

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-methylbenzoate

Aamer Saeed,^a Hummera Rafique^a and Ulrich Flörke^b*

^aDepartment of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 29 March 2008; accepted 1 April 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.125; data-to-parameter ratio = 18.2.

The structure of the title compound, $C_9H_{10}O_2$, is related to that of 4-methylphenyl 4-methylbenzoate and ethylene di-4methylbenzoate showing similar bond parameters. The molecule is planar, the dihedral angle between the aromatic ring and the -COOMe group being 0.95 (6)°. The cystal structure exhibits intermolecular C-H···O contacts that link molecules into infinite chains extended in the [001] direction.

Related literature

For related literature, see: Deguire & Brisse (1988); Gowda *et al.* (2007; Gray & Whalley (1971); Harris & Mantle (2001); Saeed & Rama (1994); Simpson (1978).

a = 5.9134 (11) Å

b = 7.6048 (14) Å

c = 17.484 (3) Å

Experimental

Crystal data

 $C_9 H_{10} O_2$ $M_r = 150.17$ Monoclinic, $P2_1/c$

$\beta = 97.783 \ (4)^{\circ}$
$V = 779.0 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.961, T_{\rm max} = 0.967$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.124$ S = 1.061855 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9B\cdots O2^{i}$	0.98	2.51	3.4930 (16)	177
C	. 1 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2231).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 2545-2552.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, 03867.
- Gray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575–3577.
- Harris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709-716.
- Saeed, A. & Rama, N. H. (1994). J. Sci. I. R. Iran, 5, 173-175.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627-628.

 $\mu = 0.09 \text{ mm}^{-1}$ T = 120 (2) K

 $R_{\rm int} = 0.038$

102 parameters

 $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$

 $0.45 \times 0.43 \times 0.39 \text{ mm}$

6617 measured reflections

1855 independent reflections

1482 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2008). E64, o821 [doi:10.1107/S1600536808008738]

Methyl 4-methylbenzoate

Aamer Saeed, Hummera Rafique and Ulrich Flörke

S1. Comment

The title ester is an important intermediate in the synthesis of a variety of natural products. These include the sclerotiorin group of fungal metabolites (Gray & Whalley, 1971), isochromans related to sclerotiorin pigments (Saeed & Rama, 1994) and isocoumarins like the 7-methylmellein (Harris & Mantle, 2001) and stellatin (Simpson, 1978).

S2. Experimental

The title ester was prepared from commercial *p*-toluic acid according to standard procedure.

S3. Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms (C–H = 0.88-0.99 Å) with isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq})$.

Figure 1

Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Methyl 4-methylbenzoate

Crystal data

C₉H₁₀O₂ $M_r = 150.17$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.9134 (11) Å b = 7.6048 (14) Å c = 17.484 (3) Å $\beta = 97.783$ (4)° V = 779.0 (2) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.961, T_{\max} = 0.967$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.124$ S = 1.061855 reflections 102 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 320 $D_x = 1.280 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 806 reflections $\theta = 2.4-27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.45 \times 0.43 \times 0.39 \text{ mm}$

6617 measured reflections 1855 independent reflections 1482 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 9$ $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0752P)^2 + 0.0208P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso} * / U_{eq}$ х y Z01 0.39091 (14) 0.44793 (5) 0.0280(2)0.28701 (11) 02 0.68910(15) 0.15425 (13) 0.51751 (5) 0.0325(3)C1 0.0320 (3) 0.2956 (2) 0.31740 (17) 0.51874 (7) 0.048* H1A 0.2793 0.2050 0.5448 H1B 0.048* 0.1456 0.3732 0.5068 H1C 0.3974 0.3946 0.5526 0.048* C2 0.59091 (19) 0.20144 (15) 0.45593 (6) 0.0234(3)C3 0.67753 (18) 0.17434(15)0.38071 (6) 0.0223(3)C4 0.55841 (19) 0.23124 (15) 0.31083(7)0.0247(3)H4A 0.4154 0.3098 0.030* 0.2888 C5 0.6496(2)0.20350(15) 0.24261 (7) 0.0262(3)H5A 0.5675 0.2426 0.1952 0.031* C6 0.8588(2)0.11953 (15) 0.24239(7) 0.0244(3)C7 0.97615 (19) 0.06389(15)0.31291(7)0.0253(3)H7A 0.030* 1.1195 0.0068 0.3140 C8 0.88716 (19) 0.09050 (15) 0.38126(7) 0.0242 (3) 0.029* H8A 0.9693 0.0515 0.4287 C9 0.9593(2)0.08897 (17) 0.16858(7)0.0312(3)H9A 0.047* 1.1213 0.1213 0.1764 H9B 0.8782 0.1613 0.1273 0.047* 0.047* H9C 0.9438 -0.03550.1542

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0268 (5)	0.0322 (5)	0.0260 (4)	0.0042 (3)	0.0071 (3)	0.0018 (3)
02	0.0343 (5)	0.0389 (5)	0.0234 (5)	0.0042 (4)	0.0004 (4)	0.0016 (3)
C1	0.0340 (7)	0.0342 (7)	0.0299 (7)	0.0024 (5)	0.0121 (5)	-0.0009(5)
C2	0.0249 (6)	0.0201 (6)	0.0248 (6)	-0.0033 (4)	0.0022 (5)	0.0003 (4)
C3	0.0236 (6)	0.0203 (6)	0.0232 (6)	-0.0031 (4)	0.0031 (4)	0.0006 (4)
C4	0.0214 (5)	0.0252 (6)	0.0271 (6)	0.0008 (4)	0.0022 (4)	0.0024 (4)
C5	0.0271 (6)	0.0281 (6)	0.0222 (6)	-0.0019 (5)	-0.0006 (5)	0.0029 (4)
C6	0.0275 (6)	0.0210 (6)	0.0251 (6)	-0.0058 (4)	0.0049 (4)	-0.0010 (4)
C7	0.0231 (6)	0.0215 (6)	0.0316 (6)	0.0008 (4)	0.0042 (5)	0.0002 (4)
C8	0.0245 (6)	0.0221 (6)	0.0251 (6)	-0.0017 (4)	0.0000 (4)	0.0032 (4)
C9	0.0355 (7)	0.0320 (7)	0.0271 (6)	-0.0005 (5)	0.0079 (5)	-0.0018 (5)

Geometric parameters (Å, °)

01—C2	1.3405 (14)	C5—C6	1.3927 (17)
01—C1	1.4468 (14)	C5—H5A	0.9500
O2—C2	1.2065 (14)	C6—C7	1.3962 (17)
C1—H1A	0.9800	C6—C9	1.5101 (16)
C1—H1B	0.9800	C7—C8	1.3843 (16)
C1—H1C	0.9800	С7—Н7А	0.9500
C2—C3	1.4890 (16)	C8—H8A	0.9500
С3—С8	1.3929 (16)	С9—Н9А	0.9800
C3—C4	1.3940 (16)	С9—Н9В	0.9800
C4—C5	1.3899 (16)	С9—Н9С	0.9800
C4—H4A	0.9500		
C2	115.38 (9)	C4—C5—H5A	119.3
01—C1—H1A	109.5	C6—C5—H5A	119.3
01—C1—H1B	109.5	C5—C6—C7	118.16 (10)
H1A—C1—H1B	109.5	C5—C6—C9	121.71 (11)
01—C1—H1C	109.5	C7—C6—C9	120.13 (11)
H1A—C1—H1C	109.5	C8—C7—C6	121.10 (10)
H1B—C1—H1C	109.5	C8—C7—H7A	119.5
O2—C2—O1	123.28 (10)	C6—C7—H7A	119.5
O2—C2—C3	124.43 (11)	C7—C8—C3	120.20 (10)
O1—C2—C3	112.28 (9)	C7—C8—H8A	119.9
C8—C3—C4	119.46 (10)	C3—C8—H8A	119.9
C8—C3—C2	118.00 (10)	С6—С9—Н9А	109.5
C4—C3—C2	122.54 (10)	C6—C9—H9B	109.5
C5—C4—C3	119.76 (11)	H9A—C9—H9B	109.5
С5—С4—Н4А	120.1	С6—С9—Н9С	109.5
С3—С4—Н4А	120.1	H9A—C9—H9C	109.5
C4—C5—C6	121.33 (10)	Н9В—С9—Н9С	109.5
C1—O1—C2—O2	-1.07 (16)	C3—C4—C5—C6	0.00 (17)
C1—O1—C2—C3	179.72 (9)	C4—C5—C6—C7	-0.20 (17)
O2—C2—C3—C8	-0.70 (18)	C4—C5—C6—C9	-179.94 (10)
O1—C2—C3—C8	178.50 (10)	C5—C6—C7—C8	0.28 (17)
O2—C2—C3—C4	-179.94 (11)	C9—C6—C7—C8	-179.98 (10)
O1—C2—C3—C4	-0.74 (16)	C6—C7—C8—C3	-0.16 (17)
C8—C3—C4—C5	0.12 (17)	C4—C3—C8—C7	-0.05 (17)
C2—C3—C4—C5	179.36 (10)	C2—C3—C8—C7	-179.32 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C9—H9 <i>B</i> ···O2 ⁱ	0.98	2.51	3.4930 (16)	177

Symmetry code: (i) x, -y+1/2, z-1/2.