Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$(-)_{545}$ -fac- Δ -Tris(L-prolinato)cobalt(III) trihydrate

Masaru Kato,^a Miho Hayashi,^a Takashi Fujihara^b* and Akira Nagasawa^a

^aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and ^bMolecular Analysis and Life Science Center, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Received 12 March 2008; accepted 14 April 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.007 Å; R factor = 0.062; wR factor = 0.108; data-to-parameter ratio = 16.5.

The absolute configuration of the octahedral fac-CoN₃O₃ title complex, [Co(C₅H₈NO₂)₃]·3H₂O, has been determined by single-crystal X-ray analysis. A three-dimensional network of hydrogen bonds is observed between the proline carboxylate groups and the three uncoordinated water molecules.

Related literature

For related literature, see: Denning & Piper (1965).

Experimental

Crystal data [Co(C₅H₈NO₂)₃]·3H₂O

 $M_r = 455.35$

Orthorhombic, $P2_12_12_1$ a = 10.1673 (9) Å b = 10.8433 (10) Å c = 17.2157 (14) Å V = 1898.0 (3) Å³

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.885, T_{max} = 0.936$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.107$ S = 0.92 4522 reflections 274 parametersH atoms treated by a mixture of independent and constrained refinement Z = 4 Mo K α radiation μ = 0.96 mm⁻¹ T = 173 (2) K 0.13 × 0.08 × 0.07 mm

13762 measured reflections 4522 independent reflections 2969 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.122$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.85~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.51~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 2596~{\rm Friedel~pairs}\\ {\rm Flack~parameter:~0.04~(2)} \end{array}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O9-H9D\cdots O4^{i}$	0.74 (6)	2.19 (7)	2.907 (6)	164 (8)
$O8 - H8D \cdots O2$	0.77 (6)	2.11 (6)	2.880 (5)	173 (7)
$O7 - H7D \cdots O9^{ii}$	0.66 (7)	2.20 (6)	2.848 (7)	167 (9)
O9−H9C···O8	0.77 (6)	2.09 (7)	2.853 (6)	166 (8)
O8−H8C···O7	0.93 (6)	1.96 (6)	2.882 (7)	172 (5)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *SMART-W2K/NT* (Bruker, 2003); cell refinement: *SAINT-W2K/NT* (Bruker, 2003); data reduction: *SAINT-W2K/NT*; program(s) used to solve structure: *SHELXTL-NT* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL-NT*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2254).

References

 Bruker (2003). SAINT-W2K/NT and SMART-W2K/NT. Bruker AXS Inc., Madison, Wisconsin, USA.
 Denning, R. G. & Piper, T. S. (1965). Inorg. Chem. 5, 1056–1065.
 Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122..

supporting information

Acta Cryst. (2008). E64, m684 [doi:10.1107/S1600536808010246]

(-)₅₄₅-fac-Δ-Tris(L-prolinato)cobalt(III) trihydrate

Masaru Kato, Miho Hayashi, Takashi Fujihara and Akira Nagasawa

S1. Comment

The optical activity, absolute configuration, and rearrangement of tris(*L*-prolinato)cobalt(III) complexes were studied by Denning & Piper (1965), in which the absolute configurations were assigned based on circular dichroism (CD) studies and ¹H NMR spectra. In this work, single crystals of the $(-)_{545}$ -*fac*-[Co(*L*-pro)₃] isomer (I) suitable for single-crystal X-ray analysis have been prepared. This has allowed the determination of the absolute configuration of (I) as Δ . The UV-Vis and CD spectra of (I) in H₂O show good agreement with the reported spectra (Denning & Piper, 1965). The molecular structure, Fig. 1, shows three deprotonated proline molecules to chelate the cobalt(III) ion to form octahedral *fac*-CoN₃O₃ geometry. The three lattice water form a three-dimensional network of hydrogen bonds with the uncoordinated carbonyl groups of the proline molecules (Table 1 & Fig. 2).

S2. Experimental

The title compound was prepared according to the literature method (Denning & Piper, 1965). Single crystals suitable for single-crystal X-ray analysis were obtained by vapor diffusion of ethanol into the aqueous solution of (I) at room temperature. Analysis found: C 39.59, H 6.58, N 9.10; $C_{15}H_{30}CoN_3O_9$ $C_{29}H_{34}F_6O_2S_2$ requires: C 39.57, H 6.64, N 9.23.

S3. Refinement

The water- and N-bound H atoms were located in difference maps and refined with $U_{iso}(H) = 1.5U_{eq}(O)$ or $1.5U_{eq}(N)$; see Table 1 for O-H and N-H bond distances. The remaining H atoms were placed in calculated positions, with C—H = 1.00 Å (for CH) and 0.99 Å (for CH₂) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

ORTEP drawing for (I), showing atom labelling scheme and displacement ellipsoids at the 50% probability level. All hydrogen atoms are omitted for clarity.

Figure 2

Three-dimensional network structure of hydrogen bonds viewed in projection down the *a* axis. Dashed lines indicate the hydrogen-bonding interactions. All hydrogen atoms are omitted for clarity.

(-)₅₄₅-fac-**Δ**-Tris(L-prolinato)cobalt(III) trihydrate

Crystal data

 $[Co(C_5H_8NO_2)_3] \cdot 3H_2O$ $M_r = 455.35$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 10.1673 (9) Å b = 10.8433 (10) Å c = 17.2157 (14) Å V = 1898.0 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.366 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.885, \ T_{\max} = 0.936$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.062$ H atoms treated by a mixture of independent $wR(F^2) = 0.107$ and constrained refinement S = 0.92 $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 4522 reflections 274 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.85 \text{ e } \text{\AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2596 Friedel Secondary atom site location: difference Fourier pairs Absolute structure parameter: 0.04 (2) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 960

 $\theta = 2.2 - 17.1^{\circ}$

 $\mu = 0.96 \text{ mm}^{-1}$

T = 173 K

Block, pink

 $R_{\rm int} = 0.122$

 $h = -13 \rightarrow 7$ $k = -14 \rightarrow 14$ $l = -22 \rightarrow 22$

 $D_{\rm x} = 1.594 {\rm Mg m^{-3}}$

 $0.13 \times 0.08 \times 0.07$ mm

 $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

13762 measured reflections 4522 independent reflections 2969 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 705 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3689 (5)	0.9795 (5)	0.1401 (3)	0.0220 (11)
H1A	0.4364	0.9396	0.1063	0.026*
C2	0.4210 (5)	1.1046 (5)	0.1661 (3)	0.0309 (15)

H2A	0.3940	1.1230	0.2201	0.037*
H2B	0.5182	1.1074	0.1627	0.037*
C3	0.3589 (5)	1.1948 (4)	0.1093 (3)	0.0248 (11)
H3A	0.3561	1.2794	0.1309	0.030*
H3B	0.4062	1.1958	0.0591	0.030*
C4	0.2218 (5)	1.1408 (5)	0.1008 (3)	0.0251 (12)
H4A	0.1678	1.1576	0.1475	0.030*
H4B	0.1766	1.1749	0.0546	0.030*
C5	0.3343 (5)	0.8910 (5)	0.2056 (3)	0.0216 (12)
C6	0.0485 (5)	0.7863 (5)	-0.0354 (3)	0.0168 (11)
H6A	-0.0194	0.7199	-0.0309	0.020*
C7	0.0427 (5)	0.8403 (5)	-0.1185 (3)	0.0226 (12)
H7A	0.1316	0.8630	-0.1372	0.027*
H7B	0.0029	0.7809	-0.1553	0.027*
C8	-0.0437 (5)	0.9539 (4)	-0.1089(3)	0.0223 (11)
H8A	-0.0286	1.0141	-0.1512	0.027*
H8B	-0.1381	0.9316	-0.1074	0.027*
С9	0.0024 (5)	1.0038 (5)	-0.0315(3)	0.0213 (12)
H9A	0.0893	1.0442	-0.0364	0.026*
H9B	-0.0614	1.0637	-0.0101	0.026*
C10	0.1804 (5)	0.7331 (5)	-0.0136(3)	0.0172 (11)
C11	-0.0584 (5)	0.8563 (5)	0.2340 (3)	0.0208 (12)
H11A	-0.0041	0.8448	0.2819	0.025*
C12	-0.1937(5)	0.9052 (5)	0.2579 (3)	0.0311 (15)
H12A	-0.2643	0.8598	0.2305	0.037*
H12B	-0.2069	0.8960	0.3146	0.037*
C13	-0.1946 (5)	1.0400 (5)	0.2351 (3)	0.0258 (13)
H13A	-0.1594	1.0925	0.2773	0.031*
H13B	-0.2844	1.0681	0.2216	0.031*
C14	-0.1050(5)	1.0419 (5)	0.1647 (3)	0.0205 (12)
H14A	-0.1523	1.0132	0.1178	0.025*
H14B	-0.0710	1.1261	0.1551	0.025*
C15	-0.0597(5)	0.7356 (5)	0.1891 (3)	0.0180 (11)
Col	0.12024 (6)	0.87354 (6)	0.11104 (3)	0.01537 (16)
N1	0.2469 (4)	1.0046 (4)	0.0916 (2)	0.0190 (10)
HIC	0.2698	0.9957	0.0470	0.023*
N2	0.0110 (4)	0.8912 (4)	0.01862 (19)	0.0144 (9)
H2C	-0.070	0.8757	0.0338	0.017*
N3	0.0039(4)	0.9561 (4)	0 1851 (2)	0.0194(11)
H3C	0.0460	0.9900	0.2108	0.023*
01	0.2224(3)	0.8373 (3)	0 20056 (17)	0.0198(9)
02	0.2221(3) 0.4133(3)	0.8715 (4)	0.25896 (18)	0.0321(9)
03	0.1139(3) 0.2340(3)	0.7768 (3)	0.04792 (18)	0.0321(9) 0.0182(8)
04	0.2308(3)	0.6524 (3)	-0.05483(18)	0.0102(0)
05	0.0152 (3)	0 7314 (3)	0 12902 (16)	0.0270(9)
06	-0.1273(4)	0 6473 (3)	0 21062 (17)	0.0246(8)
07	0 1135 (5)	0 9744 (5)	0.4313(3)	0.0210(0) 0.0419(12)
H7C	0.096 (6)	1 024 (6)	0 392 (4)	0.063*
11/0	0.070 (0)	1.027 (0)	U.J/2 (T)	0.005

H7D	0.051 (7)	0.966 (8)	0.442 (4)	0.063*	
08	0.2893 (4)	0.7736 (4)	0.3961 (2)	0.0383 (11)	
H8C	0.227 (6)	0.835 (6)	0.404 (3)	0.057*	
H8D	0.328 (6)	0.796 (6)	0.360 (3)	0.057*	
O9	0.3649 (5)	0.5837 (4)	0.5018 (3)	0.0461 (13)	
H9C	0.356 (8)	0.640 (6)	0.475 (4)	0.069*	
H9D	0.328 (7)	0.531 (6)	0.485 (4)	0.069*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.016 (3)	0.027 (3)	0.023 (2)	-0.002 (3)	0.002 (2)	-0.003 (2)
C2	0.024 (3)	0.034 (4)	0.035 (3)	-0.010 (3)	0.000 (2)	-0.007 (3)
C3	0.029 (3)	0.019 (3)	0.027 (2)	-0.006 (2)	0.009 (3)	-0.002 (3)
C4	0.031 (3)	0.019 (3)	0.025 (3)	0.003 (3)	0.006 (2)	-0.004 (3)
C5	0.028 (3)	0.016 (3)	0.021 (3)	0.005 (2)	0.002 (2)	-0.005 (2)
C6	0.018 (3)	0.018 (3)	0.015 (2)	-0.005 (2)	0.004 (2)	-0.008 (2)
C7	0.024 (3)	0.035 (3)	0.009 (2)	-0.001 (2)	-0.001 (2)	-0.002 (2)
C8	0.019 (3)	0.030 (3)	0.018 (2)	0.000 (2)	-0.001 (3)	0.009 (3)
C9	0.022 (3)	0.018 (3)	0.024 (3)	0.000 (2)	0.000 (2)	0.003 (2)
C10	0.015 (3)	0.017 (3)	0.019 (3)	-0.002 (2)	0.007 (2)	-0.001 (2)
C11	0.028 (3)	0.015 (3)	0.019 (2)	-0.001 (3)	0.003 (2)	0.000 (2)
C12	0.031 (3)	0.025 (4)	0.037 (3)	-0.006 (3)	0.014 (3)	0.001 (3)
C13	0.018 (3)	0.029 (3)	0.030 (3)	0.000 (3)	0.004 (2)	-0.003 (3)
C14	0.022 (3)	0.015 (3)	0.025 (3)	0.003 (3)	-0.003 (3)	0.001 (2)
C15	0.017 (3)	0.018 (3)	0.019 (3)	-0.002 (2)	-0.006 (2)	-0.002 (2)
Col	0.0161 (3)	0.0153 (3)	0.0147 (3)	-0.0008 (3)	-0.0009 (3)	-0.0009 (3)
N1	0.020 (2)	0.019 (2)	0.018 (2)	0.0016 (19)	-0.0008 (19)	-0.0008 (17)
N2	0.013 (2)	0.015 (2)	0.0159 (19)	0.0001 (19)	-0.0015 (17)	0.0004 (18)
N3	0.026 (3)	0.012 (2)	0.021 (2)	-0.004 (2)	-0.003 (2)	-0.0027 (18)
01	0.021 (2)	0.023 (2)	0.0158 (17)	0.0023 (17)	-0.0061 (16)	0.0040 (15)
O2	0.033 (2)	0.040 (2)	0.0236 (18)	0.001 (2)	-0.0133 (16)	0.003 (2)
03	0.0158 (18)	0.019 (2)	0.0199 (17)	0.0037 (16)	-0.0049 (15)	-0.0045 (15)
O4	0.0225 (19)	0.034 (3)	0.0261 (19)	0.0057 (18)	0.0014 (16)	-0.0104 (18)
O5	0.0215 (18)	0.016 (2)	0.0194 (19)	-0.0054 (16)	-0.0042 (15)	-0.0002 (14)
06	0.0259 (18)	0.021 (2)	0.0270 (17)	-0.005 (2)	-0.0014 (17)	0.0053 (15)
O7	0.041 (3)	0.046 (3)	0.039 (2)	0.009 (3)	-0.003 (3)	0.0153 (19)
08	0.049 (3)	0.034 (3)	0.032 (2)	-0.001 (2)	0.002 (2)	0.004 (2)
09	0.048 (3)	0.036 (3)	0.055 (3)	-0.005 (3)	-0.006 (3)	0.004 (2)

Geometric parameters (Å, °)

C1—N1	1.520 (6)	C11—N3	1.510 (6)
C1—C5	1.521 (7)	C11—C15	1.520 (7)
C1—C2	1.523 (7)	C11—C12	1.530 (7)
C1—H1A	1.0000	C11—H11A	1.0000
C2—C3	1.520(7)	C12—C13	1.514 (7)
C2—H2A	0.9900	C12—H12A	0.9900

C2—H2B	0.9900	C12—H12B	0.9900
C3—C4	1.518 (6)	C13—C14	1.516 (6)
С3—НЗА	0.9900	C13—H13A	0.9900
С3—Н3В	0.9900	С13—Н13В	0.9900
C4—N1	1.507 (6)	C14—N3	1.488 (6)
C4—H4A	0.9900	C14—H14A	0.9900
C4—H4B	0.9900	C14—H14B	0.9900
C502	1 238 (5)	C15—O6	1 235 (6)
$C_{5} - O_{1}$	1 282 (6)	C15-05	1 285 (5)
C6—C10	1 508 (6)	Co1-O1	1.200(3)
C6—N2	1 518 (6)	Col=05	1.900(3)
C6-C7	1 546 (6)	$C_{01} = 03$	1.900(3) 1.903(3)
C6—H6A	1,0000	Col—NI	1.903(3) 1.947(4)
C7 C8	1.5000	Col N2	1.947(4) 1.050(3)
C7 H7A	0.0000	Co1 N3	1.950(3)
C7_H7P	0.9900		0.8117
C^{2}	0.9900		0.8117
C_{8}	1.515 (0)	N2—H2C	0.8806
	0.9900	N3—H3C	0.7180
C8—H8B	0.9900	0/—H/C	0.88 (6)
C9—N2	1.497 (6)	O/—H/D	0.66 (7)
C9—H9A	0.9900	O8—H8C	0.93 (6)
С9—Н9В	0.9900	O8—H8D	0.77 (6)
C10—O4	1.237 (6)	O9—H9C	0.77 (6)
C10—O3	1.282 (5)	09—H9D	0.74 (6)
N1-C1-C5	109 4 (4)	C13—C12—C11	105 7 (4)
N1-C1-C2	106.6 (4)	C_{13} C_{12} H_{12A}	110.6
C_{5}	115.2(4)	C_{11} C_{12} H_{12A}	110.6
N1 - C1 - H1A	108 5	C_{13} C_{12} H_{12R}	110.6
C_5 — C_1 — H_1A	108.5	C11_C12_H12B	110.6
$C_2 = C_1 = H_1 \Lambda$	108.5	$H_{12A} = C_{12} = H_{12B}$	108.7
$C_2 - C_1 - C_1$	103.9(4)	C12 - C13 - C14	103.7 102.5(4)
$C_3 = C_2 = C_1$	111.0	C_{12} C_{13} C_{14}	102.5 (4)
C_{1} C_{2} H_{2A}	111.0	C12 - C13 - H13A	111.3
$C_1 = C_2 = H_2 R$	111.0	C_{14} C_{13} C	111.3
$C_3 = C_2 = H_2 B$	111.0	C12 - C13 - H13B	111.3
$C_1 = C_2 = H_2 B$	111.0		111.5
$H_2A = C_2 = H_2B$	109.0	$M_{13}^{} C_{13}^{} H_{13}^{} B_{13}^{} B_{1$	109.2
C4 = C2 = U2A	101.5 (4)	$N_{2} = C_{14} = U_{14}$	104.3 (4)
$C_4 = C_3 = H_3 A$	111.5	$N_{3} = C_{14} = H_{14A}$	110.9
$C_2 = C_3 = H_3 A$	111.5	C13—C14—H14A	110.9
C4 - C3 - H3B	111.5		110.9
C2—C3—H3B	111.5	C13—C14—H14B	110.9
H3A—C3—H3B	109.3	H14A—C14—H14B	108.9
NI-C4-C3	103.5 (4)	06-015-05	123.0 (5)
NI—C4—H4A	111.1	06—C15—C11	121.3 (4)
С3—С4—Н4А	111.1	O5-C15-C11	115.8 (4)
N1—C4—H4B	111.1	O1—Co1—O5	90.41 (14)
C3—C4—H4B	111.1	O1—Co1—O3	90.97 (14)

$H4\Delta$ _C A _H $4B$	109.0	05-01-03	89 27 (14)
$\Omega^2 = C_5 = \Omega^1$	109.0	O_1 C_{01} N_1	85.02 (14)
02-05-01	120.5(5)	05-01-N1	172 63 (16)
01 C5 C1	120.3(3) 116.2(4)	$O_3 Col Nl$	84.41 (15)
$C_{10} C_{6} N_{2}$	110.2(4)	$O_1 = C_{01} = N_1$	172 64 (17)
$C_{10} = C_{0} = N_{2}$	111.0(4)	$O_1 = O_1 = N_2$	1/3.04(17)
10 - 0 - 07	114.1(4) 105.0(4)	$O_2 = C_{01} = N_2$	85.85 (15)
$N_2 = C_0 = C_1$	103.9 (4)	V_{3} V_{1} C_{2} V_{2}	80.24 (13)
C10 - C0 - H0A	108.0	NI = CoI = N2	99.48 (16)
N2 - C6 - H6A	108.6	OI = CoI = N3	84.07 (15)
С/—Сб—НбА	108.6	05-01-N3	85.70 (16)
C8—C7—C6	103.2 (4)	O3—Co1—N3	172.90 (16)
С8—С7—Н7А	111.1	N1—Co1—N3	100.25 (17)
С6—С7—Н7А	111.1	N2—Co1—N3	98.17 (16)
С8—С7—Н7В	111.1	C4—N1—C1	104.8 (4)
С6—С7—Н7В	111.1	C4—N1—Co1	125.9 (3)
H7A—C7—H7B	109.1	C1—N1—Co1	108.3 (3)
C9—C8—C7	101.9 (4)	C4—N1—H1C	105.4
С9—С8—Н8А	111.4	C1—N1—H1C	105.4
С7—С8—Н8А	111.4	Col—Nl—HlC	105.4
С9—С8—Н8В	111.4	C9—N2—C6	105.8 (3)
С7—С8—Н8В	111.4	C9—N2—Co1	125.7 (3)
H8A—C8—H8B	109.3	C6—N2—Co1	106.5 (3)
N2—C9—C8	103.6 (4)	C9—N2—H2C	105.8
N2—C9—H9A	111.0	C6—N2—H2C	105.8
С8—С9—Н9А	111.0	Co1—N2—H2C	105.8
N2—C9—H9B	111.0	C14—N3—C11	105.5 (4)
С8—С9—Н9В	111.0	C14—N3—Co1	125.6 (3)
Н9А—С9—Н9В	109.0	C11—N3—Co1	106.8 (3)
O4—C10—O3	124.0 (5)	C14—N3—H3C	105.8
O4—C10—C6	119.8 (5)	C11—N3—H3C	105.8
O3—C10—C6	116.2 (4)	Co1—N3—H3C	105.8
N3—C11—C15	109.7 (4)	C5-O1-Co1	116.5 (3)
N3—C11—C12	106.2 (4)	C10—O3—Co1	114.7 (3)
C15—C11—C12	115.3 (4)	C15—O5—Co1	115.8 (3)
N3—C11—H11A	108.5	H7C—O7—H7D	95 (7)
C15—C11—H11A	108.5	H8C—O8—H8D	104 (6)
C12—C11—H11A	108.5	H9C—O9—H9D	108 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
09—H9 <i>D</i> …O4 ⁱ	0.74 (6)	2.19 (7)	2.907 (6)	164 (8)
O8—H8 <i>D</i> ···O2	0.77 (6)	2.11 (6)	2.880 (5)	173 (7)
O7—H7 <i>D</i> ···O9 ⁱⁱ	0.66 (7)	2.20 (6)	2.848 (7)	167 (9)
O9—H9 <i>C</i> ···O8	0.77 (6)	2.09 (7)	2.853 (6)	166 (8)
O8—H8 <i>C</i> ⋯O7	0.93 (6)	1.96 (6)	2.882 (7)	172 (5)

Symmetry codes: (i) -*x*+1/2, -*y*+1, *z*+1/2; (ii) *x*-1/2, -*y*+3/2, -*z*+1.