Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(4-Hydroxy-2-methyl-1,1-dioxo-2H-1,2-benzothiazin-3-yl)ethanone

Matloob Ahmad, ${ }^{\text {a* }}$ Hamid Latif Siddiqui, ${ }^{\text {a }}$ Muhammad Zia-ur-Rehman, ${ }^{\text {b }}$ Muhammad Irfan Ashiq ${ }^{\text {c }}$ and Graham John Tizzard ${ }^{\text {c }}$

${ }^{\text {a }}$ Institute of Chemistry, University of the Punjab, Lahore-54590, Pakistan, ${ }^{\mathbf{b}}$ Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore-54600, Pakistan, and ${ }^{\text {c School }}$ of Chemistry, University of Southampton, England
Correspondence e-mail: matloob_123@yahoo.com

Received 3 March 2008; accepted 20 March 2008
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; w R$ factor $=0.093$; data-to-parameter ratio $=16.1$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$, the thiazine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming a six-membered ring. Molecules are linked through weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in chains lying along the b axis.

Related literature

For related literature, see: Bihovsky et al. (2004); Fabiola et al. (1998); Golič \& Leban (1987); Zia-ur-Rehman et al. (2005, 2006, 2007); Turck et al. (1996).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=253.27$
Triclinic, $P \overline{1}$
$a=6.8523$ (1) \AA
$b=8.3222$ (2) A
$c=10.4880(2) \AA$
$\alpha=72.1321(11)^{\circ}$
$\beta=77.9619(12)^{\circ}$

$$
\begin{aligned}
& \gamma=80.0360(12)^{\circ} \\
& V=552.89(2) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.29 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& 0.40 \times 0.20 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.891, T_{\text {max }}=0.960$

12691 measured reflections 2529 independent reflections 2248 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
157 parameters
$w R\left(F^{2}\right)=0.092$
H -atom parameters constrained
$S=1.11$
$\Delta \rho_{\text {max }}=0.31$ e \AA^{-3}
2529 reflections
$\Delta \rho_{\text {min }}=-0.53$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3A \cdots O4	0.84	1.78	$2.525(2)$	146
C4-H4 $\cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.36	$3.193(2)$	146

Symmetry code: (i) $x, y+1, z$.
Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Pearce \& Watkin, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

We gratefully acknowledge the Higher Education Commission of Pakistan and the University of the Punjab, Lahore, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2072).

References

Bihovsky, R., Tao, M., Mallamo, J. P. \& Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.
Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. \& Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Golič, L. \& Leban, I. (1987). Acta Cryst. C43, 280-282.
Nonius (1998). COLLECT. Nonius BV, Delft,The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pearce, L. J. \& Watkin, D. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Turck, D., Busch, U., Heinzel, G., Narjes, H. \& Nehmiz, G. (1996). Clin. Pharm. 36, 79-84.
Zia-ur-Rehman, M. Z., Choudary, J. A. \& Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.
Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. \& Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. \& Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.

supporting information

Acta Cryst. (2008). E64, o788 [doi:10.1107/S1600536808007721]

1-(4-Hydroxy-2-methyl-1,1-dioxo-2H-1,2-benzothiazin-3-yl)ethanone

Matloob Ahmad, Hamid Latif Siddiqui, Muhammad Zia-ur-Rehman, Muhammad Irfan Ashiq and Graham John Tizzard

S1. Comment

In order to discover new useful therapeutic agents, many new compounds are continuously being synthesized. Benzothiazine dioxides and their derivatives are reported to possess numerous types of biological activities. Owing to their applications as non-steroidal anti-inflammatory compounds (Turck et al., 1996), considerable attention has been given to 1,2-benzothiazine 1,1-dioxides and their precursor intermediates (Golič \& Leban, 1987). Various 1,2-benzothiazines derivatives are also known as potent calpain I inhibitors (Bihovsky et al., 2004), while benzothiaine-3-yl-quinazolin-4ones showed marked activity against Bacillus subtilis (Zia-ur-Rehman et al., 2006). As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2006), we herein report the crystal structure of the title compound, (I).
In the molecule of the title compound (Fig. 1), the thiazine ring exhibits a distorted half-chair conformation with $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7$ atoms lying in a plane and N 1 showing significant departure from the plane due to its pyramidal geometry projecting the methyl group approximately perpendicular to the ring; the deviations of N1 and C8 from the least square plane being -0.895 (2) and -0.413 (3) \AA, respectively. Like other 1,2-benzothiazine 1,1-dioxide derivatives (Fabiola et al., 1998; Zia-ur-Rehman et al., 2007), the enolic hydrogen on O3 is involved in intramolecular hydrogen bonding (Table 1). Also, C7-C8 bond length [1.378 \AA] (very close to normal C? C bond; $1.36 \AA$) indicates a partial double-bond character indicating the dominance of enolic form in the molecule. The $\mathrm{C} 1 — \mathrm{~S} 1$ bond distance [1.7580 (14) \AA] is as expected for typical $\mathrm{C}\left(s p^{2}\right)$ —S bond (1.751 \AA).
Each molecule is linked to its adjacent one through a hydrogen bond [C4- $\mathrm{H} 4 \cdots \mathrm{O} 2$] resulting in a chain of molecules lying along the b axis (Table 1 and Fig. 2). Each molecule in the chain is linked with its neighbour through weak slipped $\pi-\pi$ interactions at inversion centres; the closest $\mathrm{C}-\mathrm{C}$ contacts are between $\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$ separated by $3.316 \AA$.

S2. Experimental

A mixture of 1-(4-hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl) ethanone ($239 \mathrm{mg}, 1.0 \mathrm{mmol}$) dissolved in acetone (10 ml), aqueous $\mathrm{NaOH}(3 \mathrm{ml}, 5 \%)$ and dimethyl sulfate $(0.5 \mathrm{ml})$ was stirred for half an hour followed by careful addition of dilute $\mathrm{HCl}(5 \%)$ to maintain the pH to Congo Red. Precipitates of (I) thus obtained were filtered, washed with water and dried. Colourless crystals were grown by slow evaporation of a solution of (I) in methanol at room temperature.

S3. Refinement

The hydrogen atoms were included in the refinements in a riding mode with the following constraints: aryl, methyl and hydroxyl C/O—H distances $0.95,0.98$ and $0.84 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}\left(\right.$ aryl C) and $1.5 U_{\text {eq }}($ methyl C and O).

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms; dashed lines denote hydrogen bonds.

Figure 2

Unit cell packing of (I), showing intermolecular H-bonds resulting in the chains of molecules lying along the b axis; H atoms not involved in H -bonding have been omitted.

1-(4-Hydroxy-2-methyl-1,1-dioxo-2H-1,2-benzothiazin-3-yl)ethanone

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=253.27$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.8523$ (1) \AA
$b=8.3222$ (2) \AA
$c=10.4880(2) \AA$
$\alpha=72.1321(11)^{\circ}$
$\beta=77.9619(12)^{\circ}$
$\gamma=80.0360(12)^{\circ}$
$V=552.89(2) \AA^{3}$

Data collection

Bruker-Nonius CCD camera on κ-goniostat diffractometer
Radiation source: Bruker Nonius FR591 Rotating Anode
Graphite monochromator
Detector resolution: 9.091 pixels mm^{-1}
$\varphi \& \omega$ scans to fill the asymmetric unit

$$
\begin{aligned}
& Z=2 \\
& F(000)=264 \\
& D_{\mathrm{x}}=1.521 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 15360 \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.30 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Shard, colourless } \\
& 0.40 \times 0.20 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.891, T_{\text {max }}=0.960$
12691 measured reflections
2529 independent reflections
2248 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=3.1^{\circ}$
$h=-8 \rightarrow 8$

$$
\begin{aligned}
& k=-10 \rightarrow 10 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.092$
$S=1.11$
2529 reflections
157 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. $S A D A B S$ was used to perform the Absorption correction Estimated minimum and maximum transmission: 0.6696 0.7456 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.3007(2)$	$0.32223(18)$	$0.37041(14)$	$0.0135(3)$
C2	$0.2992(2)$	$0.31686(19)$	$0.50412(15)$	$0.0164(3)$
H2	0.3246	0.2117	0.5702	0.020^{*}
C3	$0.2595(2)$	$0.4692(2)$	$0.53933(16)$	$0.0191(3)$
H3	0.2575	0.4684	0.6304	0.023^{*}
C4	$0.2228(2)$	$0.6220(2)$	$0.44168(16)$	$0.0199(3)$
H4	0.1973	0.7252	0.4665	0.024^{*}
C5	$0.2229(2)$	$0.62640(19)$	$0.30802(15)$	$0.0184(3)$
H5	0.1983	0.7320	0.2422	0.022^{*}
C6	$0.2593(2)$	$0.47505(18)$	$0.27093(14)$	$0.0148(3)$
C7	$0.2558(2)$	$0.47385(19)$	$0.13150(14)$	$0.0153(3)$
C8	$0.2396(2)$	$0.32881(19)$	$0.09905(14)$	$0.0157(3)$
C9	$0.2507(2)$	$0.3316(2)$	$-0.04098(16)$	$0.0204(3)$
C10	$0.2518(3)$	$0.1701(2)$	$-0.07671(18)$	$0.0332(4)$
H10A	0.1136	0.1532	-0.0764	0.050^{*}
H10B	0.3113	0.0740	-0.0098	0.050^{*}
H10C	0.3310	0.1775	-0.1672	0.050^{*}
C11	$0.0024(2)$	$0.1379(2)$	$0.25625(16)$	$0.0210(3)$
H11A	-0.0710	0.2301	0.2933	0.031^{*}
H11B	-0.0022	0.0298	0.3279	0.031^{*}
H11C	-0.0598	0.1321	0.1819	0.031^{*}

N1	$0.21494(18)$	$0.17080(16)$	$0.20411(12)$	$0.0152(3)$
O1	$0.56456(16)$	$0.12980(14)$	$0.24794(11)$	$0.0202(2)$
O2	$0.30103(17)$	$-0.00587(13)$	$0.42939(11)$	$0.0212(3)$
O3	$0.27313(18)$	$0.62312(14)$	$0.03808(11)$	$0.0220(3)$
H3A	0.2785	0.6110	-0.0392	0.033^{*}
O4	$0.26152(18)$	$0.46897(16)$	$-0.13289(11)$	$0.0264(3)$
S1	$0.36145(5)$	$0.13574(4)$	$0.31790(3)$	$0.01424(12)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0111(6)$	$0.0140(7)$	$0.0157(7)$	$-0.0025(5)$	$-0.0013(5)$	$-0.0046(5)$
C2	$0.0141(7)$	$0.0192(7)$	$0.0154(7)$	$-0.0029(6)$	$-0.0034(5)$	$-0.0033(6)$
C3	$0.0167(7)$	$0.0257(8)$	$0.0181(7)$	$-0.0037(6)$	$-0.0031(6)$	$-0.0101(6)$
C4	$0.0189(7)$	$0.0187(8)$	$0.0251(8)$	$-0.0044(6)$	$-0.0014(6)$	$-0.0107(6)$
C5	$0.0181(7)$	$0.0145(7)$	$0.0205(7)$	$-0.0024(5)$	$-0.0011(6)$	$-0.0032(6)$
C6	$0.0128(7)$	$0.0160(7)$	$0.0148(7)$	$-0.0026(5)$	$-0.0010(5)$	$-0.0034(5)$
C7	$0.0120(7)$	$0.0171(7)$	$0.0132(7)$	$0.0003(5)$	$-0.0008(5)$	$-0.0009(5)$
C8	$0.0135(7)$	$0.0193(7)$	$0.0129(7)$	$0.0005(5)$	$-0.0023(5)$	$-0.0037(5)$
C9	$0.0164(7)$	$0.0277(8)$	$0.0176(7)$	$0.0039(6)$	$-0.0049(6)$	$-0.0092(6)$
C10	$0.0463(11)$	$0.0342(10)$	$0.0245(9)$	$0.0043(8)$	$-0.0133(8)$	$-0.0164(7)$
C11	$0.0152(7)$	$0.0230(8)$	$0.0249(8)$	$-0.0049(6)$	$-0.0035(6)$	$-0.0056(6)$
N1	$0.0144(6)$	$0.0165(6)$	$0.0157(6)$	$-0.0018(5)$	$-0.0045(5)$	$-0.0050(5)$
O1	$0.0138(5)$	$0.0234(6)$	$0.0246(6)$	$0.0025(4)$	$-0.0036(4)$	$-0.0108(5)$
O2	$0.0292(6)$	$0.0133(5)$	$0.0202(5)$	$-0.0044(4)$	$-0.0086(5)$	$0.0005(4)$
O3	$0.0287(6)$	$0.0182(6)$	$0.0143(5)$	$-0.0019(5)$	$-0.0022(5)$	$0.0009(4)$
O4	$0.0300(6)$	$0.0322(7)$	$0.0140(5)$	$0.0020(5)$	$-0.0058(5)$	$-0.0038(5)$
S1	$0.01453(19)$	$0.01270(19)$	$0.01608(19)$	$0.00015(13)$	$-0.00467(13)$	$-0.00442(13)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.387(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.448(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.404(2)$	$\mathrm{C} 9-\mathrm{O} 4$	$1.251(2)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.7580(14)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.501(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.394(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(2)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 11-\mathrm{N} 1$	$1.4864(19)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.391(2)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9800
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9800
$\mathrm{C} 5-\mathrm{C} 6$	$1.397(2)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9800
$\mathrm{C} 5-\mathrm{H} 5$	0.9500	$\mathrm{~N} 1-\mathrm{S} 1$	$1.6438(12)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.471(2)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.4319(11)$
$\mathrm{C} 7-\mathrm{O} 3$	$1.3316(17)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.4314(11)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.378(2)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.8400
$\mathrm{C} 8-\mathrm{N} 1$	$1.4430(18)$		$119.76(14)$
C2-C1-C6			

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.70(11)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$117.13(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.54(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.14(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.04(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.79(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.30(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.47(13)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$120.23(13)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$122.30(13)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$114.96(13)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$122.73(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$120.44(12)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.64(14)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$118.91(13)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 8$	$119.92(14)$

C8-C9-C10	120.31 (15)
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
N1-C11-H11A	109.5
N1-C11-H11B	109.5
H11A-C11-H11B	109.5
N1-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C8-N1-C11	114.26 (11)
C8-N1-S1	112.75 (10)
C11-N1-S1	116.79 (10)
C7-O3-H3A	109.5
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	119.39 (7)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	108.47 (7)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	107.24 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	109.27 (7)
O1-S1-C1	108.93 (7)
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	102.15 (6)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 4$	0.84	1.78	$2.525(2)$	146
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.36	$3.193(2)$	146

Symmetry code: (i) $x, y+1, z$.

