Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(4-chlorophenyl)urea

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 19 March 2008; accepted 20 April 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.032 ; w R$ factor $=0.097$; data-to-parameter ratio $=15.9$.

The carbonyl unit of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$, lies on a twofold rotation axis. The ring is aligned at $51.6(1)^{\circ}$ with respect to the $\mathrm{N}-\mathrm{C}(=\mathrm{O})-\mathrm{N}$ fragment. The two $-\mathrm{NH}-$ fragments of one molecule form hydrogen bonds [2.845 (2) Å] to the $\mathrm{C}=\mathrm{O}$ fragment of an adjacent molecule, giving rise to the formation of a linear hydrogen-bonded chain.

Related literature

For isostructural N, N^{\prime}-bis(4-bromophenyl)urea, see: Lin et al. (2004). N, N^{\prime}-Bis-(4-chlorophenyl)urea has been isolated as a co-crystal with a phthalazinium chloride; see: Wamhoff et al. (1994). For the self-condensation of 4-chlorophenyl isocyanate to yield the title symmetrical urea, see: Fu et al. (2007); Jimenez Blanco et al. (1999).

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=281.13$
Monoclinic, $C 2 / c$
$a=27.093$ (3) A
$b=4.5768$ (5) \AA
$c=9.901$ (1) \AA
$\beta=96.389(2)^{\circ}$

Data collection

Bruker SMART APEX

 diffractometerAbsorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.862, T_{\text {max }}=0.950$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.096$
$S=1.11$
1386 reflections
87 parameters
1 restraint

3703 measured reflections 1386 independent reflections 1210 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(1)$	$2.05(1)$	$2.845(2)$	$152(2)$

Symmetry code: (i) $x, y-1, z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2256).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fu, J.-L., Wang, Z. \& Zhu, H. (2007). Hиахие Shiji, 29, 187-188.
Jimenez Blanco, J. L., Saitz Barria, C., Benito, J. M., Ortiz Mellet, C., Fuentes, J., Santoyo-Gonzalez, F. \& Garcia Fernandez, J. (1999). Synthesis, pp. 19071914.

Lin, Q., Zhang, Y.-M., Wei, T.-B. \& Wang, H. (2004). Acta Cryst. E60, o696o698.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wamhoff, H., Bamberg, C., Hermann, S. \& Nieger, M. (1994). J. Org. Chem. 59, 3985-3993.
Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o922 [doi:10.1107/S1600536808011069]

N, N^{\prime}-Bis(4-chlorophenyl)urea

Kong Mun Lo and Seik Weng Ng

S1. Comment

The title compound, a symmetrical urea derivative, was the unexpected product from the reaction of 4-chlorophenyl isocyanate with p-tolylsulfonic acid in ethanol. The carbonyl unit of $\left(\mathrm{Cl}-4-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NH}-\mathrm{C}(=\mathrm{O})-\mathrm{NH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}\right)$ lies on a twofold rotation axis, Fig. 1, that relates one aromatic ring to the other. The ring is aligned at $51.6(1)^{\circ}$ with respect to the $\mathrm{N}-\mathrm{C}(=\mathrm{O})-\mathrm{N}$ fragment. The two $-\mathrm{NH}-$ fragments of one molecule forms hydrogen bonds to the $\mathrm{C}=\mathrm{O}$ fragment of an adjacent molecule, giving rise to the formation of a linear hydrogen-bonded chain (Table 1). The compound has previously been synthesized from the self-condensation of 4-chlorophenyl isocyanate in acetone (Fu et al., 2007) and in water catalyzed by pyridine (Jimenez Blanco et al., 1999).

S2. Experimental

4-Chlorophenyl isocyanate ($1.0 \mathrm{~g}, 6.5 \mathrm{mmol}$) and p-toluenesulfonic acid ($1.2 \mathrm{~g}, 6.5 \mathrm{mmol}$) were heated in ethanol (100 ml) for 1 h . The solution was filtered; evaporation of the solvent gave plates of the symmetrical urea.

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$) and were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.
The amino H -atom was located in a difference Fourier map, and was refined with a distance restraint of $\mathrm{N}-\mathrm{H} 0.88 \pm 0.01$ \AA; its temperature factor was freely refined.

Figure 1

The molecular structure of (I) showing the atom-numbering scheme and 70% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlablled atoms related by a 2 -fold axis of symmetry.

N, N^{\prime}-Bis(4-chlorophenyl)urea

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=281.13$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=27.093$ (3) \AA
$b=4.5768$ (5) \AA
$c=9.901(1) \AA$
$\beta=96.389$ (2) ${ }^{\circ}$
$V=1220.1(2) \AA^{3}$
$Z=4$

$$
F(000)=576
$$

$D_{\mathrm{x}}=1.530 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1510 reflections
$\theta=3.0-28.2^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.862, T_{\text {max }}=0.950$

> 3703 measured reflections
> 1386 independent reflections
> 1210 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.020$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=1.5^{\circ}$
> $h=-34 \rightarrow 27$
> $k=-5 \rightarrow 5$
> $l=-10 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.096$
$S=1.11$
1386 reflections
87 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$0.293344(15)$	$0.99597(10)$	$0.33207(4)$	$0.02417(17)$
O1	0.5000	$0.9101(4)$	0.7500	$0.0163(4)$
N1	$0.46380(5)$	$0.4789(3)$	$0.67795(15)$	$0.0149(3)$
H1	$0.4640(8)$	$0.292(2)$	$0.691(2)$	$0.024(5)^{*}$
C1	0.5000	$0.6399(5)$	0.7500	$0.0130(4)$
C2	$0.42311(6)$	$0.6073(3)$	$0.59591(15)$	$0.0131(3)$
C3	$0.43093(6)$	$0.8150(4)$	$0.49760(16)$	$0.0152(3)$
H3	0.4638	0.8730	0.4854	0.018^{*}
C4	$0.39102(6)$	$0.9373(4)$	$0.41754(17)$	$0.0175(4)$
H4	0.3963	1.0823	0.3520	0.021^{*}
C5	$0.34334(6)$	$0.8455(4)$	$0.43438(16)$	$0.0162(3)$
C6	$0.33491(6)$	$0.6357(4)$	$0.52957(17)$	$0.0183(4)$

H6	0.3021	0.5729	0.5391	0.022^{*}
C7	$0.37498(6)$	$0.5180(4)$	$0.61096(17)$	$0.0176(4)$
H7	0.3695	0.3754	0.6774	0.021^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0159(2)$	$0.0299(3)$	$0.0249(3)$	$0.00200(17)$	$-0.00584(17)$	$0.00510(17)$
O1	$0.0173(8)$	$0.0094(8)$	$0.0207(8)$	0.000	$-0.0037(6)$	0.000
N1	$0.0146(7)$	$0.0082(6)$	$0.0208(7)$	$-0.0002(5)$	$-0.0028(6)$	$0.0007(5)$
C1	$0.0128(10)$	$0.0123(11)$	$0.0141(10)$	0.000	$0.0025(8)$	0.000
C2	$0.0141(7)$	$0.0104(7)$	$0.0142(7)$	$0.0001(6)$	$-0.0006(6)$	$-0.0027(6)$
C3	$0.0124(7)$	$0.0162(8)$	$0.0167(8)$	$-0.0028(6)$	$0.0004(6)$	$-0.0013(6)$
C4	$0.0184(8)$	$0.0178(8)$	$0.0159(8)$	$-0.0013(6)$	$-0.0001(6)$	$0.0016(6)$
C5	$0.0138(8)$	$0.0189(8)$	$0.0152(8)$	$0.0018(6)$	$-0.0023(6)$	$-0.0017(6)$
C6	$0.0118(8)$	$0.0233(9)$	$0.0199(8)$	$-0.0016(6)$	$0.0024(6)$	$-0.0009(7)$
C7	$0.0176(8)$	$0.0174(8)$	$0.0178(8)$	$-0.0019(6)$	$0.0026(6)$	$0.0026(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

C11-C5	1.741 (2)	C3-C4	1.386 (2)
O1-C1	1.237 (3)	C3-H3	0.9500
N1-C1	1.363 (2)	C4-C5	1.386 (2)
N1-C2	1.422 (2)	C4-H4	0.9500
N1-H1	0.87 (1)	C5-C6	1.382 (2)
$\mathrm{C} 1-\mathrm{N} 1^{\mathrm{i}}$	1.363 (2)	C6-C7	1.387 (2)
C2-C7	1.390 (2)	C6-H6	0.9500
C2-C3	1.393 (2)	C7-H7	0.9500
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	122.9 (1)	C5-C4-C3	119.2 (2)
C1-N1-H1	118 (1)	C5-C4-H4	120.4
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	119 (1)	C3-C4-H4	120.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	122.7 (1)	C4-C5-C6	121.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	122.7 (1)	C4-C5-Cl1	119.0 (1)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	114.6 (2)	C6-C5-Cl1	119.65 (13)
C7-C2-C3	119.5 (2)	C7-C6-C5	119.21 (15)
C7-C2-N1	119.6 (1)	C7-C6-H6	120.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	120.8 (1)	C5-C6-H6	120.4
C4-C3-C2	120.4 (2)	C6-C7-C2	120.42 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.8	C6-C7-H7	119.8
C2-C3-H3	119.8	C2-C7-H7	119.8
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	0.4 (2)	C3-C4-C5-C6	0.3 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{\text {i }}$	-179.6 (2)	C3-C4-C5-Cl1	-179.1 (1)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	-129.4 (2)	C4-C5-C6-C7	0.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	52.6 (2)	C11-C5-C6-C7	-179.8 (1)
C7-C2-C3-C4	1.6 (2)	C5-C6-C7-C2	-0.8 (3)

supporting information

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.6(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-0.5(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.5(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-178.5(2)$

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.87(1)$	$2.05(1)$	$2.845(2)$	$152(2)$

Symmetry code: (ii) $x, y-1, z$.

