metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methylamino)pyridinium di­bromidotri­phenyl­stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 March 2008; accepted 20 April 2008; online 26 April 2008)

The anion in the title salt, (C7H11N2)[SnBr2(C6H5)3], lies on a twofold rotation axis that passes through the metal atom as well as the Cipso—Cpara atoms of one of the aromatic rings. The metal center is five-coordinate in a trans-Br2SnC3 trigonal bipyramidal geometry. The cation is disordered about a center of inversion.

Related literature

For the crystal structures of dibromidotriorganostannates, see: Aslanov et al. (1977[Aslanov, L. A., Attiya, V. M., Ionov, V. M., Permin, A. B. & Petrosyan, V. S. (1977). Zh. Strukt. Khim. 18, 1113-1118.]); Spek et al. (2004[Spek, A. L., Wijkens, P. & van Koten, G. (2004). Private communication (refcode CSIGOC). CCDC, Cambridge, England.]); Wharf & Simard (1991[Wharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1605-1609.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[SnBr2(C6H5)3]

  • Mr = 632.99

  • Monoclinic, C 2/c

  • a = 15.5955 (2) Å

  • b = 10.6897 (1) Å

  • c = 14.8204 (2) Å

  • β = 93.924 (1)°

  • V = 2464.93 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.368, Tmax = 0.651

  • 24740 measured reflections

  • 2840 independent reflections

  • 2328 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.05

  • 2840 reflections

  • 180 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.135 (2)
Sn1—C7 2.149 (3)
Sn1—Br1 2.7801 (3)
C1—Sn1—C1i 116.17 (13)
C1—Sn1—C7 121.92 (6)
C1—Sn1—Br1 88.61 (6)
C1—Sn1—Br1i 90.68 (6)
C7—Sn1—Br1 90.68 (1)
Br1—Sn1—Br1i 178.64 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The aqueous solubility of biocidal triorganotin halides can be improved by converting them to their ionic salts through treatment with an ammonium halide. A small number of ammonium dihalogenotriorganostannates are known; tetraethylammonium dibromidotriphenylstannate, who crystal structure is known, is synthesized in this manner (Wharf & Simard, 1991).

The present synthesis uses the mild brominating agent, 4-dimethylaminopyridine hydrobromide perbromide, which cleaves one of the four tin-carbon bonds of tetraphenyltin to yield the bromidotriphenylstannate anion. In the title compound (I), the anion lies about a twofold rotation axis that passes through the metal atom as well as the Cipso–Cpara atoms of one of the aromatic rings. The metal center is five-coordinate in a trans-C3SnBr2 trigonal bipyramidal geometry. The cation and anion exist as two non-interacting species (Fig. 1).

Related literature top

For the crystal structures of dibromidotriorganostannates, see: Aslanov et al. (1977); Spek et al. (2004); Wharf & Simard (1991).

Experimental top

Tetraphenyltin (2 g, 4.7 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.7 g, 4.6 mmol) were heated in chloroform (100 ml) for 6 h. The solution was filtered and the solvent allow to evaporate to give yellow crystals (m.p. 455–457 K, 80% yield).

Refinement top

The cation is disordered over a center-of-inversion, and was allowed to refine over this symmetry element as a half-occupancy cation. For the aromatic ring, 1,2-related distances were restrained to 1.39±0.01 Å and 1,3-related ones to 2.78±0.01 Å. For the dimethylamino group, the N–C distances were restrained to 1.50±0.01 Å. Anisotropic temperature factors of the carbon and nitrogen atoms were restrained to be nearly isotropic.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The ammonium H-atom was similarly treated (N–H 0.86 Å; U(H) = 1.2U(B).

The final difference Fourier map had a large peak at 1 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound.
4-(Dimethylamino)pyridinium dibromidotriphenylstannate(IV) top
Crystal data top
(C7H11N2)[SnBr2(C6H5)3]F(000) = 1240
Mr = 632.99Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7191 reflections
a = 15.5955 (2) Åθ = 2.3–24.8°
b = 10.6897 (1) ŵ = 4.29 mm1
c = 14.8204 (2) ÅT = 100 K
β = 93.924 (1)°Block, yellow
V = 2464.93 (5) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2840 independent reflections
Radiation source: fine-focus sealed tube2328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.368, Tmax = 0.651k = 1313
24740 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.1489P]
where P = (Fo2 + 2Fc2)/3
2840 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.34 e Å3
69 restraintsΔρmin = 1.16 e Å3
Crystal data top
(C7H11N2)[SnBr2(C6H5)3]V = 2464.93 (5) Å3
Mr = 632.99Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.5955 (2) ŵ = 4.29 mm1
b = 10.6897 (1) ÅT = 100 K
c = 14.8204 (2) Å0.3 × 0.2 × 0.1 mm
β = 93.924 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2840 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2328 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.651Rint = 0.033
24740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02669 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2840 reflectionsΔρmin = 1.16 e Å3
180 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.76516 (2)0.75000.03975 (9)
Br10.56766 (2)0.76825 (3)0.928473 (19)0.05538 (10)
C10.60873 (15)0.8708 (2)0.71394 (16)0.0377 (5)
C20.69169 (17)0.8273 (3)0.73324 (19)0.0504 (6)
H20.70040.75120.76290.061*
C30.76163 (18)0.8960 (3)0.7087 (2)0.0613 (8)
H30.81690.86470.72060.074*
C40.7501 (2)1.0094 (3)0.6672 (2)0.0647 (9)
H40.79741.05570.65150.078*
C50.6686 (2)1.0548 (3)0.6489 (2)0.0648 (8)
H50.66031.13220.62100.078*
C60.59864 (18)0.9851 (3)0.6720 (2)0.0518 (7)
H60.54351.01620.65880.062*
C70.50000.5641 (3)0.75000.0372 (7)
C80.51067 (16)0.4971 (3)0.67160 (19)0.0461 (6)
H80.51730.53990.61790.055*
C90.51168 (18)0.3672 (3)0.6717 (2)0.0557 (7)
H90.52030.32390.61870.067*
C100.50000.3029 (4)0.75000.0595 (11)
H100.50000.21590.75000.071*
N10.3033 (4)0.9766 (5)1.0723 (4)0.0750 (16)0.50
H10.32071.04681.09500.090*0.50
C110.3619 (5)0.8914 (9)1.0461 (4)0.065 (4)0.50
H110.42030.91011.05300.078*0.50
C120.3361 (4)0.7792 (6)1.0100 (4)0.0548 (14)0.50
H120.37570.72090.99200.066*0.50
C130.2490 (6)0.7552 (8)1.0011 (6)0.0454 (9)0.50
C140.1886 (3)0.8397 (5)1.0268 (4)0.0547 (14)0.50
H140.13020.82151.01990.066*0.50
C150.2171 (6)0.9515 (9)1.0628 (6)0.091 (9)0.50
H150.17781.01041.08080.109*0.50
N20.2210 (3)0.6420 (4)0.9598 (3)0.0512 (11)0.50
C160.2813 (5)0.5487 (7)0.9338 (7)0.059 (6)0.50
H16A0.31260.58030.88500.089*0.50
H16B0.25080.47440.91450.089*0.50
H16C0.32080.52950.98440.089*0.50
C170.1314 (6)0.6173 (12)0.9365 (9)0.077 (4)0.50
H17A0.09980.62390.98970.116*0.50
H17B0.12500.53450.91190.116*0.50
H17C0.10960.67720.89240.116*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03660 (13)0.03341 (14)0.04972 (15)0.0000.00641 (10)0.000
Br10.05950 (19)0.0641 (2)0.04166 (16)0.00651 (13)0.00302 (13)0.00418 (12)
C10.0366 (12)0.0376 (13)0.0393 (12)0.0018 (10)0.0044 (10)0.0026 (10)
C20.0446 (14)0.0523 (17)0.0544 (16)0.0075 (12)0.0036 (12)0.0014 (13)
C30.0356 (14)0.085 (2)0.0640 (19)0.0006 (14)0.0056 (13)0.0193 (17)
C40.0598 (19)0.073 (2)0.0630 (19)0.0290 (17)0.0163 (15)0.0189 (17)
C50.078 (2)0.0459 (17)0.070 (2)0.0193 (15)0.0078 (17)0.0074 (15)
C60.0485 (15)0.0409 (15)0.0651 (18)0.0002 (12)0.0021 (13)0.0052 (13)
C70.0311 (16)0.0348 (17)0.0456 (19)0.0000.0023 (14)0.000
C80.0429 (14)0.0454 (14)0.0503 (15)0.0012 (11)0.0056 (11)0.0031 (12)
C90.0529 (16)0.0472 (16)0.0668 (19)0.0020 (13)0.0029 (14)0.0157 (14)
C100.055 (2)0.038 (2)0.085 (3)0.0000.001 (2)0.000
N10.080 (4)0.075 (4)0.070 (3)0.024 (3)0.002 (3)0.017 (3)
C110.057 (5)0.077 (7)0.061 (5)0.010 (5)0.003 (4)0.002 (4)
C120.050 (3)0.066 (4)0.049 (3)0.000 (3)0.003 (2)0.004 (3)
C130.051 (2)0.050 (2)0.0354 (18)0.0006 (18)0.0071 (16)0.0045 (17)
C140.050 (3)0.058 (3)0.057 (3)0.004 (3)0.009 (3)0.007 (3)
C150.096 (12)0.091 (12)0.088 (12)0.004 (8)0.017 (8)0.006 (8)
N20.061 (3)0.046 (2)0.047 (3)0.002 (2)0.003 (2)0.001 (2)
C160.068 (8)0.049 (7)0.061 (8)0.005 (5)0.014 (5)0.018 (5)
C170.073 (7)0.068 (6)0.088 (6)0.018 (5)0.005 (5)0.006 (5)
Geometric parameters (Å, º) top
Sn1—C12.135 (2)C10—C9i1.372 (4)
Sn1—C1i2.135 (2)C10—H100.9300
Sn1—C72.149 (3)N1—C111.366 (9)
Sn1—Br1i2.7801 (3)N1—C151.369 (9)
Sn1—Br12.7801 (3)N1—H10.8600
C1—C61.375 (4)C11—C121.363 (9)
C1—C21.386 (3)C11—H110.9300
C2—C31.384 (4)C12—C131.379 (9)
C2—H20.9300C12—H120.9300
C3—C41.365 (5)C13—C141.378 (9)
C3—H30.9300C13—N21.412 (8)
C4—C51.371 (5)C14—C151.370 (9)
C4—H40.9300C14—H140.9300
C5—C61.383 (4)C15—H150.9300
C5—H50.9300N2—C161.441 (7)
C6—H60.9300N2—C171.441 (8)
C7—C81.384 (3)C16—H16A0.9600
C7—C8i1.384 (3)C16—H16B0.9600
C8—C91.389 (4)C16—H16C0.9600
C8—H80.9300C17—H17A0.9600
C9—C101.372 (4)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C1—Sn1—C1i116.17 (13)C9—C8—C7121.2 (3)
C1—Sn1—C7121.92 (6)C9—C8—H8119.4
C1i—Sn1—C7121.92 (6)C7—C8—H8119.4
C1—Sn1—Br188.61 (6)C10—C9—C8120.0 (3)
C1—Sn1—Br1i90.68 (6)C10—C9—H9120.0
C1i—Sn1—Br1i88.61 (6)C8—C9—H9120.0
C7—Sn1—Br190.68 (1)C9—C10—C9i119.8 (4)
C7—Sn1—Br1i90.68 (1)C9—C10—H10120.1
C1i—Sn1—Br190.68 (6)C9i—C10—H10120.1
Br1—Sn1—Br1i178.64 (2)C11—N1—C15120.8 (7)
C6—C1—C2117.9 (2)C11—N1—H1119.6
C6—C1—Sn1120.98 (18)C15—N1—H1119.6
C2—C1—Sn1121.13 (19)C12—C11—N1120.8 (7)
C3—C2—C1120.6 (3)C12—C11—H11119.6
C3—C2—H2119.7N1—C11—H11119.6
C1—C2—H2119.7C11—C12—C13117.7 (6)
C4—C3—C2120.5 (3)C11—C12—H12121.2
C4—C3—H3119.7C13—C12—H12121.2
C2—C3—H3119.7C14—C13—C12122.6 (7)
C3—C4—C5119.7 (3)C14—C13—N2119.0 (7)
C3—C4—H4120.2C12—C13—N2118.3 (7)
C5—C4—H4120.2C15—C14—C13118.0 (7)
C4—C5—C6119.8 (3)C15—C14—H14121.0
C4—C5—H5120.1C13—C14—H14121.0
C6—C5—H5120.1C14—C15—N1120.1 (7)
C1—C6—C5121.5 (3)C14—C15—H15120.0
C1—C6—H6119.2N1—C15—H15120.0
C5—C6—H6119.2C13—N2—C16121.4 (6)
C8—C7—C8i117.7 (3)C13—N2—C17121.8 (7)
C8—C7—Sn1121.13 (17)C16—N2—C17116.7 (7)
C8i—C7—Sn1121.13 (17)
C1i—Sn1—C1—C632.12 (19)C1—Sn1—C7—C8i119.08 (14)
C7—Sn1—C1—C6147.88 (19)C1i—Sn1—C7—C8i60.92 (14)
Br1i—Sn1—C1—C656.7 (2)Br1i—Sn1—C7—C8i149.70 (12)
Br1—Sn1—C1—C6122.2 (2)Br1—Sn1—C7—C8i30.30 (12)
C1i—Sn1—C1—C2146.9 (2)C8i—C7—C8—C90.75 (19)
C7—Sn1—C1—C233.1 (2)Sn1—C7—C8—C9179.25 (19)
Br1i—Sn1—C1—C2124.3 (2)C7—C8—C9—C101.5 (4)
Br1—Sn1—C1—C256.9 (2)C8—C9—C10—C9i0.74 (18)
C6—C1—C2—C31.6 (4)C15—N1—C11—C120.1 (3)
Sn1—C1—C2—C3179.4 (2)N1—C11—C12—C130.1 (3)
C1—C2—C3—C41.8 (5)C11—C12—C13—C140.2 (7)
C2—C3—C4—C50.7 (5)C11—C12—C13—N2177.0 (7)
C3—C4—C5—C60.4 (5)C12—C13—C14—C150.2 (10)
C2—C1—C6—C50.4 (4)N2—C13—C14—C15177.0 (7)
Sn1—C1—C6—C5179.5 (2)C13—C14—C15—N10.1 (9)
C4—C5—C6—C10.6 (5)C11—N1—C15—C140.1 (7)
C1—Sn1—C7—C860.92 (14)C14—C13—N2—C16178.4 (7)
C1i—Sn1—C7—C8119.08 (14)C12—C13—N2—C164.7 (11)
Br1i—Sn1—C7—C830.30 (12)C14—C13—N2—C175.7 (12)
Br1—Sn1—C7—C8149.70 (12)C12—C13—N2—C17171.2 (9)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula(C7H11N2)[SnBr2(C6H5)3]
Mr632.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.5955 (2), 10.6897 (1), 14.8204 (2)
β (°) 93.924 (1)
V3)2464.93 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.368, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
24740, 2840, 2328
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.06
No. of reflections2840
No. of parameters180
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 1.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—C12.135 (2)Sn1—Br12.7801 (3)
Sn1—C72.149 (3)
C1—Sn1—C1i116.17 (13)C1—Sn1—Br1i90.68 (6)
C1—Sn1—C7121.92 (6)C7—Sn1—Br190.68 (1)
C1—Sn1—Br188.61 (6)Br1—Sn1—Br1i178.64 (2)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

References

First citationAslanov, L. A., Attiya, V. M., Ionov, V. M., Permin, A. B. & Petrosyan, V. S. (1977). Zh. Strukt. Khim. 18, 1113–1118.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L., Wijkens, P. & van Koten, G. (2004). Private communication (refcode CSIGOC). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1605–1609.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds