metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris[tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II)] dodecatungstoferrate dihydrate

Feng-Xia Ma,^{a,b} Ya-Guang Chen^a* and Dong-Mei Shi^a

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bBasic Science Department, Jilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China Correspondence e-mail: chenyg146@nenu.edu.cn

Received 24 March 2008; accepted 10 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.027 Å; Hatom completeness 95%; disorder in solvent or counterion; R factor = 0.036; wR factor = 0.094; data-to-parameter ratio = 11.0.

The title compound, $[Fe(C_{12}H_8N_2)_3]_3[FeW_{12}O_{40}]\cdot 2H_2O$, was prepared under hydrothermal conditions. The discrete Keggin-type $[FeW_{12}O_{40}]^{6-}$ heteropolyoxoanion has threefold symmetry, with the Fe^{II} atom located on the threefold rotation axis. The central FeO₄ tetrahedron in the anion shares its O atoms with four W_3O_{13} trinuclear units, each of which is made up of three edge-shared WO₆ octahedral units. The Fe^{II} atom in the complex cation, *viz* $[Fe(phen)_3]^{2+}$ (phen is 1,10phenanthroline), shows a slightly distorted octahedral geometry defined by six N atoms from three phen ligands. The polyoxoanions pack together with the cations, with the disordered water molecules located in voids; the site occupancy factor for each water O atom is 0.33.

Related literature

For related literature, see: Brown (2002); Misono (1987); Pope (1983).

Experimental

Crystal data $[Fe(C_{12}H_8N_2)_3]_3[FeW_{12}O_{40}]-2H_2O$ $M_r = 4727.47$

Trigonal, R3a = 25.088 (5) Å c = 17.231 (5) Å $V = 9392 (4) \text{ Å}^3$ Z = 3Mo *K* α radiation

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.075, T_{\rm max} = 0.104$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.093$ S = 1.036154 reflections 560 parameters 1 restraint T = 293 (2) K 0.24 × 0.21 × 0.20 mm

 $\mu = 11.51 \text{ mm}^{-1}$

16084 measured reflections 6154 independent reflections 5557 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.62 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.55 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 3713 Friedel pairs Flack parameter: -0.006 (6)

Table 1 Selected bond lengths (Å).

Fe1-O13	1.826 (8)	W2-O14 ⁱ	1.954 (9)
Fe1-O1	1.833 (18)	W2-O11 ⁱ	1.963 (10)
Fe2-N6	1.969 (11)	W2-O13 ⁱ	2.211 (8)
Fe2-N3	1.971 (12)	W3-O6	1.742 (11)
Fe2-N1	1.972 (10)	$W3-O2^{i}$	1.903 (9)
Fe2-N5	1.979 (12)	W3-O2	1.911 (9)
Fe2-N2	1.986 (11)	W3-O11	1.951 (10)
Fe2-N4	2.001 (11)	W3-O10	1.961 (10)
W1-O3	1.692 (9)	W3-O13	2.229 (10)
W1-O4	1.898 (9)	W4-O8	1.678 (9)
W1-O7	1.943 (8)	W4-O9	1.896 (8)
W1-O12	1.950 (8)	W4-O4	1.904 (9)
W1-O1	2.230 (9)	W4-O10	1.944 (11)
W2-O5	1.702 (10)	W4-O14	2.001 (9)
W2-O7	1.858 (9)	W4-O13	2.221 (8)
W2-O9	1.940 (9)		

Symmetry code: (i) -x + y + 1, -x + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Analysis and Testing Foundation of Northeast Normal University, Changchun, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2126).

References

Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: the Bond Valence Model. Oxford University Press.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Misono, M. (1987). Cat. Rev. Sci. Eng. 29, 269-321.

Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m672 [doi:10.1107/S1600536808009896]

Tris[tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II)] dodecatungstoferrate dihydrate

Feng-Xia Ma, Ya-Guang Chen and Dong-Mei Shi

S1. Comment

Polyoxometalates (POMs) have attracted attention in recent years, not only because of their structural diversity but also because of their potential applications in medicine, material science, especially in catalysis (Misono, 1987; Pope, 1983).

The structure of the title compound is built up from three complex cations, $[Fe(phen)_3]^{2+}$ (phen = 1,10-phenanthroline), one Keggin-type anion, $[FeW_{12}O_{40}]^{6-}$, and two disordered water molecules. The heteropolyoxoanion $[FeW_{12}O_{40}]^{6-}$ has threefold symmetry with the Fe1 atom located on the threefold rotation axis. The Fe2 atom in the cation is coordinated by six N atoms from three phen molecules, forming a distorted FeN₆ octahedron with Fe—N bond distances ranging from 1.969 (11) to 2.001 (11)Å (Fig. 1; Table 1).

Results of bond valence sum (BVS) calculations (Brown, 2002) are in accordance with expected values for hexavalent tungsten (average 6.15 valence units for the 12 W atoms) and divalent iron (1.92 valence units for the Fe atom in the complex cation).

S2. Experimental

A mixture of ammonium tungstate monohydrate (1.005 g, 0.6 mmol), FeCl₃.6H₂O (0.157 g, 0.6 mmol), phen.H₂O (0.256 g, 1.3 mmol), NH₄VO₃(0.053 g, 0.5 mmol), oxalic acid dihydrate(0.205 g, 1.6 mmol) and H₂O (10 ml) was adjusted to pH = 5.8 by addition of 2 mol L^{-1} NaOH under stirring for 30 min. The final solution was transferred into a 25 ml Teflonlined autoclave and was heated at 453 K for 96 h. Then the autoclave was cooled in a rate of 10 K h⁻¹ to room temperature. Red block-like crystals were filtered off, washed with distilled water, and dried at ambient temperature (40% yield on W).

S3. Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the disordered water molecules were not located. In the final difference Fourier map, the highest peak is 2.83Å away from O2W and the deepest hole is 0.23 Å from Fe1.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and disordered water molecules are omitted for clarity. [Symmetry codes: (i) -y + 1, x-y, z; (ii) -x + y+1, -x + 1, z.]

Tris[tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II)] dodecatungstoferrate dihydrate

Crystal data	
$[Fe(C_{12}H_8N_2)_3]_3[FeW_{12}O_{40}] \cdot 2H_2O$ $M_r = 4727.47$ Trigonal, R3 Hall symbol: R 3 a = 25.088 (5) Å c = 17.231 (5) Å V = 9392 (4) Å ³ Z = 3 F(000) = 6593.7	$D_x = 2.527 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5571 reflections $\theta = 1.5-25.1^{\circ}$ $\mu = 11.51 \text{ mm}^{-1}$ T = 293 K Block, red $0.24 \times 0.21 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube	Graphite monochromator φ and ω scans

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.075$, $T_{\max} = 0.104$ 16084 measured reflections 6154 independent reflections 5557 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 7.5378P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
6154 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
560 parameters	$\Delta \rho_{\rm max} = 1.62 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta ho_{ m min} = -1.55$ e Å ⁻³
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 3713 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.006 (6)
map	

 $R_{\rm int} = 0.034$

 $k = -29 \longrightarrow 29$ $l = -20 \longrightarrow 12$

 $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ $h = -29 \rightarrow 29$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.6667	0.3333	0.3946 (2)	0.0268 (6)	
Fe2	0.32586 (8)	0.15648 (8)	0.72949 (11)	0.0297 (4)	
W1	0.58806 (3)	0.33016 (3)	0.22372 (4)	0.03811 (16)	
W2	0.58842 (3)	0.41729 (3)	0.39586 (3)	0.04278 (17)	
W3	0.58253 (3)	0.24702 (3)	0.55437 (4)	0.04819 (18)	
W4	0.50462 (2)	0.24669 (3)	0.39934 (3)	0.04051 (16)	
C1	0.2245 (6)	0.0581 (6)	0.8268 (8)	0.035 (3)	
H1A	0.2201	0.0887	0.8513	0.043*	
C2	0.1869 (6)	-0.0018 (6)	0.8499 (9)	0.040 (3)	
H2A	0.1596	-0.0099	0.8907	0.048*	
C3	0.1885 (6)	-0.0479 (6)	0.8161 (8)	0.042 (3)	
H3A	0.1614	-0.0885	0.8298	0.050*	
C4	0.2355 (6)	-0.0320 (5)	0.7551 (8)	0.035 (3)	
C5	0.2712 (5)	0.0293 (5)	0.7356 (8)	0.035 (3)	
C6	0.3150 (6)	0.0474 (6)	0.6755 (8)	0.044 (3)	
C7	0.3259 (7)	0.0014 (6)	0.6414 (9)	0.052 (4)	
C8	0.2083 (6)	0.1176 (7)	0.6442 (9)	0.048 (4)	
H8A	0.1871	0.0856	0.6792	0.057*	
C9	0.1760 (9)	0.1237 (9)	0.5801 (13)	0.079 (7)	
H9A	0.1338	0.0965	0.5779	0.095*	
C10	0.1990 (11)	0.1623 (11)	0.5263 (12)	0.080 (6)	
H10A	0.1757	0.1626	0.4846	0.096*	
C11	0.3893 (7)	0.1268 (7)	0.6061 (10)	0.062 (5)	
H11A	0.4110	0.1683	0.5931	0.074*	
C12	0.4027 (12)	0.0851 (9)	0.5665 (12)	0.095 (8)	
H12A	0.4323	0.1003	0.5275	0.114*	

C13	0.2444 (7)	-0.0784 (7)	0.7168 (11)	0.063 (5)
H13A	0.2185	-0.1201	0.7264	0.076*
C14	0.4425 (7)	0.2691 (7)	0.6851 (10)	0.054 (4)
H14A	0.4602	0.2610	0.7277	0.065*
C15	0.2629 (13)	0.2054 (10)	0.5327 (10)	0.085(7)
C16	0.3002(18)	0.2552(15)	0.4770(12)	0.140(14)
H16A	0.2817	0.2592 (15)	0.4327	0.168*
C17	0.2617 0.3649 (14)	0.2965 (12)	0.4905(13)	0.094 (8)
H17A	0.3881	0.3268	0.4542	0.113*
C18	0.3020(12)	0.2012 (8)	0.+5+2 0.5584 (11)	0.113 0.081 (7)
C10	0.3929(12) 0.3567(8)	0.2912(0)	0.5564(11) 0.6103(0)	0.061(7)
C19	0.3307(8)	0.2420(0) 0.2120(5)	0.0103(3)	0.031(4)
C20	0.3430(3)	0.2139(3)	0.8739(7)	0.033(3)
C21	0.3882 (0)	0.19/9 (6)	0.8/21 (/)	0.038(3)
C22	0.4287 (7)	0.2118 (7)	0.9329 (9)	0.054 (4)
C23	0.4718 (8)	0.1912 (9)	0.9277 (12)	0.070 (6)
H23A	0.5000	0.1999	0.9675	0.084*
C24	0.4291 (8)	0.1453 (9)	0.8025 (11)	0.072 (5)
H24A	0.4292	0.1232	0.7592	0.086*
C25	0.2933 (11)	-0.0580 (8)	0.6650 (11)	0.081 (7)
H25A	0.3040	-0.0861	0.6460	0.097*
C26	0.2600 (6)	0.2131 (6)	0.8112 (9)	0.042 (3)
H26A	0.2338	0.2023	0.7687	0.051*
C27	0.2488 (7)	0.2413 (7)	0.8753 (9)	0.045 (4)
H27A	0.2156	0.2482	0.8747	0.054*
C28	0.2852 (8)	0.2575 (7)	0.9352 (9)	0.059 (5)
H28A	0.2784	0.2772	0.9765	0.071*
C29	0.3371 (7)	0.2455 (6)	0.9392 (8)	0.045 (3)
C30	0.3740 (9)	0.2556 (8)	0.9998 (10)	0.068 (5)
H30A	0.3661	0.2705	1.0452	0.081*
C31	0.4232 (8)	0.2451 (7)	0.9995 (9)	0.063 (5)
H31A	0.4516	0.2587	1.0399	0.076*
C32	0.2986 (8)	0.2029 (6)	0.5974 (9)	0.054(4)
C33	0.4560(12)	0.3308(9)	0.5740(13)	0.088 (8)
H33A	0.4795	0.3637	0.5411	0.000 (0)
C34	0.3739 (9)	0.0237(9)	0.5835(11)	0.083 (6)
H344	0.3847	-0.0025	0.5589	0.005 (0)
C35	0.4820 (8)	0.0023 0.3208 (7)	0.550	0.100
	0.4620 (6)	0.3208 (7)	0.6471	0.070 (0)
C26	0.5250	0.3401 0.1592 (10)	0.04/1	0.004
	0.4725 (6)	0.1365 (10)	0.8042(15)	0.064 (0)
N1	0.3003	0.1440	0.0013	0.101°
NI	0.2665 (4)	0.0749 (4)	0.7718(6)	0.027(2)
N2	0.3485 (5)	0.1086 (5)	0.6585 (7)	0.040(3)
IN 5	0.2656 (6)	0.1551 (5)	0.6549 (6)	0.040(3)
N4	0.3847 (6)	0.2337 (5)	0.6735 (7)	0.041 (3)
N5	0.3875 (5)	0.1656 (5)	0.8079 (7)	0.040 (3)
N6	0.3062 (5)	0.2008 (5)	0.8083 (6)	0.031 (2)
01	0.6667	0.3333	0.2882 (10)	0.038 (4)
O2	0.6684 (4)	0.2746 (4)	0.5635 (6)	0.047 (2)

O3	0.5416 (5)	0.3302 (5)	0.1526 (6)	0.046 (2)		
04	0.5342 (4)	0.2705 (4)	0.2961 (5)	0.040 (2)		
05	0.5375 (5)	0.4431 (5)	0.3877 (7)	0.059 (3)		
O6	0.5548 (5)	0.2172 (6)	0.6463 (6)	0.063 (3)		
O7	0.5918 (4)	0.3915 (4)	0.2958 (5)	0.037 (2)		
08	0.4282 (4)	0.2170 (5)	0.3920 (7)	0.056 (3)		
09	0.5345 (4)	0.3311 (4)	0.4206 (5)	0.040 (2)		
O10	0.5036 (4)	0.2295 (4)	0.5095 (6)	0.049 (3)		
011	0.5687 (4)	0.1702 (4)	0.5081 (6)	0.046 (2)		
O12	0.6053 (4)	0.2694 (4)	0.1776 (6)	0.040 (2)		
O13	0.5982 (4)	0.2633 (4)	0.4271 (6)	0.036 (2)		
O14	0.5038 (4)	0.1676 (4)	0.3806 (6)	0.045 (2)		
O1W	0.5848 (13)	0.3187 (15)	0.7626 (19)	0.053 (9)	0.33	
O2W	0.5964 (9)	0.2622 (9)	1.0192 (12)	0.013 (4)*	0.33	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0211 (7)	0.0211 (7)	0.0382 (16)	0.0105 (4)	0.000	0.000
Fe2	0.0294 (9)	0.0271 (10)	0.0303 (9)	0.0123 (8)	0.0027 (7)	-0.0021 (8)
W1	0.0322 (3)	0.0341 (3)	0.0487 (4)	0.0171 (2)	-0.0097 (3)	-0.0013 (3)
W2	0.0389 (3)	0.0400 (3)	0.0606 (5)	0.0282 (3)	-0.0024 (3)	-0.0043 (3)
W3	0.0459 (4)	0.0465 (4)	0.0512 (4)	0.0223 (3)	0.0143 (3)	0.0129 (3)
W4	0.0216 (3)	0.0361 (3)	0.0588 (4)	0.0107 (2)	0.0040 (2)	-0.0005 (3)
C1	0.038 (7)	0.033 (7)	0.039 (8)	0.020 (6)	0.012 (6)	0.008 (6)
C2	0.042 (8)	0.042 (8)	0.042 (9)	0.025 (7)	0.007 (6)	0.009(7)
C3	0.038 (7)	0.035 (7)	0.055 (9)	0.020 (6)	-0.008 (6)	0.006 (6)
C4	0.039(7)	0.020 (6)	0.047 (8)	0.016 (5)	0.005 (6)	0.000 (5)
C5	0.029 (6)	0.028 (7)	0.050 (8)	0.016 (5)	-0.003 (6)	0.001 (6)
C6	0.052 (8)	0.047 (8)	0.037 (8)	0.029 (7)	0.004 (7)	-0.020 (6)
C7	0.060 (9)	0.040 (8)	0.051 (10)	0.020 (7)	0.014 (7)	-0.008 (7)
C8	0.038 (8)	0.040 (7)	0.058 (10)	0.013 (6)	-0.024 (7)	-0.011 (6)
C9	0.082 (13)	0.064 (12)	0.106 (17)	0.048 (11)	-0.068 (13)	-0.046 (12)
C10	0.094 (16)	0.082 (15)	0.067 (14)	0.046 (13)	-0.038 (12)	-0.005 (11)
C11	0.061 (10)	0.033 (8)	0.082 (13)	0.017 (7)	0.034 (9)	0.010 (8)
C12	0.15 (2)	0.066 (13)	0.075 (15)	0.056 (14)	0.066 (15)	-0.001 (10)
C13	0.052 (10)	0.042 (9)	0.083 (13)	0.014 (8)	0.012 (9)	-0.012 (8)
C14	0.050 (9)	0.045 (9)	0.055 (10)	0.014 (8)	0.016 (8)	-0.010 (7)
C15	0.18 (2)	0.085 (14)	0.035 (10)	0.097 (17)	0.013 (12)	0.019 (9)
C16	0.31 (4)	0.18 (3)	0.044 (14)	0.21 (3)	0.06 (2)	0.056 (17)
C17	0.16(2)	0.101 (19)	0.069 (16)	0.102 (19)	0.033 (16)	0.041 (13)
C18	0.15 (2)	0.056 (11)	0.056 (12)	0.067 (13)	0.049 (12)	0.015 (9)
C19	0.081 (12)	0.036 (8)	0.042 (9)	0.033 (8)	0.035 (8)	0.013 (7)
C20	0.028 (6)	0.023 (6)	0.035 (7)	0.003 (5)	0.005 (5)	0.006 (5)
C21	0.033 (7)	0.047 (8)	0.030 (7)	0.017 (6)	-0.010 (6)	-0.002 (6)
C22	0.043 (8)	0.045 (9)	0.058 (11)	0.009 (7)	0.001 (7)	0.010 (7)
C23	0.037 (9)	0.085 (13)	0.074 (14)	0.020 (9)	-0.029 (9)	0.010 (11)
C24	0.046 (9)	0.089 (13)	0.088 (14)	0.040 (10)	-0.014 (9)	-0.009 (11)

supporting information

C25	0.139 (18)	0.048 (10)	0.075 (13)	0.062 (12)	0.032 (13)	-0.011 (9)
C26	0.030 (7)	0.035 (7)	0.056 (10)	0.012 (6)	-0.005 (6)	0.001 (6)
C27	0.055 (9)	0.055 (9)	0.037 (9)	0.035 (8)	-0.001 (7)	-0.006 (7)
C28	0.093 (13)	0.050 (9)	0.039 (10)	0.040 (9)	0.025 (9)	-0.008 (7)
C29	0.052 (9)	0.043 (8)	0.033 (8)	0.019 (7)	-0.011 (7)	-0.018 (6)
C30	0.085 (13)	0.059 (11)	0.059 (12)	0.036 (10)	-0.018 (10)	-0.021 (8)
C31	0.073 (12)	0.040 (8)	0.046 (10)	0.005 (8)	-0.026 (9)	-0.006 (7)
C32	0.090 (12)	0.030 (8)	0.047 (10)	0.034 (8)	0.019 (8)	0.007 (7)
C33	0.117 (19)	0.051 (11)	0.077 (16)	0.029 (13)	0.071 (14)	0.014 (11)
C34	0.083 (14)	0.073 (13)	0.095 (15)	0.039 (11)	0.026 (12)	-0.030 (11)
C35	0.046 (10)	0.035 (9)	0.101 (17)	0.000 (8)	0.047 (11)	0.002 (9)
C36	0.050 (11)	0.116 (17)	0.101 (18)	0.052 (12)	-0.006 (10)	0.006 (14)
N1	0.031 (5)	0.027 (5)	0.028 (6)	0.019 (5)	0.001 (4)	0.000 (4)
N2	0.041 (7)	0.039 (6)	0.037 (7)	0.019 (5)	0.009 (5)	-0.004 (5)
N3	0.061 (8)	0.039 (6)	0.028 (6)	0.031 (6)	-0.001 (6)	-0.006 (5)
N4	0.063 (8)	0.022 (5)	0.031 (7)	0.016 (6)	0.023 (6)	0.000 (5)
N5	0.023 (5)	0.037 (6)	0.049 (7)	0.008 (5)	0.004 (5)	-0.001 (5)
N6	0.030 (6)	0.026 (5)	0.024 (6)	0.006 (5)	-0.002 (4)	-0.003 (4)
01	0.030 (5)	0.030 (5)	0.055 (11)	0.015 (2)	0.000	0.000
O2	0.046 (6)	0.043 (6)	0.054 (7)	0.025 (5)	0.003 (5)	0.008 (5)
03	0.048 (6)	0.048 (6)	0.048 (6)	0.028 (5)	-0.022 (5)	-0.008 (5)
04	0.040 (5)	0.028 (5)	0.049 (6)	0.013 (4)	0.005 (4)	-0.003 (4)
05	0.054 (6)	0.038 (6)	0.096 (9)	0.030 (5)	-0.002 (6)	-0.010 (5)
06	0.062 (7)	0.072 (8)	0.056 (8)	0.035 (6)	0.016 (6)	0.015 (6)
O7	0.041 (5)	0.028 (5)	0.050 (6)	0.022 (4)	-0.007 (4)	-0.009 (4)
08	0.025 (5)	0.045 (6)	0.089 (9)	0.010 (4)	0.013 (5)	-0.003 (6)
09	0.040 (5)	0.032 (5)	0.053 (6)	0.021 (4)	0.006 (4)	-0.002 (4)
O10	0.049 (6)	0.033 (5)	0.054 (7)	0.013 (5)	0.020 (5)	-0.004 (4)
011	0.046 (6)	0.041 (5)	0.054 (7)	0.024 (5)	0.005 (5)	0.015 (5)
012	0.034 (5)	0.032 (5)	0.054 (7)	0.016 (4)	0.000 (4)	0.001 (4)
013	0.036 (5)	0.026 (4)	0.044 (6)	0.013 (4)	0.002 (4)	0.002 (4)
O14	0.039 (5)	0.041 (5)	0.058 (7)	0.022 (5)	0.003 (4)	-0.005 (4)
O1W	0.048 (18)	0.08 (2)	0.05 (2)	0.041 (17)	-0.010 (14)	-0.042 (16)

Geometric parameters (Å, °)

Fe1—O13 ⁱ	1.826 (8)	C11—C12	1.42 (2)
Fe1—O13	1.826 (8)	C11—H11A	0.9300
Fe1—O13 ⁱⁱ	1.826 (8)	C12—C34	1.37 (2)
Fe1—O1	1.833 (18)	C12—H12A	0.9300
Fe2—N6	1.969 (11)	C13—C25	1.39 (2)
Fe2—N3	1.971 (12)	C13—H13A	0.9300
Fe2—N1	1.972 (10)	C14—N4	1.283 (19)
Fe2—N5	1.979 (12)	C14—C35	1.45 (2)
Fe2—N2	1.986 (11)	C14—H14A	0.9300
Fe2—N4	2.001 (11)	C15—C32	1.45 (3)
W1O3	1.692 (9)	C15—C16	1.48 (3)
W1O4	1.898 (9)	C16—C17	1.44 (4)

W1—O7	1.943 (8)	C16—H16A	0.9300
W1-012 ⁱⁱ	1.950 (9)	C17—C18	1.41 (3)
W1-012	1.950 (8)	C17—H17A	0.9300
W1-01	2.230 (9)	C18—C33	1.41 (3)
W2-05	1.702 (10)	C18—C19	1.42 (2)
W2-07	1 858 (9)	C19-C32	1.12(2)
W2-09	1.000 (9)	C19—N4	1.37(2)
$W^2 = O^{14^{ii}}$	1.910 (9)	C_{20} C_{21}	1.37(2) 1 380(17)
W2_011 ⁱⁱ	1.954 (9)	C20 021	1.300 (17)
W2_013 ⁱⁱ	2 211 (8)	C_{20} C_{29}	1.390(10) 1.425(18)
W2 015	2.211(0) 1 742(11)	C21 N5	1.425(10) 1.367(17)
$W_3 = O_2^{ii}$	1.742(11) 1 003 (0)	C_{21} C_{22}	1.307(17) 1.377(10)
W3_02	1.903(9)	$\begin{array}{c} C21 \\ C22 \\ C22 \\ C23 \\ C33 \\$	1.377(19) 1.42(2)
W3_011	1.911 (9)	$C_{22} - C_{23}$	1.42(2)
W3-010	1.931(10)	$C_{22} = C_{31}$	1.47(2) 1.27(2)
W3-012	1.901(10)	C_{23} C_{30}	1.57 (5)
W3-013	2.229 (10)	C23—H23A	0.9300
W408	1.678 (9)	C24—N5	1.3/3 (19)
W4-09	1.896 (8)	C_{24} C_{36}	1.44 (2)
W4—O4	1.904 (9)	C24—H24A	0.9300
W4—O10	1.944 (11)	C25—H25A	0.9300
W4—O14	2.001 (9)	C26—N6	1.341 (16)
W4—O13	2.221 (8)	C26—C27	1.41 (2)
C1—N1	1.319 (15)	C26—H26A	0.9300
C1—C2	1.375 (18)	C27—C28	1.30 (2)
C1—H1A	0.9300	C27—H27A	0.9300
C2—C3	1.313 (18)	C28—C29	1.48 (2)
C2—H2A	0.9300	C28—H28A	0.9300
C3—C4	1.477 (18)	C29—C30	1.33 (2)
С3—НЗА	0.9300	C30—C31	1.39 (2)
C4—C5	1.378 (16)	C30—H30A	0.9300
C4—C13	1.451 (18)	C31—H31A	0.9300
C5—N1	1.360 (15)	C32—N3	1.455 (18)
C5—C6	1.409 (18)	C33—C35	1.34 (3)
C6—N2	1.363 (17)	C33—H33A	0.9300
C6—C7	1.440 (18)	C34—H34A	0.9300
C7—C25	1.36 (2)	C35—H35A	0.9300
C7—C34	1.44 (2)	C36—H36A	0.9300
C8—N3	1.279 (17)	$O1$ — $W1^i$	2.230 (9)
C8—C9	1.42 (2)	O1—W1 ⁱⁱ	2.230 (9)
C8—H8A	0.9300	O2—W3 ⁱ	1.903 (9)
C9—C10	1.25 (3)	$O11 - W2^i$	1.963 (10)
С9—Н9А	0.9300	012—W1 ⁱ	1.950 (8)
C10-C15	1.42(3)	$013 - W2^{i}$	2 211 (8)
C10—H10A	0.9300	$O14 - W2^{i}$	1 954 (9)
C11—N2	1 267 (17)	···-	
	1.207 (17)		
013^{i} —Fe1—013	111.0 (3)	C34—C12—C11	122.6 (17)
013^{i} Fe1 013^{ii}	111.0(3)	C34— $C12$ — $H12A$	118 7
			110.7

O13—Fe1—O13 ⁱⁱ	111.0 (3)	C11—C12—H12A	118.7
O13 ⁱ —Fe1—O1	107.9 (3)	C25—C13—C4	117.4 (14)
O13—Fe1—O1	107.9 (3)	C25—C13—H13A	121.3
O13 ⁱⁱ —Fe1—O1	107.9 (3)	C4—C13—H13A	121.3
N6—Fe2—N3	93.0 (4)	N4—C14—C35	124.1 (18)
N6—Fe2—N1	93.4 (4)	N4—C14—H14A	118.0
N3—Fe2—N1	92.8 (4)	C35—C14—H14A	118.0
N6—Fe2—N5	82.3 (5)	C10—C15—C32	120.9 (16)
N3—Fe2—N5	174.4 (5)	C10—C15—C16	126 (2)
N1—Fe2—N5	90.5 (4)	C32—C15—C16	113 (2)
N6—Fe2—N2	174.4 (5)	C17—C16—C15	121 (2)
N3—Fe2—N2	92.1 (5)	C17—C16—H16A	119.7
N1—Fe2—N2	84.0 (4)	C15—C16—H16A	119.7
N5—Fe2—N2	92.7 (5)	C18—C17—C16	120 (2)
N6—Fe2—N4	93.3 (4)	C18—C17—H17A	119.9
N3—Fe2—N4	83.7 (5)	C16—C17—H17A	119.9
N1—Fe2—N4	172.6 (4)	C17—C18—C33	122 (2)
N5—Fe2—N4	93.5 (5)	C17—C18—C19	118 (2)
N2—Fe2—N4	89.6 (4)	C33—C18—C19	120 (2)
O3—W1—O4	104.9 (5)	C32—C19—N4	118.5 (13)
O3—W1—O7	102.9 (4)	C32—C19—C18	122.6 (18)
O4—W1—O7	86.4 (4)	N4—C19—C18	118.7 (17)
O3—W1—O12 ⁱⁱ	95.3 (5)	C21—C20—N6	117.3 (11)
O4—W1—O12 ⁱⁱ	159.7 (4)	C21—C20—C29	120.5 (12)
O7—W1—O12 ⁱⁱ	87.9 (4)	N6—C20—C29	122.1 (11)
O3—W1—O12	97.3 (4)	N5—C21—C22	123.7 (13)
O4—W1—O12	90.0 (4)	N5—C21—C20	115.0 (11)
O7—W1—O12	159.7 (4)	C22—C21—C20	121.3 (13)
O12 ⁱⁱ —W1—O12	88.6 (5)	C21—C22—C23	117.4 (16)
O3—W1—O1	163.4 (5)	C21—C22—C31	118.1 (15)
O4—W1—O1	88.2 (4)	C23—C22—C31	124.4 (16)
O7—W1—O1	87.8 (4)	C36—C23—C22	120.5 (15)
O12 ⁱⁱ —W1—O1	72.1 (4)	C36—C23—H23A	119.7
O12—W1—O1	72.1 (4)	С22—С23—Н23А	119.7
O5—W2—O7	103.3 (5)	N5-C24-C36	119.5 (17)
O5—W2—O9	101.8 (4)	N5—C24—H24A	120.3
O7—W2—O9	86.7 (4)	C36—C24—H24A	120.3
O5-W2-O14 ⁱⁱ	97.7 (5)	C7—C25—C13	122.2 (14)
O7—W2—O14 ⁱⁱ	92.2 (4)	С7—С25—Н25А	118.9
O9—W2—O14 ⁱⁱ	160.2 (4)	С13—С25—Н25А	118.9
O5—W2—O11 ⁱⁱ	95.9 (5)	N6-C26-C27	123.7 (13)
O7—W2—O11 ⁱⁱ	160.7 (4)	N6—C26—H26A	118.2
O9—W2—O11 ⁱⁱ	86.8 (4)	C27—C26—H26A	118.2
O14 ⁱⁱ —W2—O11 ⁱⁱ	87.8 (4)	C28—C27—C26	119.4 (15)
O5—W2—O13 ⁱⁱ	166.2 (5)	C28—C27—H27A	120.3
O7—W2—O13 ⁱⁱ	88.3 (4)	С26—С27—Н27А	120.3
O9—W2—O13 ⁱⁱ	86.2 (3)	C27—C28—C29	121.8 (13)
O14 ⁱⁱ —W2—O13 ⁱⁱ	74.0 (3)	C27—C28—H28A	119.1

O11 ⁱⁱ —W2—O13 ⁱⁱ	73.1 (3)	C29—C28—H28A	119.1
O6—W3—O2 ⁱⁱ	103.8 (5)	C30—C29—C20	118.0 (14)
O6—W3—O2	102.5 (5)	C30—C29—C28	126.6 (14)
O2 ⁱⁱ —W3—O2	85.6 (5)	C20—C29—C28	115.0 (12)
06—W3—011	96.5 (5)	C29—C30—C31	124.1 (16)
02^{ii} W3 011	1597(4)	C29—C30—H30A	1179
02 - W3 - 011	90 1 (4)	C_{31} C_{30} H_{30A}	117.9
$06 - W_3 - 010$	96.9 (5)	C_{30} C_{31} C_{22}	117.2(14)
00^{11} W3 010	90.0(3)	$C_{30} = C_{31} = C_{22}$	121 4
$02 - W_3 - 010$	90.0(4)	C_{22} C_{21} H_{21A}	121.4
$02 - W_{3} - 010$	100.0(4)	C_{22} — C_{31} — H_{31A}	121.4
011—w3—010	87.5 (4)	C19 - C32 - C15	125.1 (16)
06	165.8 (5)	C19—C32—N3	118.0 (15)
02^{n} W3 -013	87.1 (4)	C15—C32—N3	116.7 (16)
O2—W3—O13	87.2 (4)	C35—C33—C18	120.0 (17)
O11—W3—O13	73.0 (3)	С35—С33—Н33А	120.0
O10—W3—O13	73.7 (4)	С18—С33—Н33А	120.0
O8—W4—O9	103.7 (4)	C12—C34—C7	117.0 (15)
O8—W4—O4	104.3 (5)	C12—C34—H34A	121.5
O9—W4—O4	87.5 (4)	С7—С34—Н34А	121.5
O8—W4—O10	95.1 (5)	C33—C35—C14	117.1 (18)
O9—W4—O10	90.8 (4)	С33—С35—Н35А	121.5
O4—W4—O10	160.3 (4)	С14—С35—Н35А	121.5
O8—W4—O14	96.0 (4)	C23—C36—C24	119.6 (17)
09—W4—014	160.3 (4)	С23—С36—Н36А	120.2
04—W4—014	88.3 (4)	C24—C36—H36A	120.2
010—W4—014	86 8 (4)	C1-N1-C5	116.9(10)
08 - W4 - 013	164.7(4)	$C1$ — $N1$ — Fe^2	131.6 (8)
09 - W4 - 013	87.6 (3)	C_{5} N1 E_{e}^{2}	1115(8)
04 W4 013	86.2 (4)	$C_{11} = N_2 = C_6$	110.3(0)
010 W4 013	74.2(4)	$C_{11} = N_2 = C_0$	119.4(12)
010 - W4 - 013	74.2 (4)	$Cf_{1} = N_{2} = Fe_{2}$	130.2(10)
$V_{14} = W_{4} = 013$	72.9(3)	$C_0 = N_2 = C_2^2$	110.2(6)
	124.0 (12)	C_{8} N3 C_{32}	118.3 (13)
NI—CI—HIA	118.0	C8—N3—Fe2	132.7 (10)
C2—C1—HIA	118.0	C32—N3—Fe2	108.4 (10)
C3—C2—C1	121.8 (14)	C14—N4—C19	120.3 (13)
C3—C2—H2A	119.1	C14—N4—Fe2	128.8 (12)
C1—C2—H2A	119.1	C19—N4—Fe2	110.5 (10)
C2—C3—C4	116.7 (12)	C21—N5—C24	119.2 (13)
С2—С3—НЗА	121.7	C21—N5—Fe2	113.5 (9)
С4—С3—Н3А	121.7	C24—N5—Fe2	127.2 (11)
C5—C4—C13	120.5 (13)	C26—N6—C20	117.7 (11)
C5—C4—C3	117.5 (11)	C26—N6—Fe2	130.1 (9)
C13—C4—C3	122.0 (12)	C20—N6—Fe2	111.7 (8)
N1—C5—C4	123.0 (12)	Fe1—O1—W1 ⁱ	119.9 (4)
N1—C5—C6	116.5 (11)	Fe1—O1—W1 ⁱⁱ	119.9 (4)
C4—C5—C6	120.5 (12)	W1 ⁱ -O1-W1 ⁱⁱ	97.4 (5)
N2—C6—C5	117.7 (11)	Fe1—O1—W1	119.9 (4)
N2—C6—C7	123.9 (13)	W1 ⁱ -O1-W1	97.4 (5)

C5—C6—C7	118.1 (13)	W1 ⁱⁱ —O1—W1	97.4 (5)
С25—С7—С6	120.5 (14)	W3 ⁱ —O2—W3	152.4 (5)
C25—C7—C34	124.2 (15)	W1-O4-W4	150.8 (5)
C6—C7—C34	115.3 (14)	W2—O7—W1	151.3 (5)
N3—C8—C9	121.7 (16)	W4—O9—W2	150.3 (5)
N3—C8—H8A	119.2	W4—O10—W3	115.8 (4)
С9—С8—Н8А	119.2	W3-011-W2 ⁱ	116.6 (4)
С10—С9—С8	126.2 (19)	W1 ⁱ —O12—W1	118.3 (5)
С10—С9—Н9А	116.9	Fe1—O13—W2 ⁱ	121.3 (4)
С8—С9—Н9А	116.9	Fe1—O13—W4	120.8 (4)
C9—C10—C15	116.0 (18)	W2 ⁱ —O13—W4	97.7 (3)
C9—C10—H10A	122.0	Fe1—O13—W3	118.3 (5)
C15—C10—H10A	122.0	W2 ⁱ —O13—W3	97.2 (3)
N2-C11-C12	121.5 (14)	W4—O13—W3	96.0 (3)
N2-C11-H11A	119.2	$W2^{i}$ —O14—W4	115.2 (4)
C12-C11-H11A	119.2		

Symmetry codes: (i) -*y*+1, *x*-*y*, *z*; (ii) -*x*+*y*+1, -*x*+1, *z*.