

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua[N-(1-naphthyl)acetamido- κN]bis- $[2-(2-pyridyl)phenyl-\kappa^2N,C^1]$ iridium(III) ethylene glycol hemisolvate

Hao Fu,^a Yugiang Ding^a* and Guoging Chen^b

^aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, People's Republic of China, and ^bSchool of Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, People's Republic of China

Correspondence e-mail: yding@jiangnan.edu.cn

Received 31 March 2008; accepted 12 April 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.013 Å; R factor = 0.039; wR factor = 0.093; data-to-parameter ratio = 13.8.

In the title compound, $[Ir(C_{11}H_8N)_2(C_{12}H_{10}NO)(H_2O)]$. $0.5C_2H_6O_2$, the iridium center is coordinated by two N atoms and two C atoms from two 2-(2-pyridyl)phenyl (ppy) ligands, one N atom from the N-(1-naphthyl)acetamide ligand and one water O atom, forming a distorted octahedral environment. Molecules are linked by intermolecular O-H···O hydrogen bonds formed by the coordinated water molecule and the amide O atom of the N-(1-naphthyl)acetamide ligands.

Related literature

For related literature, see: Adachi et al. (2000); Lamansky et al. (2001); Beeby et al. (2003); You & Park (2005); Baldo et al. (1998).

Experimental

Crystal data

$[Ir(C_{11}H_8N)_2(C_{12}H_{10}NO)-$	$\beta = 92.940 \ (7)^{\circ}$
$(H_2O)] \cdot 0.5C_2H_6O_2$	$\gamma = 107.423 \ (6)^{\circ}$
$M_r = 733.83$	$V = 1503.4 (10) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 10.097 (4) Å	Mo $K\alpha$ radiation
b = 10.888 (4) Å	$\mu = 4.48 \text{ mm}^{-1}$
c = 14.453 (5) Å	T = 273 (2) K
$\alpha = 95.580 \ (7)^{\circ}$	$0.12 \times 0.10 \times 0.06 \text{ mm}$

metal-organic compounds

 $R_{\rm int} = 0.027$

7940 measured reflections

5269 independent reflections

4451 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.615, T_{\max} = 0.775$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	381 parameters
$wR(F^2) = 0.093$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
5269 reflections	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ir1-C23	1.982 (7)	Ir1-N2	2.035 (6)
Ir1-C34	1.993 (7)	Ir1-N3	2.052 (6)
Ir1-N1	2.217 (5)	Ir1-O2	2.219 (4)
C23-Ir1-C34	90.5 (2)	C34–Ir1–N3	80.7 (3)
C23-Ir1-N2	81.7 (3)	N1-Ir1-O2	86.04 (19)

Table 2

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H36\cdots O1^{i}$	0.85	1.98	2.756 (7)	150
02-H36···01	0.85	1.98	2.756 (7)	150

Symmetry code: (i) -x, -y + 2, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06-0483).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2232).

References

- Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904-906.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.
- Beeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80-83.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lamansky, S., Djurovich, P., Murphy, D. & Abdel-Razzaq, F. (2001). J. Am. Chem. Soc. 123, 4304-4312.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.

supporting information

Acta Cryst. (2008). E64, m731 [doi:10.1107/S1600536808010040]

Aqua[N-(1-naphthyl)acetamido- κN]bis[2-(2-pyridyl)phenyl- $\kappa^2 N$, C^1]iridium(III) ethylene glycol hemisolvate

Hao Fu, Yuqiang Ding and Guoqing Chen

S1. Comment

Since the initial work by Thompson and Forrest (Baldo *et al.*, 1998), there have been considerable attention focused on designing homoleptic Ir triscyclometalates ($C\tilde{N}$)₃Ir and heteroleptic Ir complexes ($C\tilde{N}$)₂Ir(LX) for their application in organic light emitting diodes (OLEDs), where $C\tilde{N}$ is a general abbreviation used hereafter for a cyclometalating ligand and LX is an ancillary ligand. ($C\tilde{N}$)₂Ir(LX) complexes, containing cyclometalating ligands 2-pyridylphenyl, have already been incorporated with different kinds of ancillary ligands, such as β -diketonate, 2-picolinic acid, to exploit their potential application in OLEDs. (Adachi *et al.*, 2000; Lamansky *et al.*, 2001; Beeby *et al.*, 2003; You & Park, 2005). However, among all the ancillary lignads used in ($C\tilde{N}$)₂Ir(LX) complexes, *N*-(1-naphthyl)acetamide has never been studied..

In this paper, we report the crystal structure of $(C\tilde{N})_2 Ir(LX)$ with *N*-(1-naphthyl)acetamide as ancillary ligand, it is a solvated neutral mononuclear $[Ir(ppy)_2(N-acetyl-1-naphthylamino)(H_2O)]$ (ppy=2-pyridylphenyl) complex. The Ir atom has a distorted octahedral geometry involving two ppy ligands, one *N*-(1-naphthyl)acetamide ligand and one water molecule. The average bond lengthes from two N atoms and two C atoms in two ppy ligands to iridium center are Ir—N_{av} = 2.048Å and Ir—C_{av} = 1.987Å respectively, the bond lengthes from N atom in the *N*-acetylnaphthylamine ligand and the O atom in aqua to Ir atom are Ir—N=2.217 (5)Å and Ir—O= 2.219 (4).(Table 1).

The molecules of the title complexes are linked by O—H···O intermolecule hydrogen bonds formed by the coordinated water molecules and amido O atom of the *N*-acetyl-1-naphthylamino ligands.(Fig. 2.)

S2. Experimental

0.107 g [(ppy)₂IrCl]₂ (1 eq.) and 0.047 g (2.5 eq.) *N*-(1-naphthyl)acetamide were dissolved in dichlomethane, 0.054 g sodium methanol(10eq.) then added to the mixture to neutralize the hydrochloric acid that produced in the reaction. The reaction was stirred at room temperature for 24 h. After the reaction, the solvent was removed and the residua was washed with hot water and ether. The crude product was separated by chromatography on silica gel with dichloromethane as eluent to give a yellow solid. Single crystals suitable for X-ray diffraction were grown by slow diffusion of ethylene glycol solution.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å; and with Uiso(H) = 1.5 Ueq(O).

Figure 1

The structure of (1) showing the atomic numbering scheme and octahedral coordination of Ir(III). Non-H atoms are shown with the 30% probability displacement ellipsoids.

Figure 2

The crystal packing of (1). The intermolecluar hydrogen bonds are shown as dashed lines.

Aqua[N-(1-naphthyl)acetamido- λN]bis[2-(2-pyridyl)phenyl- $\kappa^2 N$,C¹]iridium(III) ethylene glycol hemisolvate

Crystal data

$[Ir(C_{1}H_{2}N)r(C_{2}H_{2}NO)(H_{2}O)]r(0.5C_{2}H_{2}O)$	7 = 2
$M_r = 733.83$	F(000) = 726
Triclinic, P1	$D_{\rm x} = 1.621 {\rm ~Mg~m^{-3}}$
a = 10.097 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.888 (4) Å	Cell parameters from 2801 reflections
c = 14.453 (5) Å	$\theta = 2.3 - 22.3^{\circ}$
$\alpha = 95.580 \ (7)^{\circ}$	$\mu = 4.48 \text{ mm}^{-1}$
$\beta = 92.940 \ (7)^{\circ}$	T = 273 K
$\gamma = 107.423 \ (6)^{\circ}$	Block, green
$V = 1503.4 (10) \text{ Å}^3$	$0.12 \times 0.10 \times 0.06 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.615, T_{\max} = 0.775$ 7940 measured reflections 5269 independent reflections 4451 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -17 \rightarrow 8$ Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.00	H-atom parameters constrained
5269 reflections	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.001P]$
381 parameters	$(\Delta/\sigma)_{ m max} = 0.004$
0 restraints	$\Delta ho_{ m max} = 0.74 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ir1	0.13408 (3)	0.89887 (2)	0.175881 (18)	0.03749 (11)
01	0.1828 (5)	1.1138 (5)	0.0220 (4)	0.0639 (15)
O2	-0.0027 (5)	1.0120 (4)	0.1312 (3)	0.0525 (12)
H37	0.0550	1.0351	0.0906	0.063*
H36	-0.0767	0.9641	0.0998	0.063*
O3	0.9250 (19)	0.519 (2)	0.6241 (11)	0.287 (10)
Н3	0.9913	0.5173	0.6586	0.431*
N1	0.3081 (5)	1.0563 (5)	0.1332 (4)	0.0443 (14)
N2	0.1680 (6)	0.9878 (5)	0.3092 (4)	0.0425 (13)
N3	0.0900 (6)	0.7881 (5)	0.0484 (4)	0.0461 (14)
C1	0.4217 (8)	1.2363 (8)	0.0431 (6)	0.068 (2)
H1A	0.4089	1.2499	-0.0210	0.102*
H1B	0.5047	1.2118	0.0525	0.102*
H1C	0.4303	1.3149	0.0826	0.102*
C2	0.2964 (7)	1.1287 (6)	0.0672 (5)	0.0473 (17)
C3	0.4419 (8)	1.0810 (8)	0.1841 (6)	0.059 (2)
C4	0.5249 (8)	1.0024 (8)	0.1629 (6)	0.068 (2)
H4	0.4975	0.9413	0.1104	0.082*
C5	0.6484 (9)	1.0104 (12)	0.2166 (9)	0.096 (4)
Н5	0.7011	0.9557	0.2010	0.116*
C6	0.6883 (11)	1.1041 (14)	0.2944 (9)	0.106 (5)
H6	0.7689	1.1116	0.3316	0.127*
C7	0.6075 (9)	1.1888 (10)	0.3179 (6)	0.073 (3)
C8	0.4834 (8)	1.1748 (8)	0.2611 (5)	0.059 (2)
C9	0.4042 (10)	1.2587 (8)	0.2848 (6)	0.068 (2)

H9	0.3225	1.2530	0.2496	0.081*
C10	0.4520 (13)	1.3486 (10)	0.3613 (7)	0.104 (4)
H10	0.4020	1.4052	0.3782	0.125*
C11	0.5746 (15)	1.3572 (13)	0.4147 (8)	0.115 (5)
H11	0.6039	1.4191	0.4667	0.138*
C12	0.6483 (12)	1.2812 (13)	0.3937 (8)	0.099 (4)
H12	0.7295	1.2894	0.4305	0.119*
C13	0.1079 (8)	1.0713 (7)	0.3443 (5)	0.0556 (19)
H13	0.0478	1.0968	0.3049	0.067*
C14	0.1302 (10)	1.1234 (8)	0.4373 (6)	0.071 (2)
H14	0.0854	1.1822	0.4595	0.085*
C15	0.2177 (10)	1.0875 (9)	0.4957 (6)	0.074 (3)
H15	0.2348	1.1218	0.5582	0.089*
C16	0.2797 (9)	1.0009 (9)	0.4610 (6)	0.069 (2)
H16	0.3401	0.9758	0.5003	0.082*
C17	0.2551 (7)	0.9484 (7)	0.3676 (5)	0.0512 (19)
C18	0.3088 (7)	0.8496 (7)	0.3221 (5)	0.0519 (19)
C19	0.4038 (8)	0.7965 (9)	0.3665 (6)	0.066 (2)
H19	0.4368	0.8249	0.4285	0.079*
C20	0.4466 (9)	0.7041 (9)	0.3180 (8)	0.081 (3)
H20	0.5100	0.6702	0.3469	0.097*
C21	0.3967 (9)	0.6599 (8)	0.2261 (7)	0.074 (3)
H21	0.4255	0.5954	0.1940	0.089*
C22	0.3047 (8)	0.7107 (7)	0.1820 (6)	0.0573 (19)
H22	0.2724	0.6794	0.1202	0.069*
C23	0.2586 (7)	0.8065 (6)	0.2264 (5)	0.0430 (16)
C24	0.1684 (8)	0.8064 (7)	-0.0248 (5)	0.0557 (19)
H24	0.2491	0.8768	-0.0192	0.067*
C25	0.1343 (11)	0.7259 (8)	-0.1069 (6)	0.073 (3)
H25	0.1924	0.7396	-0.1553	0.088*
C26	0.0123 (12)	0.6241 (8)	-0.1167 (7)	0.085 (3)
H26	-0.0140	0.5683	-0.1720	0.102*
C27	-0.0684(10)	0.6070 (8)	-0.0442(6)	0.074 (3)
H27	-0.1516	0.5393	-0.0508	0.089*
C28	-0.0306 (8)	0.6881 (7)	0.0407 (5)	0.0534 (19)
C29	-0.1027 (7)	0.6709 (6)	0.1252 (5)	0.0500 (18)
C30	-0.2245 (8)	0.5705 (7)	0.1320 (7)	0.062 (2)
H30	-0.2696	0.5151	0.0792	0.074*
C31	-0.2773(8)	0.5542 (8)	0.2165 (7)	0.072(3)
H31	-0.3583	0.4871	0.2212	0.087*
C32	-0.2111 (8)	0.6368 (8)	0.2951 (7)	0.070(2)
H32	-0.2468	0.6240	0.3527	0.083*
C33	-0.0919(8)	0.7385 (7)	0.2885 (6)	0.059(2)
H33	-0.0501	0.7947	0.3418	0.071*
C34	-0.0326 (6)	0.7588 (6)	0.2036 (5)	0.0426 (16)
C35	0.9687 (19)	0.537 (2)	0.5300 (13)	0.197 (10)
H35A	0.8860	0.5390	0.4936	0.237*
H35B	1.0322	0.6249	0.5357	0.237*

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U ²³
Ir1	0.03596 (15)	0.03611 (15)	0.03817 (16)	0.00916 (10)	-0.00124 (10)	0.00195 (10)
O1	0.057 (3)	0.066 (3)	0.067 (4)	0.013 (3)	-0.012 (3)	0.025 (3)
O2	0.048 (3)	0.057 (3)	0.057 (3)	0.024 (2)	-0.001 (2)	0.004 (2)
O3	0.33 (2)	0.33 (2)	0.175 (13)	0.053 (18)	-0.046 (15)	0.122 (15)
N1	0.039 (3)	0.044 (3)	0.046 (3)	0.009 (2)	-0.004 (3)	0.004 (3)
N2	0.042 (3)	0.038 (3)	0.043 (3)	0.007 (2)	0.004 (3)	0.000 (3)
N3	0.048 (3)	0.039 (3)	0.048 (4)	0.012 (3)	-0.007 (3)	0.001 (3)
C1	0.068 (5)	0.064 (5)	0.062 (5)	0.001 (4)	0.003 (4)	0.018 (4)
C2	0.047 (4)	0.040 (4)	0.051 (4)	0.009 (3)	0.007 (3)	0.002 (3)
C3	0.048 (4)	0.060 (5)	0.058 (5)	-0.001 (4)	0.000 (4)	0.016 (4)
C4	0.056 (5)	0.071 (6)	0.084 (6)	0.021 (4)	0.022 (5)	0.023 (5)
C5	0.048 (5)	0.131 (10)	0.125 (10)	0.031 (6)	0.018 (6)	0.069 (8)
C6	0.057 (6)	0.158 (12)	0.088 (8)	-0.007 (7)	-0.003 (6)	0.069 (8)
C7	0.047 (5)	0.094 (7)	0.059 (6)	-0.013 (5)	-0.006 (4)	0.029 (5)
C8	0.051 (4)	0.068 (5)	0.044 (5)	-0.007 (4)	0.001 (4)	0.019 (4)
C9	0.075 (6)	0.055 (5)	0.057 (5)	-0.002 (4)	0.014 (4)	0.000 (4)
C10	0.129 (9)	0.087 (7)	0.056 (6)	-0.025 (7)	0.005 (6)	-0.001 (5)
C11	0.131 (12)	0.105 (10)	0.056 (7)	-0.035 (8)	-0.007 (7)	0.000 (6)
C12	0.086 (8)	0.115 (10)	0.067 (8)	-0.009 (7)	-0.010 (6)	0.015 (7)
C13	0.052 (4)	0.053 (4)	0.055 (5)	0.007 (4)	0.008 (4)	0.000 (4)
C14	0.082 (6)	0.064 (5)	0.059 (6)	0.014 (5)	0.022 (5)	-0.006 (4)
C15	0.086 (7)	0.073 (6)	0.051 (5)	0.009 (5)	0.011 (5)	-0.007 (5)
C16	0.070 (6)	0.081 (6)	0.041 (5)	0.003 (5)	-0.006 (4)	0.002 (4)
C17	0.045 (4)	0.055 (4)	0.045 (4)	0.000 (3)	0.000 (3)	0.012 (4)
C18	0.041 (4)	0.056 (4)	0.053 (5)	0.004 (3)	-0.003 (3)	0.013 (4)
C19	0.052 (5)	0.080 (6)	0.062 (5)	0.012 (4)	-0.009 (4)	0.030 (5)
C20	0.067 (6)	0.083 (7)	0.108 (8)	0.041 (5)	-0.004 (6)	0.034 (6)
C21	0.075 (6)	0.060 (5)	0.099 (8)	0.034 (5)	0.002 (5)	0.020 (5)
C22	0.058 (5)	0.056 (5)	0.061 (5)	0.022 (4)	0.005 (4)	0.006 (4)
C23	0.036 (3)	0.033 (3)	0.054 (4)	0.001 (3)	0.001 (3)	0.005 (3)
C24	0.069 (5)	0.055 (5)	0.042 (4)	0.017 (4)	0.009 (4)	0.004 (4)
C25	0.122 (8)	0.061 (5)	0.044 (5)	0.037 (5)	0.011 (5)	0.006 (4)
C26	0.140 (10)	0.052 (5)	0.058 (6)	0.028 (6)	-0.011 (6)	-0.008(4)
C27	0.087 (6)	0.061 (5)	0.061 (6)	0.009 (5)	-0.015 (5)	-0.005 (4)
C28	0.062 (5)	0.044 (4)	0.050 (5)	0.015 (4)	-0.013 (4)	0.000 (3)
C29	0.043 (4)	0.040 (4)	0.063 (5)	0.008 (3)	0.000 (4)	0.000 (3)
C30	0.045 (4)	0.051 (5)	0.081 (6)	0.004 (4)	-0.004 (4)	0.003 (4)
C31	0.050 (5)	0.051 (5)	0.107 (8)	-0.002 (4)	0.019 (5)	0.021 (5)
C32	0.055 (5)	0.070 (6)	0.087 (7)	0.016 (4)	0.029 (5)	0.022 (5)
C33	0.049 (4)	0.052 (4)	0.074 (6)	0.012 (4)	0.016 (4)	0.000 (4)
C34	0.031 (3)	0.049 (4)	0.054 (4)	0.022 (3)	0.006 (3)	0.007 (3)
C35	0.17 (2)	0.18(2)	0.23(3)	0.073(13)	-0.10(2)	-0.035(17)

Geometric parameters (Å, °)

Ir1—C23	1.982 (7)	С13—Н13	0.9300	
Ir1—C34	1.993 (7)	C14—C15	1.356 (12)	
Ir1—N1	2.217 (5)	C14—H14	0.9300	
Ir1—N2	2.035 (6)	C15—C16	1.351 (12)	
Ir1—N3	2.052 (6)	C15—H15	0.9300	
Ir1—O2	2.219 (4)	C16—C17	1.393 (10)	
O1—C2	1.249 (8)	C16—H16	0.9300	
O2—H37	0.8500	C17—C18	1.459 (11)	
O2—H36	0.8500	C18—C19	1.417 (10)	
O3—C35	1.47 (2)	C18—C23	1.432 (10)	
O3—H3	0.8200	C19—C20	1.358 (12)	
N1—C2	1.318 (8)	C19—H19	0.9300	
N1—C3	1.443 (9)	C20—C21	1.381 (13)	
N2—C13	1.313 (9)	C20—H20	0.9300	
N2-C17	1.374 (9)	C21—C22	1.375 (10)	
N3—C24	1.348 (9)	C21—H21	0.9300	
N3—C28	1.360 (9)	C22—C23	1.382 (10)	
C1—C2	1.527 (10)	C22—H22	0.9300	
C1—H1A	0.9600	C24—C25	1.368 (10)	
C1—H1B	0.9600	C24—H24	0.9300	
C1—H1C	0.9600	C25—C26	1.378 (13)	
С3—С8	1.389 (11)	C25—H25	0.9300	
C3—C4	1.390 (11)	C26—C27	1.354 (13)	
C4—C5	1.411 (12)	C26—H26	0.9300	
C4—H4	0.9300	C27—C28	1.403 (11)	
C5—C6	1.397 (16)	C27—H27	0.9300	
С5—Н5	0.9300	C28—C29	1.453 (11)	
С6—С7	1.432 (16)	C29—C30	1.394 (10)	
С6—Н6	0.9300	C29—C34	1.415 (9)	
C7—C12	1.368 (14)	C30—C31	1.363 (12)	
С7—С8	1.423 (11)	C30—H30	0.9300	
С8—С9	1.413 (12)	C31—C32	1.382 (12)	
C9—C10	1.365 (12)	C31—H31	0.9300	
С9—Н9	0.9300	C32—C33	1.386 (10)	
C10-C11	1.399 (16)	C32—H32	0.9300	
C10—H10	0.9300	C33—C34	1.401 (10)	
C11—C12	1.293 (16)	С33—Н33	0.9300	
C11—H11	0.9300	C35—C35 ⁱ	1.426 (18)	
C12—H12	0.9300	C35—H35A	0.9700	
C13—C14	1.388 (11)	С35—Н35В	0.9700	
C_{23} Ir1 C_{24}	90.5(2)	C15 C14 C13	110 3 (0)	
$C_{23} = 11 = C_{34}$	90.3(2) 81 7 (2)	C15 - C14 - C15 C15 - C14 - H14	112.3 (2)	
$C_{23} = 11 = 1N_2$	01.7(3) 03.2(2)	C13 - C14 - H14 $C13 - C14 - H14$	120.3	
C_{3} III - N2 C23 III - N2	93.3(3) 94 7 (3)	C13 - C14 - D14 C16 - C15 - C14	120.3	
C_{23} Ir1 N2	эт./ (<i>3)</i> 80 7 (3)	C16 C15 U15	120.8	
UJ T _III_INJ	00.7 (3)	010-013-1113	120.0	

N2—Ir1—N3	172.9 (2)	C14—C15—H15	120.8
C23—Ir1—N1	93.8 (2)	C15—C16—C17	121.5 (8)
C34—Ir1—N1	174.7 (2)	C15—C16—H16	119.2
N2—Ir1—N1	90.5 (2)	C17—C16—H16	119.2
N3—Ir1—N1	95.8 (2)	N2—C17—C16	119.1 (8)
C23—Ir1—O2	175.1 (2)	N2-C17-C18	113.6 (6)
C34—Ir1—O2	89.9 (2)	C16—C17—C18	127.3 (7)
N2—Ir1—O2	93.5 (2)	C19—C18—C23	120.1 (8)
N_3 —Ir1—O2	90.2 (2)	C19—C18—C17	124.4 (7)
N1— $Ir1$ — $O2$	86.04 (19)	C_{23} C_{18} C_{17}	1155(6)
$Ir1-\Omega^2-H37$	85.0	C_{20} C_{19} C_{18}	119.8 (8)
$Ir1_02_H36$	112.0	C_{20} C_{19} H_{19}	120.1
$H_{37} = 02 + H_{36}$	104.4	C_{18} C_{19} H_{19}	120.1
$C_{35} = C_{3} = C_{35}$	109.5	$C_{10} = C_{10} = C_{11}$	120.1 120.6(8)
$C_{2} = 0.5 - 0.5$	119.5	$C_{19} = C_{20} = C_{21}$	120.0 (8)
$C_2 = N_1 = C_3$	110.9(0) 124.8(4)	$C_{19} = C_{20} = H_{20}$	119.7
C2—NI—III	124.8 (4)	$C_{21} = C_{20} = H_{20}$	119.7
$C_3 = N_1 = Ir_1$	110.5 (4)	$C_{22} = C_{21} = C_{20}$	120.3 (9)
C13 = N2 = C17	118.6 (6)	C22—C21—H21	119.8
C13 - N2 - Ir1	125.8 (5)	C20—C21—H21	119.8
C17—N2—Ir1	115.4 (5)	C21—C22—C23	122.3 (8)
C24—N3—C28	119.5 (6)	C21—C22—H22	118.9
C24—N3—Ir1	126.1 (5)	C23—C22—H22	118.9
C28—N3—Ir1	114.3 (5)	C22—C23—C18	116.9 (6)
C2—C1—H1A	109.5	C22—C23—Ir1	129.3 (6)
C2—C1—H1B	109.5	C18—C23—Ir1	113.8 (5)
H1A—C1—H1B	109.5	N3—C24—C25	122.8 (8)
C2—C1—H1C	109.5	N3—C24—H24	118.6
H1A—C1—H1C	109.5	C25—C24—H24	118.6
H1B—C1—H1C	109.5	C24—C25—C26	118.8 (9)
O1—C2—N1	121.9 (6)	С24—С25—Н25	120.6
O1—C2—C1	116.8 (6)	C26—C25—H25	120.6
N1—C2—C1	121.3 (6)	C27—C26—C25	118.6 (9)
C8—C3—C4	118.9 (8)	С27—С26—Н26	120.7
C8—C3—N1	120.5 (8)	С25—С26—Н26	120.7
C4—C3—N1	120.4 (7)	C26—C27—C28	122.1 (8)
$C_3 - C_4 - C_5$	123.5(10)	С26—С27—Н27	118.9
C3—C4—H4	118.2	$C_{28} = C_{27} = H_{27}$	118.9
$C_5 - C_4 - H_4$	118.2	N_{3} C_{28} C_{27}	118.1 (8)
C_{1} C_{2} C_{3} C_{4}	117.1 (11)	N3 C28 C20	115.1(6)
C6 C5 H5	121 4	$C_{20} = C_{20} = C_{20}$	113.4(0) 126.3(7)
C_{0}	121.4	$C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	120.3(7)
C_{4}	121.4 121.2(10)	C_{30} C_{29} C_{34}	121.9(7) 122.7(7)
$C_{5} = C_{6} = U_{6}$	121.5 (10)	$C_{20} = C_{29} = C_{28}$	123.7(7)
	117.4	$C_{24} = C_{29} = C_{20}$	114.2(0)
$C_1 = C_2 = C_2$	119.4	$C_{21} = C_{20} = U_{20}$	119.7 (8)
$C12 - C/ - C\delta$	120.5 (11)	C_{20} C_{20} H_{20}	120.2
C12 - C/ - C6	120.8 (10)	C29—C30—H30	120.2
C8—C7—C6	118.6 (10)	C30—C31—C32	120.4 (7)
C3—C8—C9	121.2 (7)	C30—C31—H31	119.8

C3—C8—C7	120.5 (9)	С32—С31—Н31	119.8
C9—C8—C7	118.3 (9)	C31—C32—C33	120.2 (8)
C10—C9—C8	117.7 (10)	С31—С32—Н32	119.9
С10—С9—Н9	121.2	С33—С32—Н32	119.9
С8—С9—Н9	121.2	C32—C33—C34	121.6 (8)
C9—C10—C11	121.4 (13)	С32—С33—Н33	119.2
С9—С10—Н10	119.3	С34—С33—Н33	119.2
C11—C10—H10	119.3	C33—C34—C29	116.2 (6)
C12—C11—C10	121.7 (12)	C33—C34—Ir1	129.1 (5)
C12—C11—H11	119.2	C29—C34—Ir1	114.7 (5)
C10-C11-H11	119.2	C35 ⁱ —C35—O3	130 (3)
C11—C12—C7	120.5 (12)	C35 ⁱ —C35—H35A	104.8
C11—C12—H12	119.8	O3—C35—H35A	104.8
С7—С12—Н12	119.8	C35 ⁱ —C35—H35B	104.8
N2-C13-C14	122.9 (8)	O3—C35—H35B	104.8
N2—C13—H13	118.5	H35A—C35—H35B	105.8
C14—C13—H13	118.5		

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
O2—H36…O1 ⁱⁱ	0.85	1.98	2.756 (7)	150
O2—H36…O1 ⁱⁱ	0.85	1.98	2.756 (7)	150

Symmetry code: (ii) -x, -y+2, -z.