Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[*u*-bis(diphenylphosphino)methane- $\kappa^2 P: P'$]bis[(chlorodifluoroacetato- κO)silver(I)](Ag—Ag)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 27 March 2008; accepted 20 April 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.046; wR factor = 0.112; data-to-parameter ratio = 18.0.

The asymmetric unit of the title compound, $[Ag_2(C_2ClF_2O_2)_2]$ - $(C_{25}H_{22}P_2)_2$], consists of two half-molecules, each Ag^I ion lying on a center of symmetry. In each complete molecule, two bis(diphenylphosphino)methane ligands bridge two Ag^I ions, which are further coordinated by one chlorodifluoroacetate ligand, giving T-shaped geometries and short intramolecular Ag...Ag distances of 3.1078 (6) and 2.9950 (6) Å. In one molecule, the unique -CF₂Cl group is rotationally disordered over two sites with approximate occupancies of 0.53 and 0.47 for the major and minor components, respectively.

Related literature

The compound is isostructural with $[Ag(O_2CCF_3)(C_6H_5)_2]$ - $PCH_2P(C_6H_5)_2]_2$, see: Effendy *et al.* (2005). The report also provides background literature on complexes of bis(diphenylphosphino)methane with univalent coinage metals.

 $\gamma = 72.188 \ (1)^{\circ}$

Z = 2

V = 2551.1 (1) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

31942 measured reflections 11567 independent reflections

8338 reflections with $I > 2\sigma(I)$

 $\mu = 1.06 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.066$

Experimental

Crystal data

 $[Ag_2(C_2ClF_2O_2)_2(C_{25}H_{22}P_2)_2]$ $M_r = 1243.41$ Triclinic, $P\overline{1}$ a = 10.8127 (3) Å b = 14.4911 (3) Å c = 17.2340 (3) Å $\alpha = 83.040 (1)^{\circ}$ $\beta = 86.477(1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.648, T_{\max} = 0.857$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	54 restraints
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
11567 reflections	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
641 parameters	

Table 1 Selected geometric parameters (Å, °).

Ag1-O1	2.382 (3)	Ag2-O3	2.383 (3)
Ag1-P1	2.4194 (12)	Ag2-P3	2.430 (1)
Ag1-P2 ⁱ	2.419 (1)	Ag2–P4 ⁱⁱ	2.429 (1)
O1-Ag1-P1	100.92 (9)	O3-Ag2-P3	104.14 (8)
O1-Ag1-P2 ⁱ	103.78 (9)	O3-Ag2-P4 ⁱⁱ	101.43 (8)
$P1 - Ag1 - P2^{i}$	151.19 (4)	P3-Ag2-P4 ⁱⁱ	149.67 (4)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2610).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Effendy, Di Nocola, C., Nitiatmodjo, M., Pettinari, C., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 735-747.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m717 [doi:10.1107/S1600536808011033]

Bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$]bis[(chlorodifluoroacetato- κO)silver(I)](Ag—Ag)

Kong Mun Lo and Seik Weng Ng

S1. Comment

A recent report on complexes of bis(diphenylphosphino)methane with univalent coinage metals details the structure of the 1:1 adduct of the ligand with silver trifluoroacetate. The dinuclear molecule has the ligand binding to two carboxylate-bound silver atoms, who geometry is best described as being *T*-shaped (Effendy *et al.*, 2005). Replacing the trifluoroacetate ion by the chlorodifluoroacetate ion gives the isostructural title compound (I). There are two formula units in the unit cell (Figs. 1 and 2). One of the unique chlorodifluromethyl groups is ordered whereas the other is disordered.

S2. Experimental

Silver chlorodifluoroacetate was prepared *in situ* from silver oxide (1.20 g, 5 mmol) and chlorodifluoroacetic acid (0.65 g, 5 mmol) in acetone (50 ml). The reactants were heated until the silver oxide dissolved completely. To the brown solution was added bis(diphenylphosphino)methane (3.84 g, 10 mmol) dissolved in acetone (50 ml). The mixture was heated for 30 min; the colorless filtered solution yielded prism-shaped crystals in 60% yield.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

There is minor disorder in the chlorodifluoromethyl groups. For both the ordered and disordered groups, the C–Cl distances were restrained to within 0.01 Å of each other, as were the C–F distances. The Cl…F distances as well as the F…F distances were similarly restrained. The Cl1 atom is near the F1' atom, the Cl1' atom near the F1 atom and the F2 atom near the F2' atom; for these pairs, the temperature factors were restrained to be the same. The ansiotropic temperature factors of the Cl1, F1 and F2 atoms were restrained to be nearly isotropic.

The largest peak and deepest holes area in the vicinity of the diordered chlorodifluoromethyl group.

Figure 1

70% Probability thermal ellipsoid plot of one independent formula unit of (I). Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

Figure 2

70% Probability thermal ellipsoid plot of the ither independent formula unit of (I). Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$]bis[(chlorodifluoroacetato- κO)silver(I)](Ag—Ag)

Crystal data	
$[Ag_{2}(C_{2}ClF_{2}O_{2})_{2}(C_{25}H_{22}P_{2})_{2}]$ $M_{r} = 1243.41$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.8127 (3) Å b = 14.4911 (3) Å c = 17.2340 (3) Å a = 83.040 (1)° $\beta = 86.477$ (1)° $\gamma = 72.188$ (1)° V = 2551.1 (1) Å ³	Z = 2 F(000) = 1248 $D_x = 1.619 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4611 reflections $\theta = 2.3-25.1^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 100 K Block, colorless $0.30 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.648, T_{\max} = 0.857$

31942 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$
11567 independent reflections	$h = -14 \rightarrow 11$
8338 reflections with $I > 2\sigma(I)$	$k = -18 \rightarrow 18$
$R_{\rm int} = 0.066$	$l = -22 \rightarrow 22$
P . 4	
Refinement	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.1513P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.91$ e Å⁻³ $\Delta\rho_{min} = -1.05$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Agl	0.57141 (3)	0.89080 (2)	1.025045 (18)	0.01359 (9)	
Ag2	0.44457 (3)	0.57795 (2)	0.435262 (17)	0.01308 (9)	
P1	0.36794 (11)	0.90512 (8)	1.09660 (6)	0.0128 (2)	
P2	0.21898 (11)	1.08082 (8)	0.99185 (6)	0.0126 (2)	
P3	0.22156 (11)	0.57580 (8)	0.45928 (6)	0.0123 (2)	
P4	0.33747 (11)	0.49679 (8)	0.61526 (6)	0.0123 (2)	
C11	0.4662 (5)	0.6779 (3)	0.79374 (16)	0.0304 (8)	0.528 (4)
Cl1′	0.4581 (6)	0.5832 (3)	0.9291 (2)	0.0379 (9)	0.472 (4)
C12	0.57724 (14)	0.91381 (9)	0.36753 (7)	0.0349 (3)	
F1	0.4587 (11)	0.6087 (7)	0.9329 (5)	0.0379 (9)	0.528 (4)
F2	0.6495 (6)	0.5949 (9)	0.8867 (7)	0.057 (3)	0.528 (4)
F1′	0.4795 (11)	0.6915 (7)	0.8078 (4)	0.0304 (8)	0.47
F2′	0.6572 (6)	0.6182 (9)	0.8661 (8)	0.057 (3)	0.47
F3	0.3672 (3)	0.93038 (18)	0.44623 (16)	0.0303 (7)	
F4	0.5391 (3)	0.89416 (18)	0.51371 (14)	0.0281 (7)	
O1	0.6050 (3)	0.7406 (2)	0.97176 (19)	0.0252 (8)	
O2	0.4233 (3)	0.8250 (2)	0.90831 (18)	0.0250 (8)	
O3	0.4269 (3)	0.7468 (2)	0.40995 (17)	0.0194 (7)	
O4	0.5974 (3)	0.7093 (2)	0.48919 (17)	0.0210 (7)	
C1	0.5177 (5)	0.7528 (3)	0.9251 (3)	0.0177 (10)	
C2	0.5279 (4)	0.6620 (3)	0.8834 (2)	0.0320 (13)	
C3	0.3471 (4)	0.7884 (3)	1.1364 (2)	0.0134 (9)	
C4	0.3135 (5)	0.7311 (3)	1.0871 (2)	0.0182 (10)	
H4	0.2984	0.7544	1.0335	0.022*	
C5	0.3020 (5)	0.6412 (3)	1.1149 (3)	0.0203 (10)	
Н5	0.2785	0.6030	1.0807	0.024*	
C6	0.3245 (4)	0.6058 (3)	1.1930 (3)	0.0195 (10)	
Н6	0.3159	0.5438	1.2125	0.023*	
C7	0.3599 (4)	0.6621 (3)	1.2422 (3)	0.0192 (10)	
H7	0.3757	0.6381	1.2956	0.023*	

Refinement on F^2

 $wR(F^2) = 0.112$

11567 reflections

direct methods

641 parameters

54 restraints

S = 1.01

Least-squares matrix: full

Primary atom site location: structure-invariant

 $R[F^2 > 2\sigma(F^2)] = 0.045$

C8	0.3725 (4)	0.7528 (3)	1.2146 (2)	0.0176 (10)
H8	0.3981	0.7903	1.2486	0.021*
C9	0.3251 (4)	0.9819 (3)	1.1755 (2)	0.0151 (9)
C10	0.2197 (5)	0.9807 (3)	1.2262 (2)	0.0196 (10)
H10	0.1697	0.9385	1.2203	0.023*
C11	0.1883 (5)	1.0417 (3)	1.2856 (3)	0.0247 (11)
H11	0.1177	1.0401	1.3208	0.030*
C12	0.2601 (5)	1.1050 (3)	1.2934 (3)	0.0284 (12)
H12	0.2387	1.1464	1.3341	0.034*
C13	0.3617 (5)	1.1072 (3)	1.2422 (3)	0.0250 (11)
H13	0.4094	1.1515	1.2467	0.030*
C14	0.3950 (5)	1.0457 (3)	1.1842 (3)	0.0197 (10)
H14	0.4666	1.0470	1.1497	0.024*
C15	0.2313 (4)	0.9546 (3)	1.0303 (2)	0.0147 (9)
H15A	0.1496	0.9527	1.0588	0.018*
H15B	0.2440	0.9141	0.9865	0.018*
C16	0.0933(4)	1 1592 (3)	1,0494(2)	0.0161 (9)
C17	-0.0165(5)	1.1392(3) 1.1347(3)	1.0790(2)	0.0213(10)
H17	-0.0218	1 0712	1.0751	0.026*
C18	-0.1181(5)	1 2016 (4)	1 1138 (3)	0.0282(12)
H18	-0.1916	1.1837	1.1352	0.034*
C19	-0.1112(5)	1 2954 (4)	1 1172 (3)	0.0331(13)
H19	-0.1813	1 3419	1 1402	0.040*
C20	-0.0046(5)	1 3213 (4)	1.0877(3)	0.0312(13)
H20	-0.0015	1.3213 (1)	1.0901	0.037*
C21	0,1000 (5)	1.2531(3)	1.0541(3)	0.027(11)
H21	0 1749	1.2706	1.0347	0.031*
C22	0.1775 0.1465 (4)	1.0963 (3)	0.8966 (2)	0.0136 (9)
C23	0.0346(4)	1.0905(3) 1.1716(3)	0.0900(2) 0.8754(2)	0.0150(9)
H23	-0.0120	1 2131	0.9129	0.018*
C24	-0.0092(5)	1.1862 (3)	0.7991(2)	0.010
H24	-0.0854	1.1002 (3)	0.7847	0.023*
C25	0.0001	1.1261 (3)	0.7447(2)	0.029
H25	0.0284	1.1261 (5)	0.6927	0.0201 (10)
C26	0.1690 (5)	1.0508 (3)	0.0927 0.7656 (3)	0.021
H26	0.2148	1.0008 (3)	0.7279	0.0228 (11)
C27	0.2140 0.2132(5)	1.0358 (3)	0.7273 0.8403 (2)	0.027
H27	0.2896	0.9841	0.8540	0.021*
C28	0.2090	0.7659 (3)	0.0540	0.021
C20	0.3000(4) 0.4938(4)	0.7039(3) 0.8749(3)	0.4479(2)	0.0139(9)
C30	0.4958(4)	0.6749(3)	0.4722(2)	0.0130(10) 0.0147(9)
C31	0.0254 (1)	0.007(3)	0.4722(2) 0.4582(2)	0.0177(9)
H31	0.1230 (+)	0 7774	0.4273	0.0130 (9)
C32	0.0285 (5)	0.8645 (3)	0.4677 (2)	0.0186 (10)
UJ2 H32	0.0205 (5)	0.0043 (3)	0.4587	0.022*
C33	-0.0963 (5)	0.9477 (3)	0.4902 (3)	0.022
H33	-0.1615	0.0047 (3)	0.4963	0.0223 (11)
C34	-0 1273 (5)	0.7240	0.4903	0.027 0.0230(11)
UJT	0.12/3 (3)	0.7700 (3)	0.0000 (0)	0.0230 (11)

H34	-0.2133	0.7782	0.5191	0.028*
C35	-0.0303 (5)	0.6904 (3)	0.4948 (2)	0.0189 (10)
H35	-0.0507	0.6307	0.5043	0.023*
C36	0.1645 (4)	0.5244 (3)	0.3820 (2)	0.0129 (9)
C37	0.0671 (4)	0.5790 (3)	0.3314 (2)	0.0156 (9)
H37	0.0206	0.6443	0.3399	0.019*
C38	0.0372 (5)	0.5388 (4)	0.2684 (3)	0.0244 (11)
H38	-0.0290	0.5767	0.2337	0.029*
C39	0.1038 (5)	0.4439 (3)	0.2564 (3)	0.0231 (11)
H39	0.0833	0.4165	0.2133	0.028*
C40	0.1998 (5)	0.3883 (3)	0.3063 (3)	0.0231 (11)
H40	0.2447	0.3227	0.2981	0.028*
C41	0.2302 (5)	0.4287 (3)	0.3684 (3)	0.0199 (10)
H41	0.2972	0.3905	0.4024	0.024*
C42	0.2131 (4)	0.4938 (3)	0.5487 (2)	0.0137 (9)
H42A	0.1259	0.5155	0.5740	0.016*
H42B	0.2286	0.4266	0.5354	0.016*
C43	0.2848 (4)	0.6229 (3)	0.6363 (2)	0.0134 (9)
C44	0.1606 (5)	0.6641 (3)	0.6664 (2)	0.0200 (10)
H44	0.1048	0.6248	0.6792	0.024*
C45	0.1174 (5)	0.7612 (3)	0.6780 (3)	0.0274 (12)
H45	0.0329	0.7884	0.6995	0.033*
C46	0.1990 (6)	0.8198 (3)	0.6579 (3)	0.0313 (13)
H46	0.1688	0.8873	0.6644	0.038*
C47	0.3228 (6)	0.7794 (3)	0.6289 (3)	0.0306 (13)
H47	0.3781	0.8191	0.6159	0.037*
C48	0.3675 (5)	0.6805 (3)	0.6185 (3)	0.0219 (10)
H48	0.4536	0.6526	0.5994	0.026*
C49	0.3078 (4)	0.4276 (3)	0.7060 (2)	0.0132 (9)
C50	0.2893 (4)	0.3372 (3)	0.7047 (2)	0.0159 (9)
H50	0.2852	0.3139	0.6560	0.019*
C51	0.2767 (4)	0.2804 (3)	0.7737 (3)	0.0182 (10)
H51	0.2634	0.2189	0.7722	0.022*
C52	0.2837 (5)	0.3134 (3)	0.8447 (3)	0.0220 (10)
H52	0.2737	0.2750	0.8920	0.026*
C53	0.3050 (5)	0.4020 (3)	0.8470 (3)	0.0220 (10)
Н53	0.3121	0.4237	0.8959	0.026*
C54	0.3161 (5)	0.4597 (3)	0.7781 (2)	0.0175 (10)
H54	0.3295	0.5212	0.7800	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.01193 (18)	0.01480 (16)	0.01485 (16)	-0.00570 (13)	0.00048 (13)	-0.00078 (12)
Ag2	0.01034 (18)	0.01539 (16)	0.01353 (16)	-0.00444 (13)	0.00060 (13)	-0.00059 (12)
P1	0.0113 (6)	0.0147 (5)	0.0135 (5)	-0.0060 (5)	0.0002 (4)	-0.0003 (4)
P2	0.0111 (6)	0.0137 (5)	0.0135 (5)	-0.0050 (5)	0.0003 (4)	-0.0001 (4)
P3	0.0109 (6)	0.0130 (5)	0.0129 (5)	-0.0037 (5)	-0.0005 (4)	-0.0009 (4)

P4	0.0109 (6)	0.0134 (5)	0.0130 (5)	-0.0049 (4)	0.0006 (4)	-0.0003 (4)
Cl1	0.0465 (17)	0.0385 (15)	0.0165 (13)	-0.0238(11)	-0.0117 (11)	-0.0080 (11)
Cl1′	0.0584 (16)	0.025 (2)	0.0436 (13)	-0.0322(17)	0.0145 (11)	-0.0131 (13)
Cl2	0.0471 (9)	0.0215 (6)	0.0367 (7)	-0.0159 (6)	0.0141 (6)	0.0016 (5)
F1	0.0584 (16)	0.025 (2)	0.0436 (13)	-0.0322 (17)	0.0145 (11)	-0.0131 (13)
F2	0.038 (3)	0.042 (5)	0.091 (6)	0.000 (2)	0.001 (3)	-0.041 (4)
F1′	0.0465 (17)	0.0385 (15)	0.0165 (13)	-0.0238 (11)	-0.0117 (11)	-0.0080 (11)
F2′	0.038 (3)	0.042 (5)	0.091 (6)	0.000 (2)	0.001 (3)	-0.041 (4)
F3	0.0203 (17)	0.0193 (14)	0.0465 (18)	0.0022 (12)	-0.0024 (14)	-0.0060 (12)
F4	0.0327 (18)	0.0242 (14)	0.0307 (15)	-0.0107 (13)	-0.0047 (13)	-0.0084 (12)
01	0.020 (2)	0.0295 (18)	0.0294 (18)	-0.0095 (15)	-0.0020 (15)	-0.0104 (14)
O2	0.023 (2)	0.0186 (16)	0.0300 (18)	-0.0023 (15)	0.0043 (15)	-0.0004 (14)
O3	0.0178 (18)	0.0216 (16)	0.0220 (16)	-0.0112 (14)	-0.0002 (14)	-0.0012 (13)
O4	0.0201 (19)	0.0148 (15)	0.0239 (17)	-0.0009 (14)	-0.0021 (14)	0.0031 (13)
C1	0.021 (3)	0.017 (2)	0.019 (2)	-0.013 (2)	0.009 (2)	-0.0082 (18)
C2	0.023 (3)	0.033 (3)	0.044 (3)	-0.007 (2)	-0.001 (3)	-0.021 (2)
C3	0.007 (2)	0.016 (2)	0.017 (2)	-0.0036 (18)	-0.0012 (17)	-0.0001 (16)
C4	0.020 (3)	0.019 (2)	0.015 (2)	-0.006 (2)	-0.0015 (19)	0.0017 (17)
C5	0.022 (3)	0.017 (2)	0.022 (2)	-0.005 (2)	-0.002 (2)	-0.0024 (18)
C6	0.014 (3)	0.019 (2)	0.024 (2)	-0.0048 (19)	0.0042 (19)	0.0008 (18)
C7	0.016 (3)	0.021 (2)	0.019 (2)	-0.004 (2)	-0.0037 (19)	0.0054 (18)
C8	0.012 (2)	0.021 (2)	0.018 (2)	-0.0034 (19)	-0.0001 (18)	0.0004 (17)
C9	0.016 (2)	0.012 (2)	0.016 (2)	-0.0035 (18)	-0.0012 (18)	-0.0003 (16)
C10	0.015 (3)	0.020 (2)	0.021 (2)	-0.003 (2)	0.0019 (19)	-0.0012 (18)
C11	0.025 (3)	0.018 (2)	0.027 (3)	-0.002 (2)	0.009 (2)	0.0006 (19)
C12	0.039 (3)	0.021 (2)	0.024 (3)	-0.007 (2)	0.001 (2)	-0.008 (2)
C13	0.034 (3)	0.021 (2)	0.024 (2)	-0.015 (2)	0.001 (2)	-0.0048 (19)
C14	0.020 (3)	0.022 (2)	0.018 (2)	-0.008 (2)	-0.0010 (19)	-0.0002 (18)
C15	0.017 (2)	0.013 (2)	0.015 (2)	-0.0049 (18)	-0.0005 (18)	-0.0024 (16)
C16	0.014 (2)	0.024 (2)	0.011 (2)	-0.0063 (19)	0.0009 (18)	-0.0048 (17)
C17	0.021 (3)	0.026 (2)	0.018 (2)	-0.009 (2)	-0.004 (2)	0.0018 (18)
C18	0.016 (3)	0.044 (3)	0.024 (3)	-0.008 (2)	0.004 (2)	-0.007 (2)
C19	0.022 (3)	0.045 (3)	0.032 (3)	-0.003 (3)	0.004 (2)	-0.024 (2)
C20	0.019 (3)	0.029 (3)	0.045 (3)	0.000 (2)	-0.004 (2)	-0.020 (2)
C21	0.024 (3)	0.027 (3)	0.031 (3)	-0.012 (2)	0.001 (2)	-0.009 (2)
C22	0.016 (2)	0.014 (2)	0.013 (2)	-0.0093 (18)	0.0002 (18)	0.0012 (16)
C23	0.010 (2)	0.015 (2)	0.020 (2)	-0.0039 (18)	0.0005 (18)	0.0000 (17)
C24	0.014 (3)	0.023 (2)	0.022 (2)	-0.010 (2)	-0.0038 (19)	0.0060 (18)
C25	0.019 (3)	0.030 (3)	0.014 (2)	-0.012 (2)	-0.0054 (19)	0.0037 (18)
C26	0.028 (3)	0.025 (2)	0.019 (2)	-0.014 (2)	0.004 (2)	-0.0053 (19)
C27	0.016 (3)	0.017 (2)	0.021 (2)	-0.0079 (19)	-0.0008 (19)	0.0000 (17)
C28	0.015 (3)	0.012 (2)	0.021 (2)	-0.0068 (19)	0.0046 (19)	-0.0003 (17)
C29	0.016 (3)	0.015 (2)	0.024 (2)	-0.0062 (19)	-0.0003 (19)	-0.0011 (17)
C30	0.016 (2)	0.013 (2)	0.014 (2)	-0.0036 (18)	0.0009 (18)	-0.0013 (16)
C31	0.011 (2)	0.021 (2)	0.013 (2)	-0.0050 (19)	-0.0018 (17)	-0.0012 (17)
C32	0.020 (3)	0.012 (2)	0.020 (2)	0.0007 (19)	-0.004 (2)	-0.0034 (17)
C33	0.020 (3)	0.019 (2)	0.023 (2)	0.004 (2)	0.002 (2)	-0.0086 (19)
C34	0.013 (3)	0.031 (3)	0.023 (2)	-0.003 (2)	0.001 (2)	-0.006 (2)

C35	0.018 (3)	0.021 (2)	0.020 (2)	-0.009 (2)	0.0002 (19)	-0.0050 (18)
C36	0.013 (2)	0.015 (2)	0.014 (2)	-0.0087 (18)	0.0016 (17)	-0.0031 (16)
C37	0.013 (2)	0.017 (2)	0.015 (2)	-0.0030 (19)	0.0003 (18)	-0.0002 (17)
C38	0.019 (3)	0.038 (3)	0.016 (2)	-0.009 (2)	-0.001 (2)	0.001 (2)
C39	0.022 (3)	0.038 (3)	0.018 (2)	-0.021 (2)	0.002 (2)	-0.007 (2)
C40	0.030 (3)	0.019 (2)	0.027 (2)	-0.016 (2)	0.004 (2)	-0.0079 (19)
C41	0.023 (3)	0.018 (2)	0.018 (2)	-0.006 (2)	-0.002 (2)	0.0007 (17)
C42	0.015 (2)	0.014 (2)	0.013 (2)	-0.0052 (18)	-0.0007 (17)	-0.0006 (16)
C43	0.018 (3)	0.0097 (19)	0.013 (2)	-0.0049 (18)	-0.0027 (18)	-0.0007 (15)
C44	0.019 (3)	0.022 (2)	0.019 (2)	-0.007 (2)	0.0006 (19)	-0.0004 (18)
C45	0.026 (3)	0.025 (3)	0.028 (3)	-0.001 (2)	0.003 (2)	-0.010 (2)
C46	0.047 (4)	0.016 (2)	0.030 (3)	-0.007 (2)	0.000 (3)	-0.009 (2)
C47	0.050 (4)	0.025 (3)	0.026 (3)	-0.024 (3)	0.001 (3)	-0.005 (2)
C48	0.024 (3)	0.023 (2)	0.022 (2)	-0.012 (2)	0.002 (2)	-0.0037 (19)
C49	0.007 (2)	0.017 (2)	0.013 (2)	-0.0013 (18)	0.0032 (17)	0.0004 (16)
C50	0.011 (2)	0.019 (2)	0.018 (2)	-0.0071 (19)	0.0013 (18)	-0.0008 (17)
C51	0.011 (2)	0.014 (2)	0.026 (2)	-0.0019 (18)	0.0048 (19)	0.0013 (18)
C52	0.021 (3)	0.023 (2)	0.020 (2)	-0.006 (2)	-0.003 (2)	0.0061 (18)
C53	0.022 (3)	0.028 (3)	0.016 (2)	-0.008 (2)	-0.001 (2)	-0.0031 (19)
C54	0.020 (3)	0.014 (2)	0.018 (2)	-0.0048 (19)	0.0010 (19)	-0.0026 (17)

Geometric parameters (Å, °)

Ag1—O1	2.382 (3)	C18—H18	0.9500
Ag1—P1	2.4194 (12)	C19—C20	1.370 (7)
Ag1—P2 ⁱ	2.419(1)	C19—H19	0.9500
Ag1—Ag1 ⁱ	3.1078 (6)	C20—C21	1.402 (7)
Ag2—O3	2.383 (3)	С20—Н20	0.9500
Ag2—P3	2.430(1)	C21—H21	0.9500
Ag2—P4 ⁱⁱ	2.429 (1)	C22—C23	1.392 (6)
Ag2—Ag2 ⁱⁱ	2.9950 (6)	C22—C27	1.401 (6)
Р1—С9	1.810 (4)	C23—C24	1.395 (6)
P1—C3	1.821 (4)	С23—Н23	0.9500
P1—C15	1.834 (4)	C24—C25	1.376 (6)
P2-C16	1.813 (4)	C24—H24	0.9500
P2—C22	1.822 (4)	C25—C26	1.385 (6)
P2—C15	1.836 (4)	С25—Н25	0.9500
P2—Ag1 ⁱ	2.4188 (12)	C26—C27	1.370 (6)
P3—C30	1.816 (4)	С26—Н26	0.9500
P3—C36	1.825 (4)	С27—Н27	0.9500
P3—C42	1.843 (4)	C28—C29	1.539 (5)
P4—C43	1.816 (4)	C30—C35	1.387 (6)
P4—C49	1.818 (4)	C30—C31	1.397 (6)
P4—C42	1.834 (4)	C31—C32	1.395 (6)
P4—Ag2 ⁱⁱ	2.4291 (12)	C31—H31	0.9500
Cl1—C2	1.683 (5)	C32—C33	1.380 (7)
Cl1′—C2	1.652 (5)	С32—Н32	0.9500
Cl2—C29	1.737 (4)	C33—C34	1.387 (6)

F1—C2	1.413 (6)	С33—Н33	0.9500
F2—C2	1.375 (7)	C34—C35	1.395 (6)
F1′—C2	1.402 (6)	C34—H34	0.9500
F2′—C2	1.378 (7)	C35—H35	0.9500
F3—C29	1.360 (4)	C36—C37	1.390 (6)
F4-C29	1 354 (4)	C36-C41	1 392 (6)
01-C1	1.331(1) 1.235(5)	$C_{37} - C_{38}$	1 392 (6)
$0^{2}-0^{1}$	1.236(5)	C37—H37	0.9500
02 - 01	1.256(5) 1.254(5)	C_{38} C_{39}	1.378(7)
04 - C28	1.234(5) 1.240(5)	C38 H38	0.9500
C_{1} C_{28}	1.240(5) 1.547(6)	$C_{38} = 1138$	0.9500
$C_1 - C_2$	1.347(0) 1.202(6)	$C_{39} = C_{40}$	1.377(7)
C_{3}	1.392 (0)	С39—П39	0.9300
$C_3 = C_8$	1.397 (3)	C40 - C41	1.382 (0)
C4—C5	1.3/2 (6)	C40—H40	0.9500
C4—H4	0.9500	C41—H41	0.9500
C5—C6	1.388 (6)	C42—H42A	0.9900
С5—Н5	0.9500	C42—H42B	0.9900
C6—C7	1.389 (6)	C43—C44	1.388 (6)
С6—Н6	0.9500	C43—C48	1.397 (6)
C7—C8	1.386 (6)	C44—C45	1.376 (6)
С7—Н7	0.9500	C44—H44	0.9500
C8—H8	0.9500	C45—C46	1.402 (7)
C9—C14	1.386 (6)	C45—H45	0.9500
C9—C10	1.396 (6)	C46—C47	1.376 (8)
C10—C11	1.390 (6)	C46—H46	0.9500
C10—H10	0.9500	C47—C48	1.395 (6)
C11—C12	1.393 (7)	C47—H47	0.9500
C11—H11	0.9500	C48—H48	0.9500
C12—C13	1.373 (7)	C49—C50	1.387 (6)
C12—H12	0.9500	C49—C54	1.396 (6)
C13—C14	1.378 (6)	C50—C51	1.387 (6)
C13—H13	0.9500	C50—H50	0.9500
C14—H14	0.9500	C51—C52	1.380 (6)
С15—Н15А	0.9900	C51—H51	0.9500
C15—H15B	0.9900	C52—C53	1.378 (6)
C16-C17	1 390 (6)	C52—H52	0.9500
$C_{16}^{}C_{21}^{}$	1 397 (6)	C52 - C54	1 387 (6)
C_{17} C_{18}	1.397(0) 1 384(7)	C53—H53	0.9500
C17H17	0.9500	C54—H54	0.9500
C_{18} C_{19}	1.302(7)	034-1134	0.9500
010-017	1.392(7)		
O1 Ag1 $P1$	100.02(0)	C21 C20 H20	110.0
$\Omega_1 = \Lambda g_1 = \Gamma_1$	100.92 (9)	C_{21} C_{20} C_{16} C_{21} C_{20}	117.7
$D_1 = Ag_1 = D_2^{i}$	103.70(9)	$C_{10} - C_{21} - C_{20}$	119.4 (3)
$\Gamma I = AgI = \Gamma Z^{T}$	131.19(4)	$C10-C21-\Pi21$	120.5
O_1 Ag1 Ag1	150.10(8)	$C_{20} = C_{21} = H_{21}$	120.3
$r_2 - Ag_1 - Ag_1^{+}$	91.48 (3)	$C_{23} = C_{22} = C_{21}$	118.9 (4)
$r_1 - Ag_1 - Ag_1'$	80.72 (3)	C23-C22-P2	122.4 (3)
U3—Ag2—P3	104.14 (8)	C27—C22—P2	118.4 (3)

O3—Ag2—P4 ⁱⁱ	101.43 (8)	C22—C23—C24	120.1 (4)
P3—Ag2—P4 ⁱⁱ	149.67 (4)	С22—С23—Н23	120.0
O3—Ag2—Ag2 ⁱⁱ	134.22 (7)	C24—C23—H23	120.0
P4 ⁱⁱ —Ag2—Ag2 ⁱⁱ	78.04 (3)	C25—C24—C23	120.0 (4)
P3—Ag2—Ag2 ⁱⁱ	95.23 (3)	C25—C24—H24	120.0
C9—P1—C3	105.99 (19)	C23—C24—H24	120.0
C9—P1—C15	103.98 (19)	C24—C25—C26	120.1 (4)
C3—P1—C15	102.13 (19)	C24—C25—H25	119.9
C9—P1—Ag1	119.10 (15)	C26—C25—H25	119.9
C3—P1—Ag1	113.66 (15)	C27—C26—C25	120.4 (4)
C15—P1—Ag1	110.26 (15)	С27—С26—Н26	119.8
C16—P2—C22	103.7 (2)	С25—С26—Н26	119.8
C16—P2—C15	106.9 (2)	C26—C27—C22	120.5 (4)
C22—P2—C15	104.17 (18)	С26—С27—Н27	119.8
C16—P2—Ag1 ⁱ	118.83 (15)	С22—С27—Н27	119.8
$C22 - P2 - Ag1^i$	109.27 (15)	O4—C28—O3	129.2 (4)
$C15 - P2 - Ag1^i$	112.61 (15)	O4—C28—C29	115.7 (4)
C30—P3—C36	105.1 (2)	O3—C28—C29	115.0 (4)
C30—P3—C42	105.46 (19)	F4—C29—F3	104.5 (3)
C36—P3—C42	104.87 (18)	F4—C29—C28	111.2 (3)
C30—P3—Ag2	119.03 (15)	F3—C29—C28	111.3 (3)
C36—P3—Ag2	112.02 (15)	F4-C29-Cl2	108.8 (3)
C42 - P3 - Ag2	109.25 (15)	F3-C29-Cl2	109.3 (3)
C43 - P4 - C49	104.85 (19)	C_{28} C_{29} C_{12}	111.5 (3)
C43 - P4 - C42	102.48 (19)	C_{35} C_{30} C_{31}	119.7 (4)
C49—P4—C42	105.27 (19)	C35—C30—P3	121.1(3)
$C43 - P4 - Ag2^{ii}$	121.28 (15)	C31—C30—P3	119.3 (3)
$C49 - P4 - Ag2^{ii}$	109.90(14)	C_{32} C_{31} C_{30}	119.2 (4)
$C42 - P4 - Ag2^{ii}$	111 71 (14)	C_{32} C_{31} H_{31}	120.4
C1 - O1 - Ag1	107.5(3)	C_{30} C_{31} H_{31}	120.4
C_{28} C_{3} A_{92}	109.5(3)	C_{33} C_{32} C_{31}	120.7(4)
01-C1-02	130 1 (4)	C33—C32—H32	1197
01 - C1 - C2	1139(4)	C31—C32—H32	119.7
$0^{2}-C^{1}-C^{2}$	115.9 (4)	C_{32} C_{33} C_{34}	120 5 (4)
F2'-C2-F1'	100 4 (6)	C32—C33—H33	119.8
$F_2 = C_2 = F_1$	99 3 (6)	C34—C33—H33	119.8
$F_{2} = C_{2} = C_{1}$	1132(7)	C_{33} C_{34} C_{35}	119.1 (5)
$F_{2}' = C_{2} = C_{1}$	108.0(8)	C_{33} C_{34} H_{34}	120.5
$F_{12} = C_{2} = C_{1}$	109.5 (5)	C_{35} C_{34} H_{34}	120.5
$F_1 = C_2 = C_1$	105.0(5)	C_{30} C_{35} C_{34} C_{34}	120.9 (4)
$F_{2}'-C_{2}-C_{11}'$	111 8 (6)	C_{30} C_{35} H_{35}	119.6
F1' = C2 = C11'	109 7 (4)	C_{34} C_{35} H_{35}	119.6
C1 - C2 - C11'	116 3 (3)	C_{37} $-C_{36}$ $-C_{41}$	118.4 (4)
$F_2 = C_2 = C_{11}$	111.4 (6)	C37—C36—P3	123.0 (3)
$F_1 = C_2 = C_{11}$	106 8 (5)	C41 - C36 - P3	118 2 (3)
C1 - C2 - C11	118 8 (3)	C_{36} C_{37} C_{38}	120.2(3)
C4-C3-C8	119 5 (4)	C36—C37—H37	1197
C4—C3—P1	119.6 (3)	C38—C37—H37	119.7
		000 007 1107	**/*/

C8—C3—P1	120.8 (3)	C39—C38—C37	119.8 (4)
C5—C4—C3	120.8 (4)	С39—С38—Н38	120.1
C5—C4—H4	119.6	С37—С38—Н38	120.1
C3—C4—H4	119.6	C40—C39—C38	120.6 (4)
C4—C5—C6	120.3 (4)	С40—С39—Н39	119.7
С4—С5—Н5	119.9	С38—С39—Н39	119.7
C6—C5—H5	119.9	C39—C40—C41	119.6 (4)
C5—C6—C7	119.2 (4)	C39—C40—H40	120.2
C5—C6—H6	120.4	C41 - C40 - H40	120.2
C7—C6—H6	120.1	C40-C41-C36	120.2 121.2 (4)
C_{8} C_{7} C_{6}	121.1 (4)	C40-C41-H41	1104
C8-C7-H7	110 5	$C_{40} = C_{41} = H_{41}$	119.4
C_{6} C_{7} H_{7}	119.5	$P_{4} = C_{42} = P_{2}$	119.4
$C_0 - C_1 - H_1$	119.5	P4 = C42 = P3	106.4 (2)
C^{-}	119.1 (4)	$P_{4} = C_{42} = H_{42}A$	110.0
$C^{2} = C^{2} = H^{2}$	120.4	Р3—С42—П42А Р4 С42 Ц42Р	110.0
C3-C8-H8	120.4	P4—C42—H42B	110.0
C14 - C9 - C10	119.2 (4)	P3—C42—H42B	110.0
C14—C9—P1	119.6 (4)	H42A—C42—H42B	108.4
C10—C9—P1	121.2 (3)	C44—C43—C48	119.6 (4)
C11—C10—C9	119.7 (4)	C44—C43—P4	120.6 (3)
С11—С10—Н10	120.1	C48—C43—P4	119.7 (4)
C9—C10—H10	120.1	C45—C44—C43	120.8 (4)
C10—C11—C12	120.2 (5)	C45—C44—H44	119.6
C10-C11-H11	119.9	C43—C44—H44	119.6
C12—C11—H11	119.9	C44—C45—C46	119.6 (5)
C13—C12—C11	119.8 (4)	C44—C45—H45	120.2
C13—C12—H12	120.1	C46—C45—H45	120.2
C11—C12—H12	120.1	C47—C46—C45	119.9 (4)
C12—C13—C14	120.4 (5)	C47—C46—H46	120.0
C12—C13—H13	119.8	C45—C46—H46	120.0
C14—C13—H13	119.8	C46—C47—C48	120.5 (5)
C13—C14—C9	120.8 (5)	C46—C47—H47	119.8
C13—C14—H14	119.6	С48—С47—Н47	119.8
C9-C14-H14	119.6	C47—C48—C43	119.5 (5)
P1-C15-P2	110 3 (2)	C47—C48—H48	120.3
P1	109.6	C43 - C48 - H48	120.3
P2-C15-H15A	109.6	C_{50} C_{49} C_{54}	118 8 (4)
P1 C15 H15R	109.6	C_{50} C_{49} P_4	120.2(3)
$P_2 = C_{15} = H_{15}B$	109.0	$C_{50} - C_{49} - 14$	120.2(3)
H15A C15 H15B	109.0	$C_{51} = C_{49} = 14$	120.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1	$C_{51} = C_{50} = C_{49}$	120.7 (4)
C17 - C10 - C21	119.4(4)	$C_{31} = C_{30} = H_{50}$	119.7
C1/-C10-P2	122.7(3)	C49—C30—H30	119.7
$C_{1} = C_{10} = C_{12}$	11/.2 (4)	$C_{52} = C_{51} = C_{50}$	119.9 (4)
$C_{10} = C_{17} = U_{17}$	120.9 (5)	C52-C51-H51	120.0
C18—C17—H17	119.5	C50—C51—H51	120.0
C16—C17—H17	119.5	C53—C52—C51	120.1 (4)
C17—C18—C19	119.2 (5)	C53—C52—H52	120.0
C17—C18—H18	120.4	C51—C52—H52	120.0

C19—C18—H18	120.4	C52—C53—C54	120.2 (4)
C20-C19-C18	120.8 (5)	С52—С53—Н53	119.9
С20—С19—Н19	119.6	С54—С53—Н53	119.9
C18—C19—H19	119.6	C53—C54—C49	120.2 (4)
C19—C20—C21	120.2 (5)	С53—С54—Н54	119.9
C19—C20—H20	119.9	С49—С54—Н54	119.9
O1—Ag1—P1—C9	158.28 (17)	C19—C20—C21—C16	1.4 (7)
$P2^{i}$ —Ag1—P1—C9	9.62 (18)	C16—P2—C22—C23	14.1 (4)
Ag1 ⁱ —Ag1—P1—C9	-66.32 (15)	C15—P2—C22—C23	125.9 (4)
O1—Ag1—P1—C3	32.26 (17)	Ag1 ⁱ —P2—C22—C23	-113.5 (3)
P2 ⁱ —Ag1—P1—C3	-116.40 (16)	C16—P2—C22—C27	-172.3 (3)
Ag1 ⁱ —Ag1—P1—C3	167.66 (15)	C15—P2—C22—C27	-60.5 (4)
O1—Ag1—P1—C15	-81.72 (16)	Ag1 ⁱ —P2—C22—C27	60.0 (3)
P2 ⁱ —Ag1—P1—C15	129.63 (15)	C27—C22—C23—C24	-0.3 (6)
Ag1 ⁱ —Ag1—P1—C15	53.68 (14)	P2-C22-C23-C24	173.3 (3)
O3—Ag2—P3—C30	-11.10 (17)	C22—C23—C24—C25	0.1 (6)
P4 ⁱⁱ —Ag2—P3—C30	-157.73 (15)	C23—C24—C25—C26	0.3 (7)
Ag2 ⁱⁱ —Ag2—P3—C30	127.08 (15)	C24—C25—C26—C27	-0.5 (7)
O3—Ag2—P3—C36	112.04 (16)	C25—C26—C27—C22	0.3 (7)
P4 ⁱⁱ —Ag2—P3—C36	-34.59 (17)	C23—C22—C27—C26	0.1 (6)
Ag2 ⁱⁱ —Ag2—P3—C36	-109.78 (14)	P2-C22-C27-C26	-173.7 (3)
O3—Ag2—P3—C42	-132.21 (16)	Ag2-03-C28-04	11.0 (6)
P4 ⁱⁱ —Ag2—P3—C42	81.16 (16)	Ag2—O3—C28—C29	-172.5 (3)
Ag2 ⁱⁱ —Ag2—P3—C42	5.97 (14)	O4—C28—C29—F4	-29.1 (5)
P2 ⁱ —Ag1—O1—C1	-129.4 (3)	O3—C28—C29—F4	153.9 (4)
P1—Ag1—O1—C1	65.6 (3)	O4—C28—C29—F3	-145.2 (4)
Ag1 ⁱ —Ag1—O1—C1	-22.3 (4)	O3—C28—C29—F3	37.9 (5)
P4 ⁱⁱ —Ag2—O3—C28	-65.3 (3)	O4—C28—C29—Cl2	92.5 (4)
P3—Ag2—O3—C28	131.1 (3)	O3—C28—C29—Cl2	-84.4 (4)
Ag2 ⁱⁱ —Ag2—O3—C28	19.0 (3)	C36—P3—C30—C35	60.9 (4)
Ag1-01-C1-02	-3.4 (6)	C42—P3—C30—C35	-49.6 (4)
Ag1-01-C1-C2	178.4 (3)	Ag2—P3—C30—C35	-172.6 (3)
O1—C1—C2—F2	-18.6 (7)	C36—P3—C30—C31	-118.2 (3)
O2—C1—C2—F2	163.0 (6)	C42—P3—C30—C31	131.3 (3)
O1—C1—C2—F2′	-39.4 (7)	Ag2—P3—C30—C31	8.2 (4)
O2—C1—C2—F2′	142.2 (6)	C35—C30—C31—C32	0.5 (6)
O1—C1—C2—F1′	-147.8 (6)	P3-C30-C31-C32	179.7 (3)
O2—C1—C2—F1′	33.8 (7)	C30—C31—C32—C33	-0.5 (6)
O1—C1—C2—F1	88.6 (6)	C31—C32—C33—C34	0.2 (7)
O2—C1—C2—F1	-89.8 (6)	C32—C33—C34—C35	0.2 (7)
O1—C1—C2—Cl1′	87.2 (5)	C31—C30—C35—C34	-0.1 (6)
O2—C1—C2—Cl1′	-91.3 (5)	P3-C30-C35-C34	-179.2 (3)
O1—C1—C2—Cl1	-152.1 (4)	C33—C34—C35—C30	-0.3 (7)
O2—C1—C2—Cl1	29.5 (6)	C30—P3—C36—C37	17.4 (4)
C9—P1—C3—C4	150.5 (4)	C42—P3—C36—C37	128.4 (4)
C15—P1—C3—C4	41.9 (4)	Ag2—P3—C36—C37	-113.2 (4)
Ag1—P1—C3—C4	-76.9 (4)	C30—P3—C36—C41	-169.0 (3)

C9—P1—C3—C8	-33.6 (4)	C42—P3—C36—C41	-58.0 (4)
C15—P1—C3—C8	-142.2 (4)	Ag2—P3—C36—C41	60.3 (4)
Ag1—P1—C3—C8	99.1 (4)	C41—C36—C37—C38	-0.5 (7)
C8—C3—C4—C5	1.6 (7)	P3-C36-C37-C38	173.0 (4)
P1-C3-C4-C5	177.5 (4)	C36—C37—C38—C39	0.6 (7)
C3—C4—C5—C6	-0.3 (7)	C37—C38—C39—C40	0.1 (7)
C4—C5—C6—C7	-0.6 (7)	C38—C39—C40—C41	-0.7 (7)
C5—C6—C7—C8	0.2 (7)	C39—C40—C41—C36	0.7 (7)
C6—C7—C8—C3	1.0 (7)	C37—C36—C41—C40	-0.1 (7)
C4—C3—C8—C7	-1.9 (7)	P3-C36-C41-C40	-174.0 (4)
P1-C3-C8-C7	-177.8 (3)	C43—P4—C42—P3	63.2 (3)
C3—P1—C9—C14	142.2 (3)	C49—P4—C42—P3	172.6 (2)
C15—P1—C9—C14	-110.6 (4)	Ag2 ⁱⁱ —P4—C42—P3	-68.2 (2)
Ag1—P1—C9—C14	12.6 (4)	C30—P3—C42—P4	-97.8 (2)
C3—P1—C9—C10	-40.2 (4)	C36—P3—C42—P4	151.5 (2)
C15—P1—C9—C10	67.0 (4)	Ag2—P3—C42—P4	31.2 (2)
Ag1—P1—C9—C10	-169.8 (3)	C49—P4—C43—C44	-54.0 (4)
C14—C9—C10—C11	-1.5 (6)	C42—P4—C43—C44	55.8 (4)
P1-C9-C10-C11	-179.1 (3)	Ag2 ⁱⁱ —P4—C43—C44	-178.9 (3)
C9-C10-C11-C12	1.3 (7)	C49—P4—C43—C48	129.3 (3)
C10-C11-C12-C13	0.2 (7)	C42—P4—C43—C48	-121.0 (3)
C11—C12—C13—C14	-1.5 (7)	Ag2 ⁱⁱ —P4—C43—C48	4.3 (4)
C12—C13—C14—C9	1.3 (7)	C48—C43—C44—C45	0.8 (6)
C10-C9-C14-C13	0.2 (6)	P4—C43—C44—C45	-176.0 (3)
P1-C9-C14-C13	177.9 (3)	C43—C44—C45—C46	1.1 (7)
C9—P1—C15—P2	62.7 (3)	C44—C45—C46—C47	-1.9 (7)
C3—P1—C15—P2	172.8 (2)	C45—C46—C47—C48	0.7 (7)
Ag1—P1—C15—P2	-66.1 (2)	C46—C47—C48—C43	1.2 (7)
C16—P2—C15—P1	-99.2 (2)	C44—C43—C48—C47	-2.0 (6)
C22—P2—C15—P1	151.4 (2)	P4—C43—C48—C47	174.8 (3)
Ag1 ⁱ —P2—C15—P1	33.1 (2)	C43—P4—C49—C50	155.4 (4)
C22—P2—C16—C17	75.3 (4)	C42—P4—C49—C50	47.7 (4)
C15—P2—C16—C17	-34.4 (4)	Ag2 ⁱⁱ —P4—C49—C50	-72.7 (4)
Ag1 ⁱ —P2—C16—C17	-163.2 (3)	C43—P4—C49—C54	-31.0 (4)
C22—P2—C16—C21	-95.5 (4)	C42—P4—C49—C54	-138.7 (4)
C15—P2—C16—C21	154.8 (3)	Ag2 ⁱⁱ —P4—C49—C54	100.9 (3)
Ag1 ⁱ —P2—C16—C21	26.0 (4)	C54—C49—C50—C51	1.2 (7)
C21—C16—C17—C18	-0.9 (7)	P4-C49-C50-C51	174.9 (3)
P2-C16-C17-C18	-171.5 (3)	C49—C50—C51—C52	-0.5 (7)
C16—C17—C18—C19	1.8 (7)	C50—C51—C52—C53	-1.0(7)
C17—C18—C19—C20	-1.1 (7)	C51—C52—C53—C54	1.7 (7)
C18—C19—C20—C21	-0.5 (8)	C52—C53—C54—C49	-1.0 (7)
C17—C16—C21—C20	-0.7 (7)	C50—C49—C54—C53	-0.5 (7)
P2-C16-C21-C20	170.4 (4)	P4—C49—C54—C53	-174.1 (4)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.