metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-Tri­aqua­(1,10-phenanthroline-κ2N,N′)(sulfato-κO)magnesium(II)

aSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China
*Correspondence e-mail: anzhe6409@sina.com

(Received 15 March 2008; accepted 11 April 2008; online 18 April 2008)

In the title compound, [Mg(SO4)(C12H8N2)(H2O)3], the MgII centre exhibits a slightly distorted octa­hedral coordination environment defined by two N atoms from a 1,10-phenanthroline mol­ecule, one O atom from a sulfate dianion and three meridionally arranged O atoms from coordinated water mol­ecules. The crystal structure involves intra- and intermolecular O—H⋯O hydrogen bonds.

Related literature

For copper(II), zinc(II) and cadmium(II) complexes of phenanthroline, see: Xu et al. (2003[Xu, L., Wang, E.-B., Peng, J. & Huang, R.-D. (2003). Inorg. Chem. Commun. 6, 740-743.]); Zhang et al. (1999[Zhang, C., Yu, K., Wu, D. & Zhao, C. (1999). Acta Cryst. C55, 1815-1817.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(SO4)(C12H8N2)(H2O)3]

  • Mr = 354.62

  • Monoclinic, P 21 /c

  • a = 11.968 (2) Å

  • b = 10.025 (2) Å

  • c = 13.798 (3) Å

  • β = 113.53 (3)°

  • V = 1517.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 (2) K

  • 0.36 × 0.28 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.902, Tmax = 0.944

  • 14532 measured reflections

  • 3454 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.07

  • 3454 reflections

  • 226 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2W1⋯O3i 0.850 (9) 1.891 (11) 2.7170 (17) 163.8 (16)
O3W—H3W1⋯O2ii 0.848 (9) 1.906 (10) 2.7375 (17) 166.2 (17)
O1W—H1W1⋯O1ii 0.864 (9) 1.862 (10) 2.7235 (17) 174.8 (17)
O2W—H2W2⋯O2iii 0.852 (9) 1.873 (10) 2.7232 (17) 175.4 (19)
O1W—H1W2⋯O2 0.859 (19) 1.862 (19) 2.7030 (17) 166.0 (19)
O3W—H3W2⋯O3iii 0.843 (9) 1.965 (10) 2.7961 (19) 168.5 (17)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline (phen) is one of the most commonly used aromatic N,N' chelating ligands and has in form of several functionalized derivatives been widely used in the construction of supramolecular architectures.

Copper(II), zinc(II) and cadmium(II) derivatives of phen have been reported (Xu et al., 2003; Zhang et al. 1999).

As a continuation of these studies, we now report the crystal structure of the title complex, (I).

As illustrated in Fig. 1, the Mg(II) ion is surrounded by two N atoms from the phen ligand and four O atoms from three meridionally arranged H2O molecules and one sulfato group to form distorted MgN2O4 octahedron. The Mg—O and Mg—N bond lengths are in the noramal range of 2.033 (1)–2.086 (1) and 2.210 (1)–2.234 (2) Å, respectively. The units are connected by O—H···O hydrogen bonds to produce a complex three dimensional supramolecular network, shown in figure 2.

Related literature top

For the copper(II), zinc(II) and cadmium(II) complexes of phenanthroline, see: Xu et al. (2003); Zhang et al. (1999).

Experimental top

1,10-phenanthroline (0.05 g, 0.25 mmol) was dissolved in a water-DMF mixture (1:1 v/v, 50 ml), and MgSO4 × 7 H2O (0.06 g, 0.25 mmol) was added to the solution. The resulting mixture was stirred at room temperature for 12 h and filtered. Colorless single crystals of (I) were obtained from the solution after several weeks.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference map and refined with a distance restraint of 0.85 (1) Å and the constraint Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 30% displacement ellipsoids level.
[Figure 2] Fig. 2. Packing diagram of (I).
mer-Triaqua(1,10-phenanthroline-κ2N,N')(sulfato-κ-O)magnesium(II) top
Crystal data top
[Mg(SO4)(C12H8N2)(H2O)3]F(000) = 736
Mr = 354.62Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11791 reflections
a = 11.968 (2) Åθ = 3.0–27.5°
b = 10.025 (2) ŵ = 0.29 mm1
c = 13.798 (3) ÅT = 295 K
β = 113.53 (3)°Prism, colorless
V = 1517.8 (6) Å30.36 × 0.28 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3454 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1213
Tmin = 0.902, Tmax = 0.944l = 1717
14532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2998P]
where P = (Fo2 + 2Fc2)/3
3454 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.39 e Å3
9 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mg(SO4)(C12H8N2)(H2O)3]V = 1517.8 (6) Å3
Mr = 354.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.968 (2) ŵ = 0.29 mm1
b = 10.025 (2) ÅT = 295 K
c = 13.798 (3) Å0.36 × 0.28 × 0.20 mm
β = 113.53 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3454 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2941 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.944Rint = 0.023
14532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0339 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
3454 reflectionsΔρmin = 0.30 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.13726 (4)0.25963 (5)0.47420 (4)0.02612 (13)
S10.06777 (3)0.22093 (3)0.57725 (3)0.02562 (11)
O10.17699 (10)0.15328 (13)0.50549 (11)0.0455 (3)
O1W0.19239 (10)0.09656 (11)0.57638 (9)0.0334 (2)
O20.01644 (11)0.12166 (11)0.65134 (9)0.0366 (3)
O2W0.08603 (12)0.40809 (11)0.36365 (9)0.0391 (3)
O30.09964 (11)0.32153 (11)0.63949 (9)0.0384 (3)
O3W0.06431 (12)0.13366 (12)0.34794 (9)0.0446 (3)
O40.00451 (10)0.28537 (12)0.51813 (9)0.0382 (3)
N10.32491 (12)0.24769 (13)0.47706 (11)0.0356 (3)
N20.24343 (11)0.41322 (12)0.58883 (10)0.0298 (3)
C10.36509 (19)0.1648 (2)0.42311 (17)0.0524 (5)
H10.30980.10750.37440.063*
C20.4875 (2)0.1602 (2)0.4366 (2)0.0659 (6)
H20.51240.09930.39830.079*
C30.56924 (19)0.2443 (2)0.5052 (2)0.0598 (6)
H30.65040.24240.51380.072*
C40.53087 (15)0.3344 (2)0.56323 (15)0.0440 (4)
C50.61079 (16)0.4266 (2)0.63750 (18)0.0583 (6)
H50.69300.42740.64950.070*
C60.56954 (18)0.5119 (2)0.69028 (16)0.0587 (6)
H60.62370.57110.73810.070*
C70.44359 (16)0.51409 (19)0.67458 (13)0.0443 (4)
C80.3943 (2)0.6039 (2)0.72430 (16)0.0599 (6)
H80.44410.66790.77020.072*
C90.2739 (2)0.5983 (2)0.70592 (16)0.0574 (5)
H90.24050.65890.73790.069*
C100.20141 (16)0.50001 (17)0.63810 (13)0.0407 (4)
H100.11960.49550.62710.049*
C110.40669 (13)0.33127 (16)0.54670 (12)0.0324 (3)
C120.36302 (13)0.42130 (15)0.60482 (11)0.0311 (3)
H2W10.0974 (17)0.4912 (10)0.3757 (13)0.047*
H3W10.0497 (17)0.0531 (11)0.3577 (14)0.047*
H1W10.1920 (16)0.0180 (12)0.5506 (14)0.047*
H2W20.0668 (18)0.3949 (17)0.2979 (8)0.047*
H1W20.1422 (15)0.0933 (18)0.6067 (14)0.047*
H3W20.0186 (15)0.1583 (17)0.2863 (9)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0285 (3)0.0215 (2)0.0276 (3)0.00238 (18)0.0104 (2)0.00030 (17)
S10.03023 (19)0.01845 (18)0.03043 (19)0.00086 (12)0.01448 (15)0.00115 (12)
O10.0335 (6)0.0388 (7)0.0627 (8)0.0073 (5)0.0177 (6)0.0200 (6)
O1W0.0371 (6)0.0265 (5)0.0364 (6)0.0044 (4)0.0145 (5)0.0030 (4)
O20.0492 (6)0.0277 (6)0.0367 (6)0.0085 (5)0.0212 (5)0.0088 (4)
O2W0.0656 (8)0.0205 (5)0.0299 (5)0.0014 (5)0.0177 (5)0.0015 (4)
O30.0519 (7)0.0244 (5)0.0410 (6)0.0034 (5)0.0206 (5)0.0070 (4)
O3W0.0656 (8)0.0230 (6)0.0317 (6)0.0114 (5)0.0054 (6)0.0001 (4)
O40.0349 (5)0.0378 (6)0.0470 (7)0.0080 (5)0.0216 (5)0.0181 (5)
N10.0396 (7)0.0303 (7)0.0425 (8)0.0008 (5)0.0223 (7)0.0016 (5)
N20.0311 (6)0.0278 (6)0.0303 (6)0.0003 (5)0.0121 (5)0.0022 (5)
C10.0600 (12)0.0448 (11)0.0648 (12)0.0045 (9)0.0380 (10)0.0088 (9)
C20.0752 (15)0.0628 (14)0.0839 (16)0.0239 (12)0.0573 (14)0.0053 (12)
C30.0444 (11)0.0698 (14)0.0799 (16)0.0211 (10)0.0403 (12)0.0285 (12)
C40.0306 (8)0.0519 (11)0.0512 (10)0.0054 (7)0.0182 (8)0.0233 (8)
C50.0272 (8)0.0749 (15)0.0629 (12)0.0076 (9)0.0076 (9)0.0273 (11)
C60.0416 (9)0.0677 (14)0.0484 (10)0.0247 (10)0.0015 (9)0.0075 (10)
C70.0443 (9)0.0438 (10)0.0339 (8)0.0147 (8)0.0041 (7)0.0006 (7)
C80.0755 (14)0.0480 (12)0.0442 (10)0.0217 (10)0.0114 (10)0.0191 (9)
C90.0798 (15)0.0431 (11)0.0507 (11)0.0004 (10)0.0276 (11)0.0178 (9)
C100.0481 (9)0.0356 (9)0.0394 (8)0.0042 (7)0.0186 (7)0.0049 (7)
C110.0291 (7)0.0323 (8)0.0364 (8)0.0009 (6)0.0137 (6)0.0103 (6)
C120.0313 (7)0.0298 (7)0.0283 (7)0.0041 (6)0.0078 (6)0.0036 (6)
Geometric parameters (Å, º) top
Mg1—O42.0333 (13)C1—C21.403 (3)
Mg1—O2W2.0423 (12)C1—H10.9300
Mg1—O3W2.0439 (13)C2—C31.350 (3)
Mg1—O1W2.0864 (12)C2—H20.9300
Mg1—N22.2096 (14)C3—C41.401 (3)
Mg1—N12.2335 (15)C3—H30.9300
S1—O11.4545 (12)C4—C111.411 (2)
S1—O41.4659 (11)C4—C51.427 (3)
S1—O31.4702 (11)C5—C61.339 (3)
S1—O21.4929 (12)C5—H50.9300
O1W—H1W10.864 (9)C6—C71.435 (3)
O1W—H1W20.859 (19)C6—H60.9300
O2W—H2W10.850 (9)C7—C81.397 (3)
O2W—H2W20.852 (9)C7—C121.407 (2)
O3W—H3W10.848 (9)C8—C91.361 (3)
O3W—H3W20.843 (9)C8—H80.9300
N1—C11.327 (2)C9—C101.397 (3)
N1—C111.354 (2)C9—H90.9300
N2—C101.321 (2)C10—H100.9300
N2—C121.3607 (19)C11—C121.437 (2)
O4—Mg1—O2W95.32 (5)N1—C1—C2122.7 (2)
O4—Mg1—O3W102.08 (6)N1—C1—H1118.7
O2W—Mg1—O3W85.12 (5)C2—C1—H1118.7
O4—Mg1—O1W88.53 (5)C3—C2—C1119.86 (19)
O2W—Mg1—O1W174.49 (5)C3—C2—H2120.1
O3W—Mg1—O1W90.23 (5)C1—C2—H2120.1
O4—Mg1—N290.46 (5)C2—C3—C4119.51 (17)
O2W—Mg1—N286.69 (5)C2—C3—H3120.2
O3W—Mg1—N2165.60 (6)C4—C3—H3120.2
O1W—Mg1—N297.24 (5)C3—C4—C11117.25 (18)
O4—Mg1—N1162.63 (6)C3—C4—C5123.33 (18)
O2W—Mg1—N192.99 (6)C11—C4—C5119.42 (19)
O3W—Mg1—N193.80 (6)C6—C5—C4121.16 (17)
O1W—Mg1—N184.35 (5)C6—C5—H5119.4
N2—Mg1—N174.81 (5)C4—C5—H5119.4
O1—S1—O4110.49 (8)C5—C6—C7121.38 (18)
O1—S1—O3110.20 (7)C5—C6—H6119.3
O4—S1—O3109.56 (7)C7—C6—H6119.3
O1—S1—O2109.44 (8)C8—C7—C12116.99 (17)
O4—S1—O2108.51 (6)C8—C7—C6124.00 (18)
O3—S1—O2108.60 (7)C12—C7—C6119.01 (18)
Mg1—O1W—H1W1119.2 (13)C9—C8—C7120.31 (17)
Mg1—O1W—H1W2105.4 (13)C9—C8—H8119.8
H1W1—O1W—H1W2106.0 (12)C7—C8—H8119.8
Mg1—O2W—H2W1126.3 (12)C8—C9—C10118.85 (18)
Mg1—O2W—H2W2123.7 (12)C8—C9—H9120.6
H2W1—O2W—H2W2108.3 (13)C10—C9—H9120.6
Mg1—O3W—H3W1119.9 (12)N2—C10—C9123.16 (17)
Mg1—O3W—H3W2124.3 (13)N2—C10—H10118.4
H3W1—O3W—H3W2110.3 (13)C9—C10—H10118.4
S1—O4—Mg1141.98 (7)N1—C11—C4123.02 (16)
C1—N1—C11117.67 (15)N1—C11—C12117.63 (13)
C1—N1—Mg1127.63 (13)C4—C11—C12119.34 (16)
C11—N1—Mg1114.61 (10)N2—C12—C7122.64 (15)
C10—N2—C12117.98 (14)N2—C12—C11117.74 (13)
C10—N2—Mg1126.81 (11)C7—C12—C11119.62 (15)
C12—N2—Mg1115.12 (10)
O1—S1—O4—Mg199.19 (14)C2—C3—C4—C5179.9 (2)
O3—S1—O4—Mg1139.21 (13)C3—C4—C5—C6179.20 (19)
O2—S1—O4—Mg120.79 (15)C11—C4—C5—C61.3 (3)
O2W—Mg1—O4—S1166.33 (13)C4—C5—C6—C70.1 (3)
O3W—Mg1—O4—S180.20 (14)C5—C6—C7—C8177.5 (2)
O1W—Mg1—O4—S19.73 (14)C5—C6—C7—C122.2 (3)
N2—Mg1—O4—S1106.96 (14)C12—C7—C8—C91.0 (3)
N1—Mg1—O4—S175.4 (2)C6—C7—C8—C9179.3 (2)
O4—Mg1—N1—C1146.11 (19)C7—C8—C9—C101.1 (3)
O2W—Mg1—N1—C195.33 (16)C12—N2—C10—C90.5 (2)
O3W—Mg1—N1—C110.02 (16)Mg1—N2—C10—C9176.88 (14)
O1W—Mg1—N1—C179.84 (16)C8—C9—C10—N21.4 (3)
N2—Mg1—N1—C1178.93 (17)C1—N1—C11—C40.5 (2)
O4—Mg1—N1—C1130.2 (2)Mg1—N1—C11—C4177.26 (12)
O2W—Mg1—N1—C1188.34 (11)C1—N1—C11—C12179.79 (16)
O3W—Mg1—N1—C11173.64 (11)Mg1—N1—C11—C123.49 (17)
O1W—Mg1—N1—C1196.50 (11)C3—C4—C11—N11.1 (2)
N2—Mg1—N1—C112.60 (10)C5—C4—C11—N1179.40 (15)
O4—Mg1—N2—C1014.19 (14)C3—C4—C11—C12179.68 (15)
O2W—Mg1—N2—C1081.12 (14)C5—C4—C11—C120.2 (2)
O3W—Mg1—N2—C10136.5 (2)C10—N2—C12—C72.7 (2)
O1W—Mg1—N2—C10102.77 (13)Mg1—N2—C12—C7179.56 (12)
N1—Mg1—N2—C10175.12 (14)C10—N2—C12—C11176.75 (14)
O4—Mg1—N2—C12169.30 (10)Mg1—N2—C12—C110.08 (17)
O2W—Mg1—N2—C1295.39 (11)C8—C7—C12—N23.0 (2)
O3W—Mg1—N2—C1240.0 (3)C6—C7—C12—N2177.28 (15)
O1W—Mg1—N2—C1280.72 (11)C8—C7—C12—C11176.47 (16)
N1—Mg1—N2—C121.39 (10)C6—C7—C12—C113.3 (2)
C11—N1—C1—C20.7 (3)N1—C11—C12—N22.3 (2)
Mg1—N1—C1—C2175.54 (16)C4—C11—C12—N2178.38 (14)
N1—C1—C2—C31.4 (3)N1—C11—C12—C7177.16 (14)
C1—C2—C3—C40.8 (3)C4—C11—C12—C72.1 (2)
C2—C3—C4—C110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O3i0.85 (1)1.89 (1)2.7170 (17)164 (2)
O3W—H3W1···O2ii0.85 (1)1.91 (1)2.7375 (17)166 (2)
O1W—H1W1···O1ii0.86 (1)1.86 (1)2.7235 (17)175 (2)
O2W—H2W2···O2iii0.85 (1)1.87 (1)2.7232 (17)175 (2)
O1W—H1W2···O20.86 (2)1.86 (2)2.7030 (17)166 (2)
O3W—H3W2···O3iii0.84 (1)1.97 (1)2.7961 (19)169 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mg(SO4)(C12H8N2)(H2O)3]
Mr354.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.968 (2), 10.025 (2), 13.798 (3)
β (°) 113.53 (3)
V3)1517.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.36 × 0.28 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.902, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
14532, 3454, 2941
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.07
No. of reflections3454
No. of parameters226
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O3i0.850 (9)1.891 (11)2.7170 (17)163.8 (16)
O3W—H3W1···O2ii0.848 (9)1.906 (10)2.7375 (17)166.2 (17)
O1W—H1W1···O1ii0.864 (9)1.862 (10)2.7235 (17)174.8 (17)
O2W—H2W2···O2iii0.852 (9)1.873 (10)2.7232 (17)175.4 (19)
O1W—H1W2···O20.859 (19)1.862 (19)2.7030 (17)166.0 (19)
O3W—H3W2···O3iii0.843 (9)1.965 (10)2.7961 (19)168.5 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Innovation Science Foundation of Harbin Medical University for financial support (grant No. 060041).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Wang, E.-B., Peng, J. & Huang, R.-D. (2003). Inorg. Chem. Commun. 6, 740–743.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, C., Yu, K., Wu, D. & Zhao, C. (1999). Acta Cryst. C55, 1815–1817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds