organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(5-Amino-3-methyl-1-phenyl-1Hpyrazol-4-yl)(4-chlorophenyl)methyl]malononitrile

Xin-Ying Zhang,* Xiao-Yan Li, Xia Wang, Dong-Fang Li and Xue-Sen Fan*

School of Chemical and Environmental Sciences, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China

Correspondence e-mail: xyzh518@sohu.com, xuesen.fan@sohu.com

Received 17 April 2008; accepted 22 April 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.041; wR factor = 0.119; data-to-parameter ratio = 19.7.

In the crystal structure of the title compound, $C_{20}H_{16}ClN_5$, the dihedral angle between the pyrazole ring and the phenyl ring is 54.7 $(1)^{\circ}$ and that between the pyrazole ring and the chlorosubstituted phenyl ring is $72.4 (1)^{\circ}$. The methyl H atoms are disordered over two positions with site occupancy factors of ca 0.7 and 0.3. One amino H is disordered equally over two positions. In the crystal structure, the molecules are linked via intermolecular N-H···N hydrogen bonding.

Experimental

Crystal data

C20H16CIN5 V = 3737.3 (7) Å³ $M_r = 361.83$ Z = 8Orthorhombic, Pbca Mo $K\alpha$ radiation a = 10.4700 (11) Å $\mu = 0.22 \text{ mm}^{-1}$ b = 14.0482 (15) Å T = 294 (2) K c = 25.409 (3) Å $0.49 \times 0.48 \times 0.45 \text{ mm}$

Data collection

Bruker SMART CCD area-detector 32456 measured reflections diffractometer 4661 independent reflections Absorption correction: multi-scan 3055 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 1997) $R_{\rm int} = 0.033$ $T_{\min} = 0.901, \ T_{\max} = 0.908$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	237 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
4661 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

H	lyd	rogen-	bond	geometry	(A	٩, ١	°)	1.
---	-----	--------	------	----------	----	------	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H1N3\cdots N4^{i}$	0.86	2.41	3.159 (2)	146
$N3 - H2N3 \cdot \cdot \cdot N2^{ii}$	0.86	2.53	3.325 (2)	155

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x + \frac{1}{2}$, y, $-z + \frac{3}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20772025), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006) and the Department of Education of Henan Province (No. 2008 A150013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2101).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o908 [doi:10.1107/S1600536808011562]

2-[(5-Amino-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)(4-chlorophenyl)methyl]malononitrile

Xin-Ying Zhang, Xiao-Yan Li, Xia Wang, Dong-Fang Li and Xue-Sen Fan

S1. Comment

The structure determination was undertaken as a part of a project on the synthesis of new pyrazole derivatives. In the title compound the dihedral angle between the pyrazole ring and the non-substituted phenyl ring which is directly connected to the pyrazole ring is 54.7 (1)° and that between the pyrazole ring and the chloro-substituted phenyl ring is 72.4 (1)°. The dihedral angle between the non-substituted and the chloro-substituted phenyl ring amount to 69.7 (1)° (Fig. 1).

In the crystal structure the molecules are connected via intermolecular N—H…N hydrogen bonding between the amino group at N3 and the N atoms N2 and N4 (Fig. 2 and Table 1).

S2. Experimental

To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF₄]), 4-chloroaldehyde (1 mmol), malononitrile (1 mmol) and 5-amino-3-methyl-1-phenylpyrazole (1 mmol) were added. The reaction mixture was stirred at room temperature for 4 h and afterwards extracted five times with 2 ml of diethylether. The ether extracts were combined and concentrated. The obtained residue was recrystallized with 95% ethanol to give the product in a yield of 95% as white solid. Single crystals of the title compound were obtained by slow evaporation of the solvent from a petroleum ether-ethyl ether (1:1 ν/ν) solution.

S3. Refinement

All H atoms were placed in geometrically idealized positions (methyl H atoms are disordered in two orientations) and constrained to ride on their parent atoms, with C—H distances of 0.93 - 0.98 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for methyl H atoms). The N-H H atoms were located in difference map, their bond lengths were set to ideal values and afterwards they were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. One of the N-H H atoms is disordered and was refined using a split model.

Figure 1

Molecular structure of the title compound, with labelling displacement ellipsoids drawn at the 30% probability level. The disordering of the H atoms is not shown for clarity.

Figure 2

Crystal structure of the title compound with view along the a-axis. Intermolecular N—H…N hydrogen bonding is shown as dashed lines and the disordering of the H atoms is not shown for clarity.

2-[(5-Amino-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)(4- chlorophenyl)methyl]malononitrile

Crystal data	
$C_{20}H_{16}ClN_5$	$D_{\rm x} = 1.286 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 361.83$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, Pbca	Cell parameters from 8329 reflections
a = 10.4700 (11) Å	$\theta = 2.5 - 25.8^{\circ}$
b = 14.0482 (15) Å	$\mu=0.22~\mathrm{mm^{-1}}$
c = 25.409 (3) Å	T = 294 K
V = 3737.3 (7) Å ³	Block, colourless
Z = 8	$0.49 \times 0.48 \times 0.45 \text{ mm}$
F(000) = 1504	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1997) $T_{\min} = 0.901, T_{\max} = 0.909$ <i>Refinement</i>	32456 measured reflections 4661 independent reflections 3055 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -14 \rightarrow 13$ $k = -18 \rightarrow 18$ $l = -33 \rightarrow 33$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.118$ S = 1.03 4661 reflections 237 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 1.3457P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0012 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.34596 (7)	1.04230 (4)	0.53076 (2)	0.0837 (2)	
N1	0.27144 (14)	0.71251 (10)	0.78626 (5)	0.0509 (4)	
N2	0.17726 (15)	0.64522 (12)	0.77803 (6)	0.0605 (4)	
N3	0.43568 (16)	0.79533 (11)	0.74011 (5)	0.0623 (4)	
N4	0.4155 (2)	0.44105 (12)	0.68772 (7)	0.0751 (5)	
N5	0.52582 (19)	0.58634 (13)	0.54493 (7)	0.0748 (5)	
C1	0.18531 (16)	0.62494 (13)	0.72710 (6)	0.0512 (4)	
C2	0.28333 (15)	0.67629 (11)	0.70228 (5)	0.0414 (3)	
C3	0.33723 (15)	0.73171 (11)	0.74145 (6)	0.0429 (4)	
C4	0.0940 (2)	0.55545 (17)	0.70288 (8)	0.0772 (7)	

H4A	0.0613	0.5811	0.6706	0.116*	0.73
H4B	0.0245	0.5440	0.7267	0.116*	0.73
H4C	0.1376	0.4967	0.6958	0.116*	0.73
H4D	0.0876	0.5001	0.7249	0.116*	0.27
H4E	0.1244	0.5372	0.6687	0.116*	0.27
H4F	0.0114	0.5845	0.6996	0.116*	0.27
C5	0.29537 (17)	0.74496 (15)	0.83845 (6)	0.0579 (5)	
C6	0.2963 (2)	0.84064 (18)	0.84956 (9)	0.0847 (7)	
H6	0.2812	0.8854	0.8233	0.102*	
C7	0.3206 (3)	0.8691 (3)	0.90156 (14)	0.1220 (14)	
H7	0.3232	0.9335	0.9099	0.146*	
C8	0.3407 (3)	0.8023 (4)	0.94005 (12)	0.1401 (18)	
H8	0.3567	0.8218	0.9744	0.168*	
C9	0.3375 (3)	0.7080 (3)	0.92837 (10)	0.1239 (13)	
Н9	0.3504	0.6632	0.9548	0.149*	
C10	0.3151 (2)	0.6782 (2)	0.87746 (8)	0.0846 (7)	
H10	0.3133	0.6136	0.8695	0.102*	
C11	0.33508 (15)	0.76013 (11)	0.61584 (5)	0.0415 (3)	
C12	0.22572 (17)	0.79784 (13)	0.59298 (6)	0.0516 (4)	
H12	0.1491	0.7647	0.5956	0.062*	
C13	0.2283 (2)	0.88387 (14)	0.56630 (6)	0.0588 (5)	
H13	0.1545	0.9082	0.5510	0.071*	
C14	0.3417 (2)	0.93244 (12)	0.56298 (6)	0.0550 (5)	
C15	0.45228 (19)	0.89664 (13)	0.58425 (7)	0.0569 (5)	
H15	0.5287	0.9299	0.5811	0.068*	
C16	0.44836 (17)	0.81010 (12)	0.61058 (6)	0.0510 (4)	
H16	0.5230	0.7853	0.6249	0.061*	
C17	0.32395 (14)	0.66623 (11)	0.64546 (5)	0.0401 (3)	
H17	0.2568	0.6296	0.6278	0.048*	
C18	0.44800 (16)	0.60557 (11)	0.64192 (6)	0.0444 (4)	
H18	0.5153	0.6391	0.6613	0.053*	
C19	0.42937 (18)	0.51193 (13)	0.66700 (6)	0.0525 (4)	
C20	0.49158 (17)	0.59315 (12)	0.58707 (7)	0.0511 (4)	
H1N3	0.4639	0.8173	0.7695	0.061*	
H2N3	0.5027	0.7693	0.7270	0.061*	0.50
H3N3	0.4647	0.8134	0.7101	0.061*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1235 (5)	0.0600 (3)	0.0677 (3)	0.0238 (3)	0.0273 (3)	0.0234 (2)
N1	0.0586 (9)	0.0588 (8)	0.0354 (7)	-0.0138 (7)	0.0064 (6)	-0.0075 (6)
N2	0.0636 (9)	0.0760 (11)	0.0418 (8)	-0.0252 (8)	0.0098 (7)	-0.0067 (7)
N3	0.0761 (11)	0.0659 (9)	0.0448 (8)	-0.0308 (8)	0.0096 (7)	-0.0120 (7)
N4	0.1013 (14)	0.0569 (10)	0.0669 (11)	0.0076 (9)	-0.0131 (10)	0.0121 (8)
N5	0.0918 (13)	0.0807 (12)	0.0518 (9)	0.0059 (10)	0.0158 (9)	-0.0074 (8)
C1	0.0543 (10)	0.0587 (10)	0.0405 (8)	-0.0137 (8)	0.0015 (7)	-0.0033 (7)
C2	0.0474 (8)	0.0430 (8)	0.0338 (7)	-0.0020(7)	0.0003 (6)	-0.0009 (6)

C3	0.0505 (9)	0.0416 (8)	0.0365 (7)	-0.0045 (7)	0.0040 (6)	-0.0021 (6)
C4	0.0765 (14)	0.0976 (16)	0.0575 (11)	-0.0416 (12)	0.0044 (10)	-0.0101 (11)
C5	0.0542 (10)	0.0810 (13)	0.0384 (8)	-0.0124 (9)	0.0110 (7)	-0.0155 (8)
C6	0.0862 (16)	0.0897 (16)	0.0782 (14)	-0.0306 (13)	0.0300 (12)	-0.0365 (12)
C7	0.102 (2)	0.157 (3)	0.107 (2)	-0.063 (2)	0.0500 (18)	-0.088(2)
C8	0.091 (2)	0.268 (5)	0.0613 (17)	-0.046 (3)	0.0176 (15)	-0.071 (3)
C9	0.112 (2)	0.220 (4)	0.0398 (12)	0.002 (3)	0.0031 (13)	-0.0061 (18)
C10	0.0911 (17)	0.120 (2)	0.0427 (10)	0.0025 (15)	0.0073 (10)	-0.0001 (12)
C11	0.0507 (9)	0.0458 (8)	0.0281 (7)	0.0033 (7)	0.0007 (6)	-0.0010 (6)
C12	0.0513 (10)	0.0586 (10)	0.0449 (9)	0.0051 (8)	-0.0033 (7)	0.0022 (7)
C13	0.0670 (12)	0.0632 (11)	0.0461 (9)	0.0200 (10)	-0.0025 (8)	0.0052 (8)
C14	0.0803 (13)	0.0494 (9)	0.0353 (8)	0.0139 (9)	0.0115 (8)	0.0056 (7)
C15	0.0649 (11)	0.0555 (10)	0.0503 (10)	-0.0040 (9)	0.0091 (8)	0.0076 (8)
C16	0.0514 (10)	0.0555 (10)	0.0462 (9)	0.0005 (8)	-0.0012 (7)	0.0083 (7)
C17	0.0450 (8)	0.0438 (8)	0.0315 (7)	-0.0024 (7)	-0.0039 (6)	-0.0020 (6)
C18	0.0516 (9)	0.0471 (9)	0.0345 (7)	0.0018 (7)	-0.0056 (6)	-0.0022 (6)
C19	0.0623 (11)	0.0530 (10)	0.0421 (8)	0.0088 (8)	-0.0079 (8)	-0.0005 (7)
C20	0.0560 (10)	0.0515 (10)	0.0457 (9)	0.0062 (8)	0.0001 (8)	-0.0027 (7)

Geometric parameters (Å, °)

Cl1—C14	1.7477 (17)	С6—Н6	0.9300
N1—C3	1.3577 (19)	С7—С8	1.371 (5)
N1—N2	1.3819 (19)	С7—Н7	0.9300
N1-C5	1.424 (2)	C8—C9	1.359 (5)
N2—C1	1.328 (2)	C8—H8	0.9300
N3—C3	1.365 (2)	C9—C10	1.379 (3)
N3—H1N3	0.8602	С9—Н9	0.9300
N3—H2N3	0.8587	C10—H10	0.9300
N3—H3N3	0.8595	C11—C16	1.385 (2)
N4—C19	1.136 (2)	C11—C12	1.389 (2)
N5-C20	1.133 (2)	C11—C17	1.523 (2)
C1—C2	1.404 (2)	C12—C13	1.386 (2)
C1—C4	1.499 (2)	C12—H12	0.9300
С2—С3	1.384 (2)	C13—C14	1.372 (3)
C2—C17	1.5117 (19)	C13—H13	0.9300
C4—H4A	0.9600	C14—C15	1.373 (3)
C4—H4B	0.9600	C15—C16	1.388 (2)
C4—H4C	0.9600	C15—H15	0.9300
C4—H4D	0.9600	C16—H16	0.9300
C4—H4E	0.9600	C17—C18	1.556 (2)
C4—H4F	0.9600	C17—H17	0.9800
C5—C6	1.373 (3)	C18—C19	1.475 (2)
C5—C10	1.380 (3)	C18—C20	1.477 (2)
C6—C7	1.404 (4)	C18—H18	0.9800
C3—N1—N2	111.78 (12)	С7—С6—Н6	120.9
C3—N1—C5	128.89 (14)	C8—C7—C6	120.3 (3)

N2—N1—C5	119.03 (13)	С8—С7—Н7	119.8
C1—N2—N1	104.41 (13)	С6—С7—Н7	119.8
C3—N3—H1N3	118.2	C9—C8—C7	120.5 (3)
C3—N3—H2N3	110.3	С9—С8—Н8	119.8
H1N3—N3—H2N3	102.1	С7—С8—Н8	119.8
C3—N3—H3N3	118.9	C8—C9—C10	120.3 (3)
H1N3—N3—H3N3	122.9	С8—С9—Н9	119.8
H2N3—N3—H3N3	59.4	С10—С9—Н9	119.8
N2—C1—C2	111.96 (14)	C9—C10—C5	119.6 (3)
N2—C1—C4	119.96 (16)	С9—С10—Н10	120.2
C2—C1—C4	128.07 (15)	С5—С10—Н10	120.2
C3—C2—C1	105.31 (13)	C16—C11—C12	118.19 (15)
C3—C2—C17	128.66 (14)	C16—C11—C17	123.53 (14)
C1—C2—C17	125.92 (14)	C12—C11—C17	118.29 (14)
N1—C3—N3	122.28 (14)	C13—C12—C11	121.41 (17)
N1—C3—C2	106.52 (13)	C13—C12—H12	119.3
N3—C3—C2	131.19 (14)	C11—C12—H12	119.3
C1—C4—H4A	109.5	C14—C13—C12	118.72 (17)
C1—C4—H4B	109.5	C14—C13—H13	120.6
H4A—C4—H4B	109.5	C12—C13—H13	120.6
C1—C4—H4C	109.5	C13—C14—C15	121.56 (16)
H4A—C4—H4C	109.5	C13—C14—Cl1	119.35 (15)
H4B—C4—H4C	109.5	C15—C14—Cl1	119.09 (16)
C1—C4—H4D	109.5	C14—C15—C16	119.04 (18)
H4A—C4—H4D	141.1	C14—C15—H15	120.5
H4B—C4—H4D	56.3	C16—C15—H15	120.5
H4C—C4—H4D	56.3	C11—C16—C15	121.05 (16)
C1—C4—H4E	109.5	C11—C16—H16	119.5
H4A—C4—H4E	56.3	C15—C16—H16	119.5
H4B—C4—H4E	141.1	C2-C17-C11	114.36 (12)
H4C—C4—H4E	56.3	C2-C17-C18	109.95 (12)
H4D—C4—H4E	109.5	C11—C17—C18	112.45 (12)
C1—C4—H4F	109.5	С2—С17—Н17	106.5
H4A—C4—H4F	56.3	C11—C17—H17	106.5
H4B—C4—H4F	56.3	C18—C17—H17	106.5
H4C—C4—H4F	141.1	C19—C18—C20	110.08 (14)
H4D—C4—H4F	109.5	C19—C18—C17	110.68 (14)
H4E—C4—H4F	109.5	C20-C18-C17	112.15 (13)
C6—C5—C10	121.1 (2)	C19—C18—H18	107.9
C6—C5—N1	120.4 (2)	C20—C18—H18	107.9
C10—C5—N1	118.53 (19)	C17—C18—H18	107.9
C5—C6—C7	118.2 (3)	N4—C19—C18	177.99 (18)
С5—С6—Н6	120.9	N5-C20-C18	178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N3—H1 <i>N</i> 3····N4 ⁱ	0.86	2.41	3.159 (2)	146

			supportin	g informa	information	
N3—H2 <i>N</i> 3…N2 ⁱⁱ	0.86	2.53	3.325 (2)	155		
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$; (ii) <i>x</i> +1/2, <i>y</i> , - <i>z</i> +3/2.					