (14)0.0500 (5)
H3A0.09120.16320.84880.060*
C40.2532 (4)0.28997 (13)0.81204 (13)0.0442 (4)
C50.2543 (4)0.38754 (13)0.83327 (12)0.0404 (4)
C60.4035 (5)0.26022 (15)0.74343 (15)0.0535 (5)
H6A0.40790.19600.72900.064*
C70.5456 (5)0.32376 (16)0.69650 (15)0.0544 (5)
H7A0.64620.30210.65140.065*
C80.5392 (4)0.42049 (15)0.71632 (14)0.0490 (5)
C90.3942 (4)0.45222 (12)0.78474 (13)0.0427 (4)
C100.6032 (5)0.58783 (16)0.85291 (18)0.0617 (6)
H10A0.57110.65380.86380.093*
H10B0.75470.58160.81840.093*
H10C0.64160.55540.90950.093*
C110.8222 (6)0.4614 (2)0.60194 (19)0.0789 (8)
H11A0.89860.51660.57660.118*
H11B0.70880.42860.55570.118*
H11C0.96530.42000.62650.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0712 (10)0.0546 (9)0.0639 (9)0.0102 (7)0.0302 (8)0.0133 (7)
O20.0809 (10)0.0349 (7)0.0397 (7)0.0015 (6)0.0119 (6)0.0009 (5)
O30.0819 (12)0.0579 (10)0.0713 (10)0.0009 (8)0.0395 (9)0.0048 (7)
O40.0549 (8)0.0341 (7)0.0615 (8)0.0020 (6)0.0117 (6)0.0013 (6)
N10.0498 (9)0.0337 (8)0.0496 (9)0.0009 (6)0.0118 (7)0.0058 (6)
C10.0491 (10)0.0431 (10)0.0463 (10)0.0035 (8)0.0096 (8)0.0056 (8)
C20.0559 (12)0.0403 (10)0.0488 (10)0.0069 (8)0.0063 (9)0.0001 (8)
C30.0620 (12)0.0332 (9)0.0552 (11)0.0018 (8)0.0076 (9)0.0039 (8)
C40.0489 (10)0.0360 (9)0.0480 (10)0.0022 (8)0.0058 (8)0.0042 (7)
C50.0415 (9)0.0371 (9)0.0427 (9)0.0037 (7)0.0045 (7)0.0038 (7)
C60.0606 (13)0.0398 (10)0.0611 (12)0.0061 (9)0.0115 (10)0.0110 (9)
C70.0580 (12)0.0521 (12)0.0557 (11)0.0083 (9)0.0177 (9)0.0081 (9)
C80.0507 (11)0.0471 (11)0.0507 (11)0.0033 (8)0.0129 (9)0.0029 (8)
C90.0452 (10)0.0353 (9)0.0480 (10)0.0039 (7)0.0061 (8)0.0005 (7)
C100.0622 (14)0.0469 (11)0.0779 (15)0.0108 (10)0.0157 (11)0.0078 (10)
C110.0848 (18)0.0863 (19)0.0728 (16)0.0045 (15)0.0419 (14)0.0001 (14)
Geometric parameters (Å, º) top
O2—H20.8200C5—C41.410 (3)
O3—C111.425 (3)C6—C71.376 (3)
O4—C91.376 (2)C6—C41.393 (3)
O4—C101.430 (3)C6—H6A0.9300
N1—C11.356 (3)C7—H7A0.9300
N1—C51.379 (2)C8—O31.365 (3)
N1—H10.90 (3)C8—C91.384 (3)
C1—O11.238 (2)C8—C71.395 (3)
C1—C21.457 (3)C10—H10A0.9600
C2—O21.513 (2)C10—H10B0.9600
C3—C21.337 (3)C10—H10C0.9600
C3—C41.430 (3)C11—H11A0.9600
C3—H3A0.9300C11—H11B0.9600
C5—C91.394 (3)C11—H11C0.9600
C2—O2—H2109.5C4—C6—H6A119.3
C8—O3—C11118.1 (2)C6—C7—C8120.21 (19)
C9—O4—C10113.78 (16)C6—C7—H7A119.9
C1—N1—C5124.09 (16)C8—C7—H7A119.9
C1—N1—H1117.9 (17)O3—C8—C9115.29 (18)
C5—N1—H1118.0 (17)O3—C8—C7124.92 (19)
O1—C1—N1122.64 (18)C9—C8—C7119.78 (19)
O1—C1—C2121.43 (18)O4—C9—C8122.25 (17)
N1—C1—C2115.93 (17)O4—C9—C5117.72 (17)
C3—C2—C1122.03 (18)C8—C9—C5119.91 (17)
C3—C2—O2123.18 (17)O4—C10—H10A109.5
C1—C2—O2114.78 (17)O4—C10—H10B109.5
C2—C3—C4120.40 (18)H10A—C10—H10B109.5
C2—C3—H3A119.8O4—C10—H10C109.5
C4—C3—H3A119.8H10A—C10—H10C109.5
C6—C4—C5117.91 (18)H10B—C10—H10C109.5
C6—C4—C3124.03 (18)O3—C11—H11A109.5
C5—C4—C3118.06 (17)O3—C11—H11B109.5
N1—C5—C9119.87 (16)H11A—C11—H11B109.5
N1—C5—C4119.41 (17)O3—C11—H11C109.5
C9—C5—C4120.72 (17)H11A—C11—H11C109.5
C7—C6—C4121.43 (18)H11B—C11—H11C109.5
C7—C6—H6A119.3
C10—O4—C9—C877.3 (2)C9—C5—C4—C3177.13 (18)
C10—O4—C9—C5106.8 (2)N1—C5—C9—O45.1 (3)
C5—N1—C1—O1179.73 (19)C4—C5—C9—O4174.46 (17)
C5—N1—C1—C20.4 (3)N1—C5—C9—C8178.93 (17)
C1—N1—C5—C9176.93 (18)C4—C5—C9—C81.6 (3)
C1—N1—C5—C42.6 (3)C7—C6—C4—C51.1 (3)
O1—C1—C2—C3177.3 (2)C7—C6—C4—C3178.2 (2)
N1—C1—C2—C32.0 (3)C4—C6—C7—C80.7 (3)
O1—C1—C2—O23.7 (3)C9—C8—O3—C11178.7 (2)
N1—C1—C2—O2176.97 (16)C7—C8—O3—C112.2 (4)
C4—C3—C2—C12.1 (3)O3—C8—C7—C6177.6 (2)
C4—C3—C2—O2176.75 (17)C9—C8—C7—C61.4 (3)
C2—C3—C4—C6179.4 (2)O3—C8—C9—O43.0 (3)
C2—C3—C4—C50.1 (3)C7—C8—C9—O4176.09 (19)
N1—C5—C4—C6178.29 (18)O3—C8—C9—C5178.85 (17)
C9—C5—C4—C62.2 (3)C7—C8—C9—C50.3 (3)
N1—C5—C4—C32.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.07 (3)2.938 (2)161 (2)
O2—H2···O10.822.332.756 (2)113
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H11NO4
Mr221.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)4.9655 (16), 14.084 (5), 14.888 (5)
β (°) 96.208 (6)
V3)1035.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.37 × 0.31
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6788, 2228, 1761
Rint0.015
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.174, 1.08
No. of reflections2228
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.07 (3)2.938 (2)161 (2)
O2—H2···O10.822.332.756 (2)112.8
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

Financial support from the National Science Foundation of China (grant No. 20072058), the 863 Foundation of China (grant No. 2003 A A624010) and Guangdong Pharmaceutical University is gratefully acknowledged.

References

First citationBeak, P. (1977). Acc. Chem. Res. 10, 186–192.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. D. (1996). Comprehesive Heterocyclic Chemistry II, Vol. 5, edited by A. R. Katritzky, C. W Rees & E. F. V. Scriven, pp. 15–18. New York: Pergamon.  Google Scholar
First citationLin, Y. C., Shao, Z., Jiang, G., Zhou, S., Cai, J., Vrijmoedand, L. L. P. & Jones, E. B. G. (2000). Tetrahedron, 56, 9607–9609.  Web of Science CSD CrossRef CAS Google Scholar
First citationNimlos, M. R., Kelley, D. F. & Bernstein, E. R. (1987). J. Phys. Chem. 91, 6610–6614.  CrossRef CAS Web of Science Google Scholar
First citationRajnikant, G. V. K., Deshmukh, M. B. & Varghese, B. (2002). Dinesh Crystallogr. Rep. 47, 449–496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J., Lin, Y. C. & Chan, W. L. (2006). Heterocycles, 68, 1185–1190.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds