

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -2,2'-oxydibenzoato- κ^4 O,O':-O'',O''')bis[(4,4'-dimethyl-2,2'bipyridine- κ^2 N,N')zinc(II)] dihydrate

Hong Cui,^a Wen-Juan Li^b and Ruo-Jie Tao^a*

^aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and ^bDepartment of Civil and Environmental Engineering, East China Institute of Technology, 56 Xuefu Road, Fuzhou 344000, Jiangxi, People's Republic of China Correspondence e-mail: zhw@henu.edu.cn

Received 4 April 2008; accepted 15 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.058; wR factor = 0.124; data-to-parameter ratio = 14.1.

In the title compound, $[Zn_2(C_{14}H_8O_5)_2(C_{12}H_{12}N_2)_2]\cdot 2H_2O$, the Zn^{II} atom exhibits a distorted octahedral coordination geometry, defined by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine ligand and four O atoms from two bridging 2,2'-oxydibenzoate ligands. The molecule is a centrosymmetric dimer. π - π Stacking interactions are observed between the 4,4'-dimethyl-2,2'-bipyridine ligands, with a centroid–centroid distance of 3.649 (2) Å.

Related literature

For related literature, see: Allen *et al.* (1987); Zhang *et al.* (2008).

Experimental

Converted date

Crysiai aala	
$[Zn_2(C_{14}H_8O_5)_2(C_{12}H_{12}N_2)_2]\cdot 2H_2O$	$\alpha = 68.413 \ (4)^{\circ}$
$M_r = 1047.65$	$\beta = 66.721 \ (3)^{\circ}$
Triclinic, P1	$\gamma = 78.348 \ (4)^{\circ}$
a = 10.425 (2) Å	$V = 1154.7 (4) \text{ Å}^3$
b = 10.866 (2) Å	Z = 1
c = 11.960 (2) Å	Mo $K\alpha$ radiation

 $R_{\rm int} = 0.028$

 $0.20 \times 0.16 \times 0.15 \text{ mm}$

6797 measured reflections 4484 independent reflections 3788 reflections with $I > 2\sigma(I)$

 $\mu = 1.11 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\rm min} = 0.808, T_{\rm max} = 0.851$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 318 parameters $wR(F^2) = 0.123$ H-atom parameters constrainedS = 1.16 $\Delta \rho_{max} = 0.79$ e Å $^{-3}$ 4484 reflections $\Delta \rho_{min} = -0.42$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O2	2.006 (3)	Zn1-N1	2.086 (3)
Zn1-O4 ⁱ	2.053 (4)	Zn1-O5 ⁱ	2.295 (5)
Zn1-N2	2.059 (3)	Zn1-O3	2.495 (4)
O2-Zn1-O4 ⁱ	100.39 (14)	N2-Zn1-O5 ⁱ	108.05 (15)
O2-Zn1-N2	100.84 (13)	$N1-Zn1-O5^{i}$	98.21 (12)
O4 ⁱ -Zn1-N2	96.86 (14)	O2-Zn1-O3	56.84 (11)
O2-Zn1-N1	106.07 (12)	O4 ⁱ -Zn1-O3	99.09 (14)
O4 ⁱ -Zn1-N1	153.52 (14)	N2-Zn1-O3	154.58 (12)
N2-Zn1-N1	79.25 (11)	N1-Zn1-O3	94.60 (12)
$O2-Zn1-O5^{i}$	145.16 (14)	O5 ⁱ -Zn1-O3	97.20 (14)
$O4^i - Zn1 - O5^i$	57.76 (14)		

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1W-H1WA\cdots O3$	0.85	2.04	2.845 (5)	158
$D1W-H1WB\cdots O5^{i}$	0.85	2.07	2.876 (6)	158

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support provided by the Henan Administration of Science and Technology (grant No. 0111030700).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2127).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, W., Yao, L. & Tao, R. (2008). Acta Cryst. E64, m169.

supporting information

Acta Cryst. (2008). E64, m697 [doi:10.1107/S1600536808010271]

Bis(μ -2,2'-oxydibenzoato- $\kappa^4 O$,O':O'',O''')bis[(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N$,N')zinc(II)] dihydrate

Hong Cui, Wen-Juan Li and Ruo-Jie Tao

S1. Comment

As part of our ongoing studies (Zhang *et al.*, 2008), we synthesized the title compound and report here its crystal structure.

The bond lengths and angles of the title compound are within normal ranges (Allen *et al.*, 1987) (Table 1). Intermolecular hydrogen bonds are formed between the water molecule and the carboxylate groups (Fig. 1; Table 2). The molecule is centrosymmetric with an inversion center located at the midpoint of the Zn1 and Zn1ⁱ atoms [symmetry code (i): 1 - x, 2 - y, 1 - z]. The asymmetric unit thus contains one-half molecule. The Zn^{II} atom exhibits a distorted octahedral coordination geometry, defined by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine (dbpy) ligand and four O atoms from two 2,2'-oxydibenzoate (odb) ligands. The two carboxylate groups of each odb ligand coordinate to two different Zn atoms.

The π - π stacking interactions between the aromatic rings of the dbpy ligands are observed, with a centroid–centroid distance of 3.649 (2)Å [Fig. 2; Cg1 = the centroid of N1ⁱⁱ, C15ⁱⁱ, C16ⁱⁱ, C17ⁱⁱ, C19ⁱⁱ, C20ⁱⁱ and Cg2 = the centroid of N2, C21, C22, C23, C25, C26; symmetry code: (ii) 2 - x, 2 - y, 1 - z].

S2. Experimental

The title compound was synthesized hydrothermally in a Teflon-lined autoclave (23 ml) by heating a mixture of H₂odb (0.052 g, 0.2 mmol), dbpy (0.037 g, 0.2 mmol), $Zn(NO_3)_2.6H_2O$ (0.059 g, 0.2 mmol) and one drop of Et₃N (pH = 8~9) in water (10 ml) at 393 K for 3 d. Colorless single crystals were collected in 56% yield based on Zn.

S3. Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl groups})U_{eq}(C)$. The H atoms of the water molecule were located from a difference Fourier map and fixed in the final refinements with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry code (i): 1 - x, 2 - y, 1 - z.]

Figure 2

A view of the crystal packing, showing the π - π stacking interaction.

$Bis(\mu-2,2'-oxydibenzoato-\kappa^4O,O':O'',O''')\beta is[(4,4'-dimethyl-2,2'-bipyridine-\kappa^2N,N')zinc(II)]$ dihydrate

Crystal data	
$[Zn_2(C_{14}H_8O_5)_2(C_{12}H_{12}N_2)_2] \cdot 2H_2O$	$\alpha = 68.413 \ (4)^{\circ}$
$M_r = 1047.65$	$\beta = 66.721 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 78.348 \ (4)^{\circ}$
Hall symbol: -P 1	$V = 1154.7 (4) Å^3$
a = 10.425 (2) Å	Z = 1
b = 10.866 (2) Å	F(000) = 540
c = 11.960 (2) Å	$D_{\rm x} = 1.507 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2731 reflections $\theta = 2.3-27.8^{\circ}$ $\mu = 1.11 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.809, T_{\max} = 0.851$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.057$ Hydrogen site location: inferred from $wR(F^2) = 0.123$ neighbouring sites S = 1.16H-atom parameters constrained 4484 reflections $w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 1.1151P]$ where $P = (F_o^2 + 2F_c^2)/3$ 318 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ 0 constraints $\Delta \rho_{\rm max} = 0.79 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 293 K

 $R_{\rm int} = 0.028$

 $h = -12 \rightarrow 12$

 $k = -13 \rightarrow 13$

 $l = -10 \rightarrow 14$

Block, colorless

 $0.20 \times 0.16 \times 0.15$ mm

6797 measured reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

4484 independent reflections

3788 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.69886 (4)	0.81936 (4)	0.62615 (4)	0.02963 (15)	
N1	0.8962 (3)	0.7397 (3)	0.6331 (3)	0.0290 (7)	
N2	0.7562 (3)	0.9615 (3)	0.6702 (3)	0.0294 (7)	
01	0.7872 (3)	1.0671 (3)	0.1966 (3)	0.0402 (7)	
O2	0.7264 (3)	0.9119 (3)	0.4398 (3)	0.0476 (7)	
03	0.7021 (4)	0.7032 (3)	0.4797 (3)	0.0653 (10)	
O4	0.5135 (3)	1.1471 (4)	0.2926 (4)	0.0723 (11)	
05	0.4336 (4)	1.3253 (4)	0.1854 (5)	0.0931 (15)	
O1W	0.6185 (5)	0.4727 (3)	0.6971 (4)	0.0904 (14)	
H1WA	0.6406	0.5286	0.6219	0.109*	
H1WB	0.6035	0.5144	0.7494	0.109*	
C1	0.5330 (5)	1.2495 (5)	0.1998 (6)	0.0507 (12)	
C2	0.6804 (4)	1.2853 (4)	0.1109 (4)	0.0366 (9)	
C3	0.7046 (5)	1.4153 (4)	0.0292 (5)	0.0474 (11)	
Н3	0.6285	1.4758	0.0235	0.057*	

C4	0.8373 (5)	1.4565 (4)	-0.0429 (5)	0.0522 (12)
H4	0.8506	1.5438	-0.0965	0.063*
C5	0.9501 (5)	1.3685 (5)	-0.0355 (4)	0.0497 (12)
H5	1.0402	1.3968	-0.0825	0.060*
C6	0.9309 (4)	1.2378 (4)	0.0413 (4)	0.0400 (10)
H6	1.0078	1.1776	0.0441	0.048*
C7	0.7965 (4)	1.1970 (4)	0.1141 (4)	0.0305 (8)
C8	0.7349 (4)	0.9736 (3)	0.1771 (4)	0.0311 (8)
C9	0.7182 (4)	0.9954 (4)	0.0613 (4)	0.0395 (10)
H9	0.7370	1.0770	-0.0029	0.047*
C10	0.6740 (5)	0.8971 (4)	0.0415 (4)	0.0469 (11)
H10	0.6611	0.9133	-0.0354	0.056*
C11	0.6487 (5)	0.7745 (4)	0.1344 (5)	0.0485 (11)
H11	0.6212	0.7071	0.1200	0.058*
C12	0.6650 (4)	0.7535 (4)	0.2488 (5)	0.0432 (10)
H12	0.6476	0.6707	0.3113	0.052*
C13	0.7062 (4)	0.8508 (4)	0.2750 (4)	0.0325 (8)
C14	0.7124 (4)	0.8198 (4)	0.4060 (4)	0.0401 (10)
C15	0.9622 (4)	0.6263 (3)	0.6140 (4)	0.0360 (9)
H15	0.9129	0.5688	0.6071	0.043*
C16	1.0999 (4)	0.5905 (4)	0.6042 (4)	0.0375 (9)
H16	1.1412	0.5100	0.5917	0.045*
C17	1.1763 (4)	0.6746 (4)	0.6130 (4)	0.0347 (9)
C18	1.3281 (5)	0.6431 (5)	0.5984 (6)	0.0558 (13)
H18A	1.3359	0.5799	0.6768	0.084*
H18B	1.3699	0.7228	0.5796	0.084*
H18C	1.3756	0.6065	0.5295	0.084*
C19	1.1067 (4)	0.7924 (3)	0.6351 (4)	0.0311 (8)
H19	1.1540	0.8513	0.6425	0.037*
C20	0.9681 (4)	0.8214 (3)	0.6458 (3)	0.0260 (8)
C21	0.8882 (4)	0.9448 (3)	0.6701 (3)	0.0258 (7)
C22	0.9417 (4)	1.0362 (3)	0.6920 (3)	0.0285 (8)
H22	1.0326	1.0222	0.6923	0.034*
C23	0.8611 (4)	1.1487 (3)	0.7136 (4)	0.0329 (9)
C24	0.9184 (5)	1.2489 (4)	0.7370 (5)	0.0450 (11)
H24A	0.9678	1.2041	0.7953	0.068*
H24B	0.8428	1.3055	0.7737	0.068*
H24C	0.9812	1.3013	0.6572	0.068*
C25	0.7257 (4)	1.1644 (4)	0.7143 (4)	0.0368 (9)
H25	0.6680	1.2384	0.7288	0.044*
C26	0.6775 (4)	1.0689 (4)	0.6931 (4)	0.0371 (9)
H26	0.5860	1.0798	0.6949	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.0253 (2)	0.0322 (2)	0.0321 (3)	-0.00478 (16)	-0.00982 (19)	-0.01000 (19)
N1	0.0305 (17)	0.0258 (15)	0.0303 (17)	-0.0043 (12)	-0.0116 (15)	-0.0061 (13)

Acta Cryst. (2008). E64, m697

N2	0.0243 (16)	0.0322 (15)	0.0351 (18)	-0.0003 (12)	-0.0112 (14)	-0.0144 (14)
01	0.0490 (18)	0.0403 (15)	0.0358 (16)	-0.0131 (13)	-0.0210 (14)	-0.0053 (13)
02	0.0485 (19)	0.0604 (19)	0.0336 (16)	-0.0092 (15)	-0.0156 (15)	-0.0106 (15)
O3	0.076 (2)	0.0526 (19)	0.053 (2)	-0.0105 (17)	-0.033 (2)	0.0133 (17)
O4	0.040 (2)	0.113 (3)	0.051 (2)	-0.034 (2)	-0.0021 (17)	-0.013 (2)
05	0.040 (2)	0.069 (2)	0.155 (5)	0.0009 (18)	-0.023 (3)	-0.034 (3)
O1W	0.115 (4)	0.0360 (18)	0.091 (3)	0.000 (2)	-0.016 (3)	-0.014 (2)
C1	0.033 (3)	0.051 (3)	0.078 (4)	-0.005 (2)	-0.013 (3)	-0.038 (3)
C2	0.031 (2)	0.042 (2)	0.039 (2)	-0.0068 (17)	-0.0070 (19)	-0.0184 (19)
C3	0.051 (3)	0.038 (2)	0.053 (3)	-0.0012 (19)	-0.019 (2)	-0.015 (2)
C4	0.073 (4)	0.037 (2)	0.042 (3)	-0.021 (2)	-0.014 (3)	-0.006 (2)
C5	0.048 (3)	0.061 (3)	0.038 (2)	-0.032 (2)	-0.001 (2)	-0.015 (2)
C6	0.030 (2)	0.051 (2)	0.039 (2)	-0.0054 (18)	-0.0098 (19)	-0.016 (2)
C7	0.034 (2)	0.0351 (19)	0.0239 (19)	-0.0122 (16)	-0.0099 (17)	-0.0072 (16)
C8	0.0245 (19)	0.0331 (19)	0.035 (2)	-0.0020 (15)	-0.0083 (17)	-0.0120 (17)
C9	0.047 (3)	0.042 (2)	0.027 (2)	-0.0101 (19)	-0.012 (2)	-0.0077 (18)
C10	0.052 (3)	0.057 (3)	0.041 (3)	-0.004 (2)	-0.017 (2)	-0.025 (2)
C11	0.051 (3)	0.042 (2)	0.060 (3)	-0.003 (2)	-0.019 (2)	-0.026 (2)
C12	0.035 (2)	0.034 (2)	0.053 (3)	0.0008 (17)	-0.011 (2)	-0.012 (2)
C13	0.027 (2)	0.0325 (19)	0.034 (2)	0.0011 (15)	-0.0090 (18)	-0.0096 (17)
C14	0.024 (2)	0.050 (2)	0.034 (2)	-0.0015 (17)	-0.0089 (18)	-0.002 (2)
C15	0.043 (2)	0.0257 (18)	0.040 (2)	-0.0070 (16)	-0.015 (2)	-0.0086 (17)
C16	0.043 (2)	0.0263 (18)	0.042 (2)	0.0070 (16)	-0.016 (2)	-0.0138 (18)
C17	0.033 (2)	0.036 (2)	0.035 (2)	0.0031 (16)	-0.0127 (18)	-0.0122 (18)
C18	0.039 (3)	0.055 (3)	0.085 (4)	0.018 (2)	-0.031 (3)	-0.036 (3)
C19	0.032 (2)	0.0329 (19)	0.032 (2)	0.0001 (15)	-0.0148 (18)	-0.0115 (17)
C20	0.0282 (19)	0.0241 (16)	0.0236 (18)	-0.0021 (14)	-0.0077 (16)	-0.0068 (15)
C21	0.0258 (19)	0.0260 (17)	0.0230 (18)	-0.0020 (14)	-0.0065 (16)	-0.0071 (15)
C22	0.028 (2)	0.0301 (18)	0.0272 (19)	-0.0025 (15)	-0.0100 (17)	-0.0080 (16)
C23	0.039 (2)	0.0294 (18)	0.029 (2)	-0.0051 (16)	-0.0103 (18)	-0.0085 (17)
C24	0.052 (3)	0.038 (2)	0.053 (3)	-0.0059 (19)	-0.017 (2)	-0.023 (2)
C25	0.035 (2)	0.0309 (19)	0.044 (2)	0.0037 (16)	-0.013 (2)	-0.0149 (19)
C26	0.027 (2)	0.034 (2)	0.051 (3)	0.0043 (16)	-0.014 (2)	-0.0168 (19)

Geometric parameters (Å, °)

Zn1—O2	2.006 (3)	C8—C13	1.405 (5)	
Zn1—O4 ⁱ	2.053 (4)	C9—C10	1.370 (6)	
Zn1—N2	2.059 (3)	С9—Н9	0.9300	
Zn1—N1	2.086 (3)	C10—C11	1.379 (6)	
Zn1—O5 ⁱ	2.295 (5)	C10—H10	0.9300	
Zn1—O3	2.495 (4)	C11—C12	1.375 (6)	
N1—C15	1.335 (5)	C11—H11	0.9300	
N1-C20	1.353 (4)	C12—C13	1.391 (5)	
N2-C26	1.335 (5)	C12—H12	0.9300	
N2-C21	1.350 (4)	C13—C14	1.501 (6)	
O1—C8	1.372 (4)	C15—C16	1.378 (5)	
O1—C7	1.389 (4)	C15—H15	0.9300	

O2—C14	1.261 (5)	C16—C17	1.383 (5)
O3—C14	1.246 (5)	C16—H16	0.9300
O4—C1	1.231 (6)	C17—C19	1.399 (5)
O4—Zn1 ⁱ	2.053 (4)	C17—C18	1.503 (5)
O5—C1	1.214 (5)	C18—H18A	0.9600
O5—Zn1 ⁱ	2.295 (5)	C18—H18B	0.9600
O1W—H1WA	0.8500	C18—H18C	0.9600
O1W—H1WB	0.8500	C19—C20	1.380 (5)
C1—C2	1.512 (6)	С19—Н19	0.9300
C1—Zn1 ⁱ	2.519 (5)	C20—C21	1.489 (5)
C2—C7	1.389 (5)	C21—C22	1.378 (5)
C2—C3	1.395 (6)	C22—C23	1.383 (5)
C3—C4	1 372 (6)	C22_H22	0.9300
C3—H3	0.9300	C^{22} C^{23}	1.385(5)
C4-C5	1 367 (7)	C_{23} C_{24}	1.303(5)
C4—H4	0.9300	C_{24} H_{24}	0.9600
C5 C6	1 382 (6)	$C_2 4 H_2 4 R$	0.9600
C5_H5	0.0300	$C_2 - H_2 + D$	0.9600
C6 C7	1 286 (5)	C_{24} C_{25} C_{26}	0.9000
	1.380 (3)	$C_{25} = C_{20}$	1.377(3)
	0.9500	C25—II25	0.9300
0-09	1.392 (3)	C20—H20	0.9300
Ω^2 —7n1— Ω^{4i}	100 39 (14)	C10—C9—C8	120 3 (4)
$\Omega^2 = Zn1 = 0^2$	100.84(13)	C10-C9-H9	119.8
$O4^{i}$ $Zn1$ $N2$	96 86 (14)	C8—C9—H9	119.8
Ω^2 $Zn1$ $N1$	106.07(12)	C9-C10-C11	120.7(4)
O_{4i} $7n1$ N1	153.52(14)	C_{10} H_{10}	119.7
N2 - 7n1 - N1	79 25 (11)	C_{11} C_{10} H_{10}	119.7
Ω_{2}^{2}	145 16 (14)	C_{12} C_{11} C_{10} C_{10}	119.7
O_2^{i} Z_{n1} O_3^{i}	57 76 (14)	C_{12} C_{11} H_{11}	120.6
$N_2 = 7n_1 = 05^{i}$	108.05(15)	C_{12} C_{11} H_{11}	120.0
$N_2 = Z_{III} = 0.5$	108.05(13) 08.21(12)	C_{11} C_{12} C_{13}	120.0 122.8(4)
N1 = 2111 = 03	56.21(12)	$C_{11} = C_{12} = C_{13}$	122.0 (4)
02 - 211 - 03	50.04(11)	$C_{11} = C_{12} = H_{12}$	118.0
$V_{4} = Z_{11} = 0.3$	99.09 (14) 154.58 (12)	C12 - C12 - C12	117.0 (4)
$N_2 = Z_{111} = 0.5$	134.38(12)	C12 - C13 - C8	117.0 (4)
N1 - 2n1 - 03	94.60 (12)	C12-C13-C14	118.4 (4)
03 - 2n1 - 03	97.20 (14)	C8 - C13 - C14	124.6 (4)
02 — $Zn1$ — $C1^{4}$	124.65 (15)	03 - C14 - O2	121.3 (4)
$U4^{-}Zn1^{-}C1^{+}$	29.03 (14)	03-C14-C13	119.1 (4)
$N2$ — $Zn1$ — $C1^{1}$	104.76 (13)	02	119.6 (3)
N1—Zn1—C1 ¹	126.34 (15)	N1—C15—C16	123.2 (3)
$O5^{1}$ —Zn1—C1 ¹	28.74 (14)	N1—C15—H15	118.4
$O3$ — $Zn1$ — $C1^i$	98.76 (13)	C16—C15—H15	118.4
C15—N1—C20	117.9 (3)	C15—C16—C17	119.7 (3)
C15—N1—Zn1	127.7 (2)	C15—C16—H16	120.1
C20—N1—Zn1	114.0 (2)	C17—C16—H16	120.1
C26—N2—C21	118.4 (3)	C16—C17—C19	117.2 (3)
C26—N2—Zn1	126.0 (2)	C16—C17—C18	122.2 (4)

C21—N2—Zn1	115.5 (2)	C19—C17—C18	120.7 (4)
C8—O1—C7	121.0 (3)	C17—C18—H18A	109.5
C14—O2—Zn1	101.8 (3)	C17—C18—H18B	109.5
C14—O3—Zn1	79.6 (3)	H18A—C18—H18B	109.5
$C1 - O4 - Zn1^i$	97.0 (3)	C17—C18—H18C	109.5
$C1 - O5 - Zn1^i$	85.9 (4)	H18A—C18—H18C	109.5
H1WA—O1W—H1WB	107.7	H18B—C18—H18C	109.5
O5—C1—O4	119.3 (5)	C20—C19—C17	120.1 (3)
O5-C1-C2	120.5 (5)	С20—С19—Н19	119.9
O4—C1—C2	120.1 (4)	С17—С19—Н19	119.9
$O5-C1-Zn1^{i}$	65.3 (3)	N1—C20—C19	121.8 (3)
$O4-C1-Zn1^{i}$	54.0 (3)	N1—C20—C21	115.6 (3)
$C2-C1-Zn1^{i}$	171.7 (4)	C19-C20-C21	122.7(3)
C7-C2-C3	117.3 (4)	N2-C21-C22	121.3(3)
C7-C2-C1	122.8 (4)	$N_2 - C_2 - C_2 0$	115.0 (3)
$C_{3}-C_{2}-C_{1}$	119.6 (4)	C_{22} C_{21} C_{20}	123.7 (3)
C4-C3-C2	122.0 (4)	$C_{21} = C_{22} = C_{23}$	120.7(3) 120.4(3)
C4—C3—H3	119.0	$C_{21} = C_{22} = C_{23}$	119.8
C2-C3-H3	119.0	C_{23} C_{22} H_{22}	119.8
$C_{2} = C_{3} = C_{3}$	119.6 (4)	$C_{23} = C_{23} = C_{25}$	117.8 (3)
C5-C4-H4	120.2	$C_{22} = C_{23} = C_{24}$	120.9(3)
C3—C4—H4	120.2	$C_{22} = C_{23} = C_{24}$	120.9(3)
C4-C5-C6	120.2 120.4(4)	C_{23} C_{24} H_{24A}	109.5
C4-C5-H5	110.8	C_{23} C_{24} H_{24R}	109.5
С4—С5—Н5	119.8	$H_{24} = C_{24} = H_{24B}$	109.5
C_{5} C_{6} C_{7}	119.6 (4)	C_{23} C_{24} H_{24C}	109.5
C5-C6-H6	120.2	$H_{24} = C_{24} = H_{24}C$	109.5
C_{7} C_{6} H_{6}	120.2	H_24R C_24 H_24C	109.5
$C_{1} = C_{1} = C_{1}$	115.8 (3)	112 + D - C2 + -112 + C C26 - C25 - C23	109.3 119.2 (4)
$C_{0} = C_{1} = C_{1}$	113.0(3) 1210(4)	$C_{20} = C_{23} = C_{23}$	119.2 (4)
$C_0 - C_7 - C_2$	121.0(4) 123.0(3)	$C_{20} = C_{23} = H_{23}$	120.4
01 - 02	123.0(3) 1215(3)	N2 C26 C25	120.4
01 - 08 - 013	121.5(3) 1180(3)	N2 C26 H26	122.9 (3)
$C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	110.0(3) 120.2(2)	$N_2 = C_{20} = H_{20}$	118.5
C9-C8-C13	120.3 (5)	C25—C20—II20	116.5
O2—Zn1—N1—C15	-82.0(3)	C1—C2—C7—C6	-172.7 (4)
$O4^{i}$ —Zn1—N1—C15	95.9 (4)	C3—C2—C7—O1	176.2 (3)
N2—Zn1—N1—C15	179.7 (3)	C1—C2—C7—O1	1.9 (6)
$O5^{i}$ —Zn1—N1—C15	72.7 (3)	C7—O1—C8—C9	14.3 (6)
03 - Zn1 - N1 - C15	-25.3(3)	C7	-169.4(3)
$C1^{i}$ $Zn1$ $N1$ $C15$	79.1 (4)	Q1—C8—C9—C10	175.9 (4)
Ω^2 Zn1 N1 C20	90.9 (3)	C_{13} C_{8} C_{9} C_{10}	-0.3(6)
$O4^{i}$ 7n1 N1 C20	-912(4)	C8-C9-C10-C11	-1.5(7)
$N_2 = Z_n 1 = N_1 = C_2 0$	-7.4(2)	C9-C10-C11-C12	1.7 (7)
05^{i} Zn1 N1 C20	-114 4 (3)	C10-C11-C12-C13	-0.1(7)
O_{3} Z_{n1} N_{1} C_{20}	147 7 (3)	$C_{11} - C_{12} - C_{13} - C_{8}$	-1.6 (6)
$C1^{i}$ Zn1 N1 C20	-1079(3)	C11-C12-C13-C14	176 4 (4)
$\Omega^2 = 7n1 = N^2 = C^26$	78 6 (3)	01 - C8 - C13 - C12	-1745(3)
02 2 111 112 020	/ 0.0 (3)	01 - 00 - 013 - 012	1, -, -, (3)

O4 ⁱ —Zn1—N2—C26	-23.5 (4)	C9—C8—C13—C12	1.8 (6)
N1—Zn1—N2—C26	-176.9 (3)	O1—C8—C13—C14	7.6 (6)
O5 ⁱ —Zn1—N2—C26	-81.7 (3)	C9—C8—C13—C14	-176.1 (4)
O3—Zn1—N2—C26	105.1 (4)	Zn1—O3—C14—O2	6.0 (4)
C1 ⁱ —Zn1—N2—C26	-51.9 (4)	Zn1—O3—C14—C13	-173.3 (3)
O2—Zn1—N2—C21	-98.6 (3)	Zn1—O2—C14—O3	-7.5 (5)
$O4^{i}$ —Zn1—N2—C21	159.4 (3)	Zn1—O2—C14—C13	171.8 (3)
N1—Zn1—N2—C21	5.9 (3)	C12—C13—C14—O3	11.0 (6)
$O5^{i}$ —Zn1—N2—C21	101.1 (3)	C8—C13—C14—O3	-171.1 (4)
O3—Zn1—N2—C21	-72.0 (4)	C12—C13—C14—O2	-168.3 (4)
$C1^{i}$ — $Zn1$ — $N2$ — $C21$	130.9 (3)	C8—C13—C14—O2	9.6 (6)
O4 ⁱ —Zn1—O2—C14	-90.3 (3)	C20-N1-C15-C16	-1.4 (6)
N2—Zn1—O2—C14	170.5 (2)	Zn1—N1—C15—C16	171.3 (3)
N1—Zn1—O2—C14	88.7 (3)	N1-C15-C16-C17	-0.6 (6)
O5 ⁱ —Zn1—O2—C14	-43.6 (4)	C15—C16—C17—C19	1.6 (6)
O3—Zn1—O2—C14	3.8 (2)	C15—C16—C17—C18	-177.8 (4)
$C1^{i}$ — $Zn1$ — $O2$ — $C14$	-72.9 (3)	C16—C17—C19—C20	-0.7 (6)
O2—Zn1—O3—C14	-3.8 (2)	C18—C17—C19—C20	178.8 (4)
O4 ⁱ —Zn1—O3—C14	92.7 (3)	C15—N1—C20—C19	2.4 (5)
N2—Zn1—O3—C14	-35.5 (4)	Zn1—N1—C20—C19	-171.3 (3)
N1—Zn1—O3—C14	-110.0 (2)	C15—N1—C20—C21	-178.6 (3)
O5 ⁱ —Zn1—O3—C14	151.1 (2)	Zn1—N1—C20—C21	7.8 (4)
C1 ⁱ —Zn1—O3—C14	122.1 (3)	C17—C19—C20—N1	-1.4 (6)
$Zn1^{i}$ —O5—C1—O4	1.9 (5)	C17—C19—C20—C21	179.6 (3)
$Zn1^{i}$ —O5—C1—C2	-173.3 (4)	C26—N2—C21—C22	-0.5 (5)
Zn1 ⁱ —O4—C1—O5	-2.1 (5)	Zn1—N2—C21—C22	176.9 (3)
$Zn1^{i}$ —O4—C1—C2	173.1 (3)	C26—N2—C21—C20	179.0 (3)
O5—C1—C2—C7	-172.9 (5)	Zn1—N2—C21—C20	-3.6 (4)
O4—C1—C2—C7	12.0 (7)	N1—C20—C21—N2	-2.9 (5)
O5—C1—C2—C3	12.9 (7)	C19—C20—C21—N2	176.2 (3)
O4—C1—C2—C3	-162.2 (4)	N1—C20—C21—C22	176.6 (3)
C7—C2—C3—C4	-1.7 (7)	C19—C20—C21—C22	-4.3 (6)
C1—C2—C3—C4	172.8 (4)	N2—C21—C22—C23	-0.6 (6)
C2—C3—C4—C5	0.1 (7)	C20—C21—C22—C23	179.9 (3)
C3—C4—C5—C6	1.8 (7)	C21—C22—C23—C25	1.0 (6)
C4—C5—C6—C7	-1.9 (7)	C21—C22—C23—C24	-179.8 (4)
C5—C6—C7—O1	-174.8 (4)	C22—C23—C25—C26	-0.3 (6)
C5—C6—C7—C2	0.2 (6)	C24—C23—C25—C26	-179.5 (4)
C8—O1—C7—C6	-113.1 (4)	C21—N2—C26—C25	1.2 (6)
C8—O1—C7—C2	72.0 (5)	Zn1—N2—C26—C25	-175.9 (3)
C3—C2—C7—C6	1.6 (6)	C23—C25—C26—N2	-0.8 (6)

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>WA</i> ···O3	0.85	2.04	2.845 (5)	158

			supportin	supporting information		
O1 <i>W</i> —H1 <i>WB</i> ····O5 ⁱ	0.85	2.07	2.876 (6)	158		
Symmetry code: (i) $-x+1, -y+2, -z+1$.						