

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1H-Indole-3-carbaldehyde thiosemicarbazone

Razali M. Rizal, Hapipah M. Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 22 January 2008; accepted 20 April 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.161; data-to-parameter ratio = 14.9.

The molecules of the title compound, $C_{10}H_{10}N_4S$, are linked by $N-H_{indole}$ ··· S hydrogen bonds to form a linear hydrogenbonded chain. There are two independent molecules in the asymmetric unit.

Related literature

For the synthesis and bateriostatic activity of indole-3carbaldehyde semithiocarbazone, see: Doyle et al. (1956); Fujikawa et al. (1966); Libermann et al. (1953); Weller et al. (1954). For metal complexes of the compound, see: Bhardwaj & Singh (1994); Dalvi et al. (2004); Garg & Tandon (1988); Kanoongo et al. (1988, 1990); Kiran et al. (1986); Kumari et al. (1992a,b; 1993a,b); Rodriguez-Argueelles et al. (2005); Saxena & Singh (1994); Saxena et al. (1993, 1994); Singh & Singh (1990); Singh et al. (1987, 1988); Varshney & Tandon (1989); Varshney et al. (1989, 1996).

Experimental

Crystal data

 $C_{10}H_{10}N_4S$ $M_r = 218.28$ Triclinic, $P\overline{1}$ a = 7.1893 (1) Å b = 11.1654 (2) Å c = 13.5373 (3) Å $\alpha = 68.887 \ (1)^{\circ}$ $\beta = 85.048 (1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer

Z = 4Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 123 (2) K 0.44 \times 0.24 \times 0.04 mm

 $\gamma = 82.467 \ (1)^{\circ}$

V = 1004.07 (3) Å³

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.857, \ T_{\max} = 0.988$

•	
organic	compounds
orguine	compounds

295 measured reflections 1527 independent reflections	$R_{\rm int} = 0.036$ $R_{\rm int} = 0.036$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.044$ $\nu R(F^2) = 0.161$ S = 1.10 S = 1.10 S = 0.0527 reflections S = 0.0527 reflections S = 0.0542 S	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.45$ e Å ⁻³ $\Delta \rho_{min} = -0.45$ e Å ⁻³		

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4n\cdots S1^{i}$	0.89(1)	2.56 (2)	3.383 (3)	156 (3)
$N8-H8n\cdots S2^{i}$	0.88(3)	2.49 (2)	3.325 (2)	157 (3)

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12-02-03-2031) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2196).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bhardwaj, N. C. & Singh, R. V. (1994). Proc. Ind. Acad. Sci. Chem. Sci. 106, 15-22.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Dalvi, K., Pal, M., Garje, S. & Shivram, S. (2004). Indian J. Chem. 43A, 1667-1671.
- Doyle, F. P., Ferrier, W., Holland, D. O., Mehta, M. D. & Nayler, J. H. C. (1956). J. Chem. Soc. pp. 2853-2857.
- Fujikawa, F., Yamashita, I., Seno, T., Sasaki, M., Naito, M. & Tsukuma, S. (1966). Yakugaku Zasshi, 86, 801-814.
- Garg, A. & Tandon, J. P. (1988). Syn. React. Inorg. Met.-Org. Chem. 18, 705-715.
- Kanoongo, N., Singh, R. V. & Tandon, J. P. (1988). J. Prakt. Chem. (Leipzig), 330. 479-483
- Kanoongo, N., Singh, R. V. & Tandon, J. P. (1990). J. Prakt. Chem. (Leipzig), 332. 815-819.
- Kiran, R. V., Singh, J. P. & Tandon, J. P. (1986). Syn. React. Inorg. Met.-Org. Chem. 16, 1341-1350.
- Kumari, A., Sharma, N., Singh, R. V. & Tandon, J. P. (1992a). Phosphorus, Sulfur Silicon Rel. Elem. 71, 225-229.
- Kumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993a). Syn. React. Inorg. Met.-Org. Chem. 23, 575-587.
- Kumari, A., Singh, D., Singh, R. V. & Tandon, J. P. (1993b). Phosphorus, Sulfur Silicon Rel. Elem. 80, 117-125
- Kumari, A., Singh, R. V. & Tandon, J. P. (1992b). Phosphorus, Sulfur Silicon Rel. Elem. 66, 195-200.
- Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957-962.
- Rodriguez-Argueelles, M. C., Lopez-Silva, E., Sanmartin, J., Pelagatti, P. & Zani, F. (2005). J. Inorg. Biochem. 99, 2231-2239.

- Saxena, C., Bhardwaj, N. C., Singh, D. & Singh, R. (1993). Syn. React. Inorg. Met.-Org. Chem. 23, 1391–1405.
- Saxena, C. & Singh, R. V. (1994). Appl. Organomet. Chem. 9, 267-276.
- Saxena, C., Singh, R. V. & Singh, S. (1994). Syn. React. Inorg. Met.-Org. Chem. 24, 1311–1124.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, D. & Singh, R. V. (1990). Main Group Met. Chem. 13, 19-27.
- Singh, K., Singh, R. V. & Tandon, J. P. (1987). Syn. React. Inorg. Met.-Org. Chem. 17, 385–398.
- Singh, K., Singh, R. V. & Tandon, J. P. (1988). Polyhedron, 7, 151-154.
- Varshney, S., Singh, H. & Varshney, A. K. (1996). ACGC Chem. Res. Commun. 4, 26–29.
- Varshney, A. K. & Tandon, J. P. (1989). Egypt. J. Chem. 32, 109-114.
- Varshney, A. K., Verma, P. S. & Varshney, S. (1989). *Main Group Met. Chem.* **12**, 249–257.
- Weller, L. E., Sell, H. M. & Gottshall, R. Y. (1954). J. Am. Chem. Soc. 76, 1959– ???.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o919–o920 [doi:10.1107/S1600536808011082]

1*H*-Indole-3-carbaldehyde thiosemicarbazone

Razali M. Rizal, Hapipah M. Ali and Seik Weng Ng

S1. Comment

The bacteriostatic activity of indole-3-carboxaldehyde thiosemicarbazone is known for a long time (Doyle *et al.*, 1956; Fujikawa *et al.*, 1966; Libermann *et al.*, 1953; Weller *et al.*, 1954). The compound yields complexes with main group as well as transition metal ions.

S2. Experimental

Thiosemicarbazide (0.3 g, 3.3 mmol) and indole-3-carboxaldehyde (0.5 g, 3.3 mmol) were refluxed in ethanol (50 ml) for 2 h. The solvent was removed to give the product Schiff base, and crystals were obtained upon recrystallization from ethanol.

S3. Refinement

The carbon-bound H atoms were placed at calculated positions (C–H 0.95 Å), and were included in the refinement in the riding model approximation with U(H) set to $1.2U_{eq}(C)$. The amino H atoms were located in a difference Fouier map, and were refined with a distance restraint of N–H 0.88±0.01 Å.

Figure 1

Thermal ellipsoid plot of the two independent molecules of the title compound. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii.

Figure 2

Chain structure of the title compound. Intermolecular H bonds are shown as dashed lines.

1H-Indole-3-carbaldehyde thiosemicarbazone

<i>a</i> = 7.1893 (1) Å
<i>b</i> = 11.1654 (2) Å
c = 13.5373 (3) Å
$\alpha = 68.887 (1)^{\circ}$

Cell parameters from 4065 reflections

 $\theta = 3.6 - 30.8^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

Wedge, colorless

 $0.44 \times 0.24 \times 0.04$ mm

T = 123 K

 $\beta = 85.048 (1)^{\circ}$ $\gamma = 82.467 (1)^{\circ}$ $V = 1004.07 (3) Å^{3}$ Z = 4 F(000) = 456 $D_{\rm x} = 1.444 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Bruker APEXII	9295 measured reflections
diffractometer	4527 independent reflections
Radiation source: medium-focus sealed tube	3142 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.857, \ T_{\max} = 0.988$	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: inferred from $wR(F^2) = 0.161$ neighbouring sites S = 1.10H atoms treated by a mixture of independent and constrained refinement 4527 reflections 303 parameters $w = 1/[\sigma^2(F_0^2) + (0.0864P)^2 + 0.0582P]$ 8 restraints where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.

Fractional atomic coordinate	es and isotropic or equive	alent isotropic displacer	nent parameters ($Å^2$)
r	12	7	I 7. */ I 7

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.61344 (11)	0.11515 (7)	0.35357 (6)	0.0218 (2)	
S2	0.81997 (11)	0.34262 (7)	0.04922 (6)	0.0250 (2)	
N1	0.7013 (4)	0.1337 (3)	0.5349 (2)	0.0272 (6)	
H1N1	0.721 (5)	0.173 (3)	0.577 (2)	0.044 (11)*	
H1N2	0.680 (6)	0.0521 (16)	0.568 (3)	0.053 (13)*	
N2	0.6604 (3)	0.3220 (2)	0.39282 (18)	0.0179 (5)	
H2N	0.642 (5)	0.354 (3)	0.3237 (10)	0.042 (11)*	
N3	0.7031 (3)	0.3921 (2)	0.45314 (18)	0.0171 (5)	
N4	0.7758 (4)	0.7985 (2)	0.45494 (19)	0.0208 (5)	
H4N	0.762 (5)	0.8832 (11)	0.440 (3)	0.040 (11)*	
N5	0.5325 (4)	0.4371 (3)	0.1469 (2)	0.0239 (6)	
H5N1	0.450 (4)	0.502 (2)	0.147 (3)	0.037 (10)*	
H5N2	0.487 (5)	0.365 (2)	0.154 (3)	0.037 (10)*	
N6	0.7531 (4)	0.5739 (2)	0.0624 (2)	0.0223 (5)	

H6N	0.855(3)	0.590 (4)	0.021 (3)	0.047 (11)*
N7	0.6520 (3)	0.6664 (2)	0.09750(19)	0.0199 (5)
N8	0.6103 (3)	1.0744 (2)	0.11636 (19)	0.0210 (5)
H8N	0.640 (5)	1.1508 (18)	0.111 (3)	0.037 (10)*
C1	0.6607 (4)	0.1932 (3)	0.4337 (2)	0.0173 (6)
C2	0.6936 (4)	0.5146 (3)	0.4011 (2)	0.0175 (6)
H2	0.6579	0.5459	0.3296	0.021*
C3	0.7347 (4)	0.6064 (3)	0.4466 (2)	0.0161 (6)
C4	0.7238 (4)	0.7375 (3)	0.3922 (2)	0.0196 (6)
H4	0.6857	0.7794	0.3213	0.024*
C5	0.7953 (4)	0.5851 (3)	0.5511 (2)	0.0148 (5)
C6	0.8287 (4)	0.4758 (3)	0.6422 (2)	0.0188 (6)
H6	0.8136	0.3924	0.6426	0.023*
C7	0.8843 (4)	0.4918 (3)	0.7319 (2)	0.0230 (6)
H7	0.9067	0.4184	0.7944	0.028*
C8	0.9078 (4)	0.6146 (3)	0.7319 (2)	0.0237 (7)
H8	0.9464	0.6227	0.7943	0.028*
С9	0.8759 (4)	0.7244 (3)	0.6426 (2)	0.0211 (6)
H9	0.8925	0.8074	0.6426	0.025*
C10	0.8183 (4)	0.7082 (3)	0.5529 (2)	0.0174 (6)
C11	0.6925 (4)	0.4572 (3)	0.0883 (2)	0.0192 (6)
C12	0.7333 (4)	0.7692 (3)	0.0773 (2)	0.0189 (6)
H12	0.8548	0.7738	0.0434	0.023*
C13	0.6459 (4)	0.8771 (3)	0.1045 (2)	0.0164 (6)
C14	0.7289 (4)	0.9880 (3)	0.0867 (2)	0.0191 (6)
H14	0.8527	1.0017	0.0576	0.023*
C15	0.4594 (4)	0.8983 (3)	0.1488 (2)	0.0156 (6)
C16	0.3047 (4)	0.8256 (3)	0.1817 (2)	0.0210 (6)
H16	0.3122	0.7412	0.1790	0.025*
C17	0.1416 (4)	0.8801 (3)	0.2180 (2)	0.0247 (7)
H17	0.0372	0.8312	0.2414	0.030*
C18	0.1256 (4)	1.0053 (3)	0.2214 (2)	0.0245 (7)
H18	0.0106	1.0403	0.2453	0.029*
C19	0.2771 (4)	1.0783 (3)	0.1898 (2)	0.0231 (6)
H19	0.2682	1.1629	0.1922	0.028*
C20	0.4422 (4)	1.0232 (3)	0.1547 (2)	0.0185 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0312 (4)	0.0162 (4)	0.0216 (4)	-0.0052 (3)	-0.0014 (3)	-0.0101 (3)
S2	0.0274 (4)	0.0203 (4)	0.0321 (4)	-0.0073 (3)	0.0061 (3)	-0.0150 (3)
N1	0.0433 (17)	0.0196 (14)	0.0201 (13)	-0.0059 (13)	-0.0052 (12)	-0.0070 (11)
N2	0.0242 (13)	0.0160 (12)	0.0171 (12)	-0.0055 (10)	-0.0017 (10)	-0.0089 (10)
N3	0.0168 (12)	0.0196 (13)	0.0199 (12)	-0.0058 (10)	0.0008 (9)	-0.0120 (10)
N4	0.0269 (13)	0.0135 (13)	0.0233 (13)	-0.0045 (11)	-0.0012 (10)	-0.0072 (10)
N5	0.0218 (13)	0.0207 (14)	0.0303 (14)	-0.0038 (11)	0.0041 (11)	-0.0108 (12)
N6	0.0231 (13)	0.0180 (13)	0.0280 (14)	-0.0031 (11)	0.0032 (11)	-0.0114 (11)

N7	0.0221 (12)	0.0150 (12)	0.0232 (12)	0.0008 (10)	-0.0018 (10)	-0.0081 (10)
N8	0.0269 (14)	0.0162 (13)	0.0244 (13)	-0.0094 (11)	0.0015 (10)	-0.0105 (10)
C1	0.0165 (13)	0.0175 (14)	0.0188 (14)	-0.0034 (11)	0.0013 (11)	-0.0074 (11)
C2	0.0157 (13)	0.0213 (15)	0.0173 (13)	-0.0058 (12)	0.0007 (10)	-0.0079 (11)
C3	0.0144 (13)	0.0178 (14)	0.0177 (13)	-0.0029 (11)	0.0015 (10)	-0.0081 (11)
C4	0.0223 (15)	0.0182 (15)	0.0188 (14)	-0.0035 (12)	-0.0005 (11)	-0.0069 (12)
C5	0.0110 (12)	0.0163 (14)	0.0194 (13)	-0.0042 (11)	0.0029 (10)	-0.0089 (11)
C6	0.0176 (14)	0.0181 (15)	0.0220 (14)	-0.0036 (12)	-0.0004 (11)	-0.0080 (12)
C7	0.0224 (15)	0.0254 (16)	0.0189 (14)	-0.0020 (13)	-0.0019 (12)	-0.0051 (12)
C8	0.0193 (14)	0.0349 (18)	0.0221 (15)	-0.0027 (13)	-0.0025 (12)	-0.0159 (13)
C9	0.0171 (14)	0.0239 (16)	0.0279 (15)	-0.0020 (12)	-0.0003 (12)	-0.0163 (13)
C10	0.0138 (13)	0.0175 (15)	0.0225 (14)	-0.0024 (11)	0.0023 (11)	-0.0096 (12)
C11	0.0210 (15)	0.0170 (15)	0.0215 (14)	-0.0031 (12)	-0.0030 (11)	-0.0083 (12)
C12	0.0204 (14)	0.0175 (15)	0.0176 (13)	-0.0009 (12)	-0.0011 (11)	-0.0053 (11)
C13	0.0206 (14)	0.0125 (14)	0.0152 (13)	-0.0041 (11)	-0.0022 (11)	-0.0025 (11)
C14	0.0199 (14)	0.0208 (15)	0.0177 (13)	-0.0047 (12)	-0.0003 (11)	-0.0072 (12)
C15	0.0175 (13)	0.0149 (14)	0.0133 (13)	-0.0013 (11)	-0.0039 (10)	-0.0030 (11)
C16	0.0237 (15)	0.0165 (15)	0.0216 (14)	-0.0060 (12)	-0.0035 (12)	-0.0032 (12)
C17	0.0172 (14)	0.0294 (17)	0.0258 (15)	-0.0066 (13)	-0.0009 (12)	-0.0065 (13)
C18	0.0201 (15)	0.0312 (18)	0.0223 (15)	0.0027 (13)	-0.0005 (12)	-0.0114 (13)
C19	0.0299 (16)	0.0206 (16)	0.0207 (14)	0.0018 (13)	-0.0057 (12)	-0.0101 (12)
C20	0.0237 (15)	0.0180 (14)	0.0161 (13)	-0.0040 (12)	-0.0050 (11)	-0.0072 (11)

Geometric parameters (Å, °)

S1—C1	1.696 (3)	C4—H4	0.9500
S2—C11	1.689 (3)	C5—C6	1.399 (4)
N1-C1	1.329 (4)	C5—C10	1.415 (4)
N1—H1N1	0.87 (3)	C6—C7	1.388 (4)
N1—H1N2	0.89 (3)	С6—Н6	0.9500
N2—C1	1.341 (4)	C7—C8	1.403 (4)
N2—N3	1.393 (3)	С7—Н7	0.9500
N2—H2N	0.887 (10)	C8—C9	1.386 (4)
N3—C2	1.289 (4)	C8—H8	0.9500
N4—C4	1.365 (3)	C9—C10	1.395 (4)
N4—C10	1.376 (4)	С9—Н9	0.9500
N4—H4N	0.886 (10)	C12—C13	1.436 (4)
N5-C11	1.335 (4)	C12—H12	0.9500
N5—H5N1	0.88 (3)	C13—C14	1.379 (4)
N5—H5N2	0.88 (3)	C13—C15	1.446 (4)
N6-C11	1.344 (4)	C14—H14	0.9500
N6—N7	1.385 (3)	C15—C16	1.409 (4)
N6—H6N	0.88 (3)	C15—C20	1.414 (4)
N7—C12	1.287 (4)	C16—C17	1.384 (4)
N8—C14	1.350 (4)	C16—H16	0.9500
N8—C20	1.384 (4)	C17—C18	1.405 (4)
N8—H8N	0.88 (3)	C17—H17	0.9500
C2—C3	1.443 (4)	C18—C19	1.391 (4)

C2—H2	0.9500	C18—H18	0.9500
C3—C4	1.376 (4)	C19—C20	1.391 (4)
C3—C5	1.443 (4)	C19—H19	0.9500
C1—N1—H1N1	124 (3)	С8—С7—Н7	119.5
C1—N1—H1N2	120 (3)	C9—C8—C7	121.4 (3)
H1N1—N1—H1N2	114 (4)	С9—С8—Н8	119.3
C1—N2—N3	121.7 (2)	С7—С8—Н8	119.3
C1—N2—H2N	113 (2)	C8—C9—C10	117.4 (3)
N3—N2—H2N	125 (2)	С8—С9—Н9	121.3
C2—N3—N2	113.1 (2)	С10—С9—Н9	121.3
C4—N4—C10	109.1 (2)	N4—C10—C9	129.9 (3)
C4—N4—H4N	125 (2)	N4—C10—C5	108.0 (2)
C10—N4—H4N	125 (2)	C9—C10—C5	122.1 (3)
C11—N5—H5N1	121 (2)	N5-C11-N6	117.1 (3)
C11—N5—H5N2	115 (2)	N5-C11-S2	123.0 (2)
H5N1— $N5$ — $H5N2$	116 (3)	N6-C11-S2	1199(2)
C11 - N6 - N7	1200(2)	N7-C12-C13	122.0(3)
C11—N6—H6N	118(3)	N7-C12-H12	119.0
N7_N6_H6N	110(3) 122(3)	C_{13} C_{12} H_{12}	119.0
$C12$ _N7_N6	122(5) 1144(2)	C13 - C12 - 1112 C14 - C13 - C12	119.0 124.2(3)
C14 N8 $C20$	114.4(2) 100.3(2)	$C_{14} = C_{13} = C_{12}$	124.2(3) 105.9(2)
C14 N8 H8N	109.3(2)	$C_{14} = C_{13} = C_{15}$	103.9(2) 120.0(2)
$C_{14} = N_0 = H_{01}$	123(2) 127(2)	12 - 13 - 13	129.9(2) 110.7(2)
C_{20} No-noin	127(2)	$N_{0} = C_{14} = C_{13}$	110.7 (3)
NI = CI = N2	117.8(2)	$N_{0} = C_{14} = H_{14}$	124.0
NI-CI-SI	123.6 (2)	C13—C14—H14	124.6
N2—C1—S1	118.6 (2)	C16—C15—C20	118.8 (3)
N3—C2—C3	123.1 (3)	C16—C15—C13	134.5 (3)
N3—C2—H2	118.5	C20—C15—C13	106.7 (2)
C3—C2—H2	118.5	C17—C16—C15	118.4 (3)
C4—C3—C2	123.6 (3)	C17—C16—H16	120.8
C4—C3—C5	106.6 (2)	C15—C16—H16	120.8
C2—C3—C5	129.8 (3)	C16—C17—C18	122.0 (3)
N4—C4—C3	110.1 (3)	C16—C17—H17	119.0
N4—C4—H4	125.0	C18—C17—H17	119.0
C3—C4—H4	125.0	C19—C18—C17	120.4 (3)
C6—C5—C10	119.4 (2)	C19—C18—H18	119.8
C6—C5—C3	134.3 (2)	C17—C18—H18	119.8
C10—C5—C3	106.3 (2)	C20-C19-C18	117.7 (3)
C7—C6—C5	118.6 (3)	C20—C19—H19	121.2
С7—С6—Н6	120.7	C18—C19—H19	121.2
С5—С6—Н6	120.7	N8-C20-C19	129.9 (3)
C6—C7—C8	121.1 (3)	N8—C20—C15	107.4 (2)
С6—С7—Н7	119.5	C19—C20—C15	122.6 (3)
			× /
C1—N2—N3—C2	-179.2 (2)	C3—C5—C10—C9	179.8 (2)
C11—N6—N7—C12	173.1 (3)	N7—N6—C11—N5	0.9 (4)
N3—N2—C1—N1	0.7 (4)	N7—N6—C11—S2	-177.8 (2)

N3—N2—C1—S1	-178.20 (19)	N6—N7—C12—C13	177.7 (2)
N2—N3—C2—C3	-179.0 (2)	N7—C12—C13—C14	178.5 (3)
N3—C2—C3—C4	-179.5 (3)	N7—C12—C13—C15	-4.9 (5)
N3—C2—C3—C5	1.5 (5)	C20-N8-C14-C13	-0.3 (3)
C10—N4—C4—C3	-1.2 (3)	C12—C13—C14—N8	177.4 (2)
C2-C3-C4-N4	-178.3 (3)	C15-C13-C14-N8	0.1 (3)
C5-C3-C4-N4	0.9 (3)	C14-C13-C15-C16	178.4 (3)
C4—C3—C5—C6	178.6 (3)	C12-C13-C15-C16	1.3 (5)
C2—C3—C5—C6	-2.3 (5)	C14—C13—C15—C20	0.1 (3)
C4—C3—C5—C10	-0.2 (3)	C12-C13-C15-C20	-177.0 (3)
C2—C3—C5—C10	178.9 (3)	C20-C15-C16-C17	0.3 (4)
C10—C5—C6—C7	-0.2 (4)	C13—C15—C16—C17	-177.8 (3)
C3—C5—C6—C7	-178.8 (3)	C15—C16—C17—C18	1.0 (4)
C5—C6—C7—C8	-0.3 (4)	C16—C17—C18—C19	-1.4 (4)
C6—C7—C8—C9	0.3 (4)	C17—C18—C19—C20	0.4 (4)
C7—C8—C9—C10	0.4 (4)	C14—N8—C20—C19	-177.0 (3)
C4—N4—C10—C9	-179.3 (3)	C14—N8—C20—C15	0.4 (3)
C4—N4—C10—C5	1.0 (3)	C18-C19-C20-N8	178.0 (3)
C8—C9—C10—N4	179.5 (3)	C18—C19—C20—C15	0.9 (4)
C8—C9—C10—C5	-0.9 (4)	C16-C15-C20-N8	-178.9 (2)
C6C5C10N4	-179.5 (2)	C13-C15-C20-N8	-0.3 (3)
C3C5C10N4	-0.5 (3)	C16—C15—C20—C19	-1.3 (4)
C6—C5—C10—C9	0.8 (4)	C13—C15—C20—C19	177.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N4—H4n···S1 ⁱ	0.89 (1)	2.56 (2)	3.383 (3)	156 (3)
N8—H8n···S2 ⁱ	0.88 (3)	2.49 (2)	3.325 (2)	157 (3)

Symmetry code: (i) x, y+1, z.