organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-2-methyl-1-(phenyl­sulfon­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 April 2008; accepted 24 April 2008; online 30 April 2008)

The title compound, C19H13BrO3S, was prepared by the oxidation of 7-bromo-2-methyl-1-(phenyl­sulfan­yl)naph­tho[2,1-b]furan with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 80.4 (2)° with the plane of the naphthofuran fragment. The crystal structure is stabilized by aromatic ππ stacking inter­actions between the brominated benzene ring and the central benzene ring of the naphthofuran system of neighbouring mol­ecules; the centroid–centroid distances within the stack are 3.889 (3) and 3.981 (3) Å. In addition, the stacked mol­ecules exhibit C—H⋯π, inter- and intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 7-bromo­naphtho[2,1-b]furan compounds, see: Choi et al. (2006[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5876-o5877.], 2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4102.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13BrO3S

  • Mr = 401.26

  • Triclinic, [P \overline 1]

  • a = 7.8583 (7) Å

  • b = 8.0025 (7) Å

  • c = 13.278 (1) Å

  • α = 107.429 (1)°

  • β = 93.678 (1)°

  • γ = 90.417 (2)°

  • V = 794.72 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.381, Tmax = 0.571

  • 6371 measured reflections

  • 3084 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.078

  • S = 1.17

  • 3084 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.95 2.85 3.764 (3) 161
C4—H4⋯O2 0.95 2.44 3.226 (3) 140
C16—H16⋯O3ii 0.95 2.56 3.257 (3) 130
C19—H19A⋯O3 0.98 2.28 2.926 (3) 122
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z. Cg1 is the centroid of the C13–C18 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 7-bromonaphtho[2,1-b]furan analogues, viz. 7-bromo-1-methylsulfanyl-2-phenylnaphtho[2,1-b]furan (Choi et al., 2006) and 7-bromo-2-methyl-1-(phenylsulfanyl)naphtho[2,1-b]furan (Choi et al., 2007). Herein we report the molecular and crystal structure of the title compound, 7-bromo-2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.012 Å from the least-squares plane defined by the thirteen constituent atoms. The phenyl ring (C13—C18) makes a dihedral angle of 80.4 (2)° with the plane of the naphthofuran fragment. The crystal packing (Fig. 2) is stabilized by two ππ stacking interactions within each stack of molecules; one between the brominated benzene ring (Cg2) and the central benzene ring (Cg3i) of an adjacent naphthofuran unit {distance; 3.981 (3) Å}, and a second between the brominated benzene ring (Cg2) and the central benzene ring (Cg3iii) of an adjacent naphthofuran unit {distance; 3.889 (3) Å} (Cg2 and Cg3 are the centroids of the C3—C8 benzene ring and the C2/C3/C8/C9/C10/C11 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a brominated benzene H atom and the phenyl ring of the phenylsulfonyl substituent, with a C7—H7···Cg1i separation of 2.85 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C13–18 phenyl ring; symmetry code as in Fig. 2). Additionally, inter- and intramolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 7-bromonaphtho[2,1-b]furan compounds, see: Choi et al. (2006, 2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 320 mg, 1.43 mmol) was added in small portions to a stirred solution of 7-bromo-2-methyl-1-(phenylsulfanyl)naphtho[2,1-b]furan (240 mg, 0.65 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2: 1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 483–484 K; Rf = 0.68 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.99 (s, 3H), 7.43–7.55 (m, 3H), 7.59–7.71 (m, 3H), 7.95 (d, J = 8.40 Hz, 2H), 8.03 (s, 1H), 8.89 (s, J = 9.16 Hz, 1H); EI—MS 402 [M+2], 400 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii)-x + 2,-y + 1,-z + 1.]
7-Bromo-2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan top
Crystal data top
C19H13BrO3SZ = 2
Mr = 401.26F(000) = 404
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -p 1Melting point = 483–484 K
a = 7.8583 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0025 (7) ÅCell parameters from 4679 reflections
c = 13.278 (1) Åθ = 2.6–28.2°
α = 107.429 (1)°µ = 2.73 mm1
β = 93.678 (1)°T = 173 K
γ = 90.417 (2)°Block, colorless
V = 794.72 (12) Å30.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.6°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 99
Tmin = 0.381, Tmax = 0.571l = 1616
6371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2317P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H13BrO3Sγ = 90.417 (2)°
Mr = 401.26V = 794.72 (12) Å3
Triclinic, P1Z = 2
a = 7.8583 (7) ÅMo Kα radiation
b = 8.0025 (7) ŵ = 2.73 mm1
c = 13.278 (1) ÅT = 173 K
α = 107.429 (1)°0.40 × 0.30 × 0.20 mm
β = 93.678 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2874 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.571Rint = 0.016
6371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.17Δρmax = 0.44 e Å3
3084 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.56455 (3)0.99911 (3)0.696889 (17)0.03340 (10)
S0.82852 (6)0.36218 (7)0.16782 (4)0.02320 (13)
O10.91789 (19)0.0602 (2)0.34760 (12)0.0280 (3)
O20.9034 (2)0.5362 (2)0.20422 (12)0.0303 (3)
O30.8886 (2)0.2407 (2)0.07411 (12)0.0330 (4)
C10.8504 (3)0.2648 (3)0.26930 (16)0.0228 (4)
C20.8191 (2)0.3362 (3)0.38127 (16)0.0216 (4)
C30.7591 (2)0.4950 (3)0.45075 (16)0.0212 (4)
C40.7119 (3)0.6446 (3)0.42140 (17)0.0248 (4)
H40.72010.64350.35010.030*
C50.6545 (3)0.7918 (3)0.49309 (17)0.0265 (4)
H50.62300.89110.47170.032*
C60.6432 (3)0.7931 (3)0.59824 (17)0.0245 (4)
C70.6885 (3)0.6539 (3)0.63190 (17)0.0256 (4)
H70.68040.65930.70390.031*
C80.7476 (3)0.5013 (3)0.55938 (16)0.0229 (4)
C90.7963 (3)0.3570 (3)0.59591 (17)0.0265 (4)
H90.78770.36540.66830.032*
C100.8549 (3)0.2078 (3)0.52932 (17)0.0269 (5)
H100.88830.11150.55330.032*
C110.8634 (3)0.2034 (3)0.42350 (17)0.0241 (4)
C120.9097 (3)0.0997 (3)0.25436 (18)0.0265 (4)
C130.6075 (3)0.3813 (3)0.14109 (15)0.0238 (4)
C140.5417 (3)0.5444 (3)0.14748 (17)0.0294 (5)
H140.61170.64750.17410.035*
C150.3714 (3)0.5544 (4)0.11432 (19)0.0372 (6)
H150.32460.66490.11780.045*
C160.2704 (3)0.4035 (4)0.07638 (19)0.0404 (6)
H160.15460.41080.05310.049*
C170.3368 (3)0.2418 (4)0.0720 (2)0.0395 (6)
H170.26570.13920.04730.047*
C180.5066 (3)0.2292 (3)0.10354 (17)0.0310 (5)
H180.55330.11830.09950.037*
C190.9685 (3)0.0435 (3)0.1644 (2)0.0379 (6)
H19A0.92150.02850.09750.057*
H19B0.92920.15680.16970.057*
H19C1.09330.03950.16650.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04740 (16)0.02425 (14)0.02669 (14)0.00861 (10)0.00501 (10)0.00413 (9)
S0.0219 (2)0.0270 (3)0.0203 (2)0.00089 (19)0.00223 (19)0.0063 (2)
O10.0319 (8)0.0226 (8)0.0282 (8)0.0070 (6)0.0002 (6)0.0061 (6)
O20.0302 (8)0.0308 (8)0.0310 (8)0.0054 (6)0.0006 (6)0.0116 (7)
O30.0325 (8)0.0402 (10)0.0247 (8)0.0068 (7)0.0088 (6)0.0058 (7)
C10.0225 (10)0.0231 (10)0.0213 (10)0.0004 (8)0.0009 (8)0.0052 (8)
C20.0205 (9)0.0222 (10)0.0218 (10)0.0009 (8)0.0013 (8)0.0065 (8)
C30.0191 (9)0.0224 (10)0.0218 (10)0.0016 (7)0.0017 (7)0.0067 (8)
C40.0300 (11)0.0240 (10)0.0215 (10)0.0013 (8)0.0002 (8)0.0086 (8)
C50.0331 (11)0.0215 (10)0.0254 (11)0.0017 (8)0.0008 (9)0.0083 (8)
C60.0278 (10)0.0207 (10)0.0227 (10)0.0015 (8)0.0013 (8)0.0031 (8)
C70.0297 (11)0.0265 (11)0.0208 (10)0.0003 (9)0.0024 (8)0.0070 (8)
C80.0231 (10)0.0233 (10)0.0225 (10)0.0010 (8)0.0007 (8)0.0075 (8)
C90.0291 (11)0.0290 (11)0.0239 (10)0.0002 (9)0.0005 (8)0.0119 (9)
C100.0285 (11)0.0255 (11)0.0298 (11)0.0030 (8)0.0018 (9)0.0140 (9)
C110.0231 (10)0.0202 (10)0.0269 (11)0.0016 (8)0.0017 (8)0.0047 (8)
C120.0239 (10)0.0276 (11)0.0262 (10)0.0025 (8)0.0014 (8)0.0059 (9)
C130.0236 (10)0.0322 (12)0.0162 (9)0.0012 (8)0.0026 (8)0.0080 (8)
C140.0333 (11)0.0326 (12)0.0209 (10)0.0051 (9)0.0016 (9)0.0060 (9)
C150.0355 (12)0.0495 (15)0.0257 (11)0.0166 (11)0.0050 (9)0.0091 (11)
C160.0230 (11)0.0736 (19)0.0263 (12)0.0053 (11)0.0022 (9)0.0172 (12)
C170.0310 (12)0.0577 (17)0.0314 (12)0.0138 (11)0.0041 (10)0.0174 (12)
C180.0332 (12)0.0355 (13)0.0261 (11)0.0044 (10)0.0010 (9)0.0128 (10)
C190.0454 (14)0.0306 (13)0.0327 (13)0.0122 (10)0.0012 (11)0.0022 (10)
Geometric parameters (Å, º) top
Br—C61.908 (2)C8—C91.425 (3)
S—O21.4378 (16)C9—C101.359 (3)
S—O31.4400 (16)C9—H90.9500
S—C11.748 (2)C10—C111.401 (3)
S—C131.767 (2)C10—H100.9500
O1—C121.364 (3)C12—C191.487 (3)
O1—C111.372 (3)C13—C141.388 (3)
C1—C121.366 (3)C13—C181.390 (3)
C1—C21.462 (3)C14—C151.392 (3)
C2—C111.379 (3)C14—H140.9500
C2—C31.432 (3)C15—C161.383 (4)
C3—C41.410 (3)C15—H150.9500
C3—C81.437 (3)C16—C171.385 (4)
C4—C51.375 (3)C16—H160.9500
C4—H40.9500C17—C181.386 (3)
C5—C61.402 (3)C17—H170.9500
C5—H50.9500C18—H180.9500
C6—C71.360 (3)C19—H19A0.9800
C7—C81.413 (3)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
O2—S—O3118.45 (10)C9—C10—C11116.5 (2)
O2—S—C1109.45 (10)C9—C10—H10121.8
O3—S—C1107.55 (10)C11—C10—H10121.8
O2—S—C13107.64 (10)O1—C11—C2111.29 (18)
O3—S—C13106.29 (10)O1—C11—C10122.57 (19)
C1—S—C13106.88 (10)C2—C11—C10126.1 (2)
C12—O1—C11107.28 (17)O1—C12—C1110.04 (19)
C12—C1—C2107.30 (19)O1—C12—C19113.40 (19)
C12—C1—S122.87 (17)C1—C12—C19136.5 (2)
C2—C1—S129.79 (16)C14—C13—C18121.4 (2)
C11—C2—C3118.02 (18)C14—C13—S119.76 (17)
C11—C2—C1104.08 (18)C18—C13—S118.51 (17)
C3—C2—C1137.90 (19)C13—C14—C15119.0 (2)
C4—C3—C2125.47 (19)C13—C14—H14120.5
C4—C3—C8117.87 (19)C15—C14—H14120.5
C2—C3—C8116.67 (19)C16—C15—C14120.0 (2)
C5—C4—C3121.8 (2)C16—C15—H15120.0
C5—C4—H4119.1C14—C15—H15120.0
C3—C4—H4119.1C15—C16—C17120.5 (2)
C4—C5—C6118.9 (2)C15—C16—H16119.7
C4—C5—H5120.5C17—C16—H16119.7
C6—C5—H5120.5C16—C17—C18120.3 (2)
C7—C6—C5122.2 (2)C16—C17—H17119.9
C7—C6—Br119.45 (16)C18—C17—H17119.9
C5—C6—Br118.36 (16)C17—C18—C13118.9 (2)
C6—C7—C8119.7 (2)C17—C18—H18120.6
C6—C7—H7120.1C13—C18—H18120.6
C8—C7—H7120.1C12—C19—H19A109.5
C7—C8—C9119.17 (19)C12—C19—H19B109.5
C7—C8—C3119.49 (19)H19A—C19—H19B109.5
C9—C8—C3121.34 (19)C12—C19—H19C109.5
C10—C9—C8121.4 (2)H19A—C19—H19C109.5
C10—C9—H9119.3H19B—C19—H19C109.5
C8—C9—H9119.3
O2—S—C1—C12131.89 (18)C8—C9—C10—C110.4 (3)
O3—S—C1—C122.0 (2)C12—O1—C11—C20.2 (2)
C13—S—C1—C12111.81 (19)C12—O1—C11—C10179.8 (2)
O2—S—C1—C245.6 (2)C3—C2—C11—O1179.89 (17)
O3—S—C1—C2175.49 (18)C1—C2—C11—O10.0 (2)
C13—S—C1—C270.7 (2)C3—C2—C11—C100.3 (3)
C12—C1—C2—C110.1 (2)C1—C2—C11—C10179.6 (2)
S—C1—C2—C11177.90 (16)C9—C10—C11—O1179.10 (19)
C12—C1—C2—C3180.0 (2)C9—C10—C11—C20.4 (3)
S—C1—C2—C32.2 (4)C11—O1—C12—C10.3 (2)
C11—C2—C3—C4178.60 (19)C11—O1—C12—C19178.94 (19)
C1—C2—C3—C41.5 (4)C2—C1—C12—O10.2 (2)
C11—C2—C3—C81.0 (3)S—C1—C12—O1178.21 (14)
C1—C2—C3—C8178.9 (2)C2—C1—C12—C19178.7 (3)
C2—C3—C4—C5179.6 (2)S—C1—C12—C190.7 (4)
C8—C3—C4—C50.8 (3)O2—S—C13—C145.9 (2)
C3—C4—C5—C60.2 (3)O3—S—C13—C14121.94 (17)
C4—C5—C6—C70.5 (3)C1—S—C13—C14123.41 (17)
C4—C5—C6—Br179.61 (16)O2—S—C13—C18179.40 (16)
C5—C6—C7—C80.6 (3)O3—S—C13—C1851.54 (19)
Br—C6—C7—C8179.70 (15)C1—S—C13—C1863.10 (19)
C6—C7—C8—C9179.35 (19)C18—C13—C14—C150.7 (3)
C6—C7—C8—C30.0 (3)S—C13—C14—C15172.57 (17)
C4—C3—C8—C70.7 (3)C13—C14—C15—C160.4 (3)
C2—C3—C8—C7179.67 (18)C14—C15—C16—C170.7 (4)
C4—C3—C8—C9178.63 (19)C15—C16—C17—C181.4 (4)
C2—C3—C8—C91.0 (3)C16—C17—C18—C131.1 (4)
C7—C8—C9—C10179.6 (2)C14—C13—C18—C170.0 (3)
C3—C8—C9—C100.3 (3)S—C13—C18—C17173.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.952.853.764 (3)161
C4—H4···O20.952.443.226 (3)140
C16—H16···O3ii0.952.563.257 (3)130
C19—H19A···O30.982.282.926 (3)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H13BrO3S
Mr401.26
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8583 (7), 8.0025 (7), 13.278 (1)
α, β, γ (°)107.429 (1), 93.678 (1), 90.417 (2)
V3)794.72 (12)
Z2
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.381, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
6371, 3084, 2874
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.078, 1.17
No. of reflections3084
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.952.853.764 (3)161.2
C4—H4···O20.952.443.226 (3)140.2
C16—H16···O3ii0.952.563.257 (3)130.3
C19—H19A···O30.982.282.926 (3)122.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5876–o5877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds