metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m605-m606

catena-Poly[[di­aqua­zinc(II)]-μ-L-cystein­ato(2−)-κ4S:S,N,O-[di-μ-sulfido-bis­­[oxido­molybdate(V)](MoMo)]-μ-L-cysteinato(2−)-κ4S,N,O:S]

aDepartment of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan
*Correspondence e-mail: shiba@chem.ous.ac.jp

(Received 6 March 2008; accepted 21 March 2008; online 2 April 2008)

The title compound, [Mo2Zn(C3H5NO2S)2O2S2(H2O)2], forms a one-dimensional chain. The cysteine S atom of the dinuclear molybdenum complex anion coordinates to the zinc ion, which has a tetra­hedral environment by the additional coordination of two water mol­ecules. The one-dimensional chains are connected to each other by hydrogen bonds. The Zn—S(cysteine) distances [2.3599 (6) and 2.3072 (6) Å] are close to the value in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported for the sodium and potassium di-μ-sulfide species.

Related literature

For related literature, see: Brown & Jeffreys (1973[Brown, D. H. & Jeffreys, J. A. D. (1973). J. Chem. Soc. Dalton Trans. pp. 732-735.]); Hong et al. (1983[Hong, M.-C., Shi, J., Huang, Z. & Liu, H. (1983). Jiegou Huaxue, 2, 153-156.]); Kay & Mitchell (1970[Kay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421-2428.]); Knox & Prout (1969[Knox, J. R. & Prout, C. K. (1969). Acta Cryst. B25, 1857-1866.]); Shibahara et al. (1987[Shibahara, T., Kuroya, H., Matsumoto, K. & Ooi, S. (1987). Bull. Chem. Soc. Jpn, 60, 2277-2279.]); Lee et al. (1989[Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A. & Wright, P. E. (1989). Science, 245, 635-637.]); Liu & Williams (1981[Liu, H. & Williams, G. J. B. (1981). Acta Cryst. B37, 2065-2067.]); Xing et al. (1998[Xing, Y.-H., Xu, J.-Q., Li, D.-M., Sun, H.-R., Bu, W.-M., Ye, L., Yang, G.-D. & Fan, Y.-G. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1493-1503.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2Zn(C3H5NO2S)2O2S2(H2O)2]

  • Mr = 627.69

  • Monoclinic, P 21

  • a = 8.6881 (11) Å

  • b = 10.3529 (8) Å

  • c = 9.8686 (11) Å

  • β = 108.2022 (14)°

  • V = 843.23 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.40 mm−1

  • T = 93.1 K

  • 0.35 × 0.30 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.382, Tmax = 0.727

  • 9357 measured reflections

  • 4556 independent reflections

  • 4549 reflections with F2 > 2σ(F2)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.02

  • 4556 reflections

  • 209 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.94 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2010 Friedel pairs

  • Flack parameter: 0.002 (7)

Table 1
Selected geometric parameters (Å, °)

Mo1—S1 2.3201 (6)
Mo1—S2 2.3378 (6)
Mo1—S3 2.5572 (6)
Mo1—Mo2 2.8354 (3)
Mo2—S2 2.3276 (6)
Mo2—S1 2.3368 (6)
Mo2—S4 2.5428 (6)
Zn1—O8 2.0052 (17)
Zn1—O7 2.0275 (19)
Zn1—S4i 2.3072 (6)
Zn1—S3 2.3599 (6)
O8—Zn1—O7 96.70 (7)
O8—Zn1—S4i 129.42 (5)
O7—Zn1—S4i 107.94 (6)
O8—Zn1—S3 93.73 (5)
O7—Zn1—S3 104.55 (6)
S4i—Zn1—S3 120.25 (2)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H11⋯O3ii 0.84 2.03 2.832 (2) 161
O8—H13⋯O5ii 0.84 1.77 2.604 (2) 171
O8—H14⋯O4i 0.84 2.00 2.789 (2) 158
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Molybdenum and L-cysteine are important components of many enzymes. X-ray structures of sulfur/oxygen-bridged dinuclear molybdenum complexes with L-cysteine ligands: Na2[Mo2(µ-S)2O2(cys)2].4H2O (Brown & Jeffreys, 1973; Hong et al., 1983); K2[Mo2S2O2(cys)2].4H2O.CH3OH (Xing et al., 1998), Ca[Mo2(µ-S)(µ-O)O2(cys)2].3H2O (Shibahara et al., 1987), and Na2[Mo2O4(cys)2].5H2O (Knox & Prout, 1969; Kay & Mitchell, 1970; Liu & Williams, 1981), have been reported, where alkaline or alkaline earth metals are counter cations, and the existence of metal-oxygen (cysteine oxygen) bonds has been reported. Seeking another crystal structure type, we used Zn2+ion, as the counter ion. The present structural study of the complex compound Zn[Mo2O2S2(cys)2].2H2O (I) reveals the existence of Zn—S(cysteine sulfur) bonds, which result in polymerization; this type of Zn—S bond has been found in zinc finger proteins. The asymmetric unit of I is shown in Fig. 1 and a view of part of a one-dimensional polymeric chain of I is shown in Fig. 2. The zinc ion bridges the molybdenum complex anions: the coordination of the cysteine sulfur in the complex anion to the zinc ion results in the formation of one dimensional chains, where the zinc forms a tetrahedral structure by the additional coordination of two water molecules. The one dimensional chains are connected to each other by hydrogen bonds. Intra-chain hydrogen bonds also exist. The dimensions of the molybdenum complex and of the zinc tetrahedron are listed in Table 1, and the hydrogen bonds are listed in Table 2. The Zn—S(cysteine) distances (2.3599 (6), 2.3072 (6) Å) are close to that in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported in the sodium and potassium salts in the di-µ-sulfide species.

Related literature top

For related literature, see: Brown & Jeffreys (1973); Hong et al. (1983); Kay & Mitchell (1970); Knox & Prout (1969); Shibahara et al. (1987); Lee et al. (1989); Liu & Williams (1981); Xing et al. (1998).

Experimental top

The title compound was prepared by the addition of ZnCl2 to a diluted aqueous solution of Na2[Mo2O2S2(cys)2].4H2O. A crystal suitable for single-crystal X-ray diffraction was selected directly from the prepared sample.

Refinement top

H atoms bonded to C, N, and O (H2O) atoms were located in a difference map and refined with distance restraints of C—H = 0.99 (1), N—H = 0.92 (1), and O—H, 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(C, N, O). The absolute structure was confirmed by the value of Flack parameter (0.003 (7)).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2007); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of part of a one-dimensional polymeric chain with hydrogen bonds (dashed lines).
catena-Poly[[diaquazinc(II)]-µ-L-cysteinato(2-)-κ4S:S,N,O-[di-µ-sulfido- bis[oxidomolybdate(V)](Mo—Mo)]-µ-L-cysteinato(2-)-κ4S,N,O:S] top
Crystal data top
[Mo2Zn(C3H5NO2S)2O2S2(H2O)2]F(000) = 612.00
Mr = 627.69Dx = 2.472 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 3004 reflections
a = 8.6881 (11) Åθ = 5.5–30.0°
b = 10.3529 (8) ŵ = 3.41 mm1
c = 9.8686 (11) ÅT = 93 K
β = 108.2022 (14)°Platelet, orange
V = 843.23 (16) Å30.35 × 0.30 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
4549 reflections with F2 > 2σ(F2)
Detector resolution: 14.63 pixels mm-1Rint = 0.019
ω scansθmax = 30.0°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1211
Tmin = 0.382, Tmax = 0.727k = 1414
9357 measured reflectionsl = 1313
4556 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5406P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.47 e Å3
4556 reflectionsΔρmin = 0.94 e Å3
209 parametersAbsolute structure: Flack (1983), with 2010 Friedel pairs
15 restraintsAbsolute structure parameter: 0.002 (7)
Crystal data top
[Mo2Zn(C3H5NO2S)2O2S2(H2O)2]V = 843.23 (16) Å3
Mr = 627.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6881 (11) ŵ = 3.41 mm1
b = 10.3529 (8) ÅT = 93 K
c = 9.8686 (11) Å0.35 × 0.30 × 0.10 mm
β = 108.2022 (14)°
Data collection top
Rigaku Mercury
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4549 reflections with F2 > 2σ(F2)
Tmin = 0.382, Tmax = 0.727Rint = 0.019
9357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049Δρmax = 0.47 e Å3
S = 1.02Δρmin = 0.94 e Å3
4556 reflectionsAbsolute structure: Flack (1983), with 2010 Friedel pairs
209 parametersAbsolute structure parameter: 0.002 (7)
15 restraints
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ>F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.056910 (19)0.591229 (16)0.808774 (16)0.00615 (4)
Mo20.113206 (19)0.533750 (19)0.613333 (16)0.00647 (4)
Zn10.46728 (3)0.59442 (3)0.84366 (3)0.01008 (4)
S10.07812 (7)0.40574 (6)0.67221 (6)0.00917 (8)
S20.16158 (6)0.70395 (5)0.77534 (6)0.00880 (8)
S30.22984 (6)0.46976 (5)0.93439 (5)0.00813 (8)
S40.39318 (6)0.59322 (6)0.60271 (5)0.01009 (8)
O10.2167 (2)0.68209 (17)0.71583 (17)0.0104 (2)
O20.00101 (19)0.60344 (18)0.45909 (16)0.0111 (2)
O30.2203 (2)0.45050 (18)1.21945 (17)0.0125 (3)
O40.13324 (19)0.49461 (16)0.98677 (16)0.0089 (2)
O50.4690 (2)0.2383 (2)0.7999 (2)0.0217 (3)
O60.2865 (2)0.39663 (18)0.77426 (17)0.0125 (3)
O70.3954 (2)0.77830 (18)0.9006 (2)0.0182 (3)
O80.54704 (19)0.55572 (18)1.00931 (17)0.0136 (3)
N10.0163 (2)0.70357 (19)1.01408 (19)0.0087 (3)
N20.1744 (2)0.3658 (2)0.4962 (2)0.0102 (3)
C10.0084 (2)0.6095 (2)1.1320 (2)0.0092 (3)
C20.1322 (2)0.5110 (2)1.1161 (2)0.0083 (3)
C30.1525 (2)0.5421 (2)1.1147 (2)0.0099 (3)
C40.3455 (2)0.3284 (2)0.5675 (2)0.0112 (3)
C50.3694 (2)0.3165 (2)0.7269 (2)0.0116 (4)
C60.4534 (2)0.4378 (2)0.5447 (2)0.0130 (4)
H10.06830.75961.02560.010*
H20.10270.75511.01240.010*
H30.10900.29570.49190.012*
H40.16240.38900.40390.012*
H50.22990.60421.13340.012*
H60.13660.47271.18690.012*
H70.04600.64821.22910.011*
H80.43180.44160.44030.016*
H90.57060.42430.59280.016*
H100.38210.24580.53590.013*
H110.36380.82900.84870.022*
H120.43030.80350.96590.022*
H130.52930.61971.06460.016*
H140.64240.52810.98160.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00760 (7)0.00633 (8)0.00567 (7)0.00053 (6)0.00374 (5)0.00047 (6)
Mo20.00756 (7)0.00729 (8)0.00565 (7)0.00067 (6)0.00364 (5)0.00022 (6)
Zn10.01030 (10)0.01118 (12)0.00928 (10)0.00082 (10)0.00382 (8)0.00105 (9)
S10.0114 (2)0.0085 (2)0.0091 (2)0.00148 (18)0.00549 (17)0.00119 (17)
S20.0109 (2)0.0077 (2)0.0098 (2)0.00074 (18)0.00601 (17)0.00107 (17)
S30.0087 (2)0.0085 (2)0.0086 (2)0.00003 (18)0.00480 (16)0.00014 (17)
S40.0088 (2)0.0127 (2)0.0098 (2)0.0003 (2)0.00436 (16)0.00152 (19)
O10.0111 (6)0.0117 (8)0.0102 (6)0.0024 (5)0.0060 (5)0.0015 (5)
O20.0113 (6)0.0135 (8)0.0097 (6)0.0019 (6)0.0048 (5)0.0014 (6)
O30.0152 (7)0.0123 (8)0.0101 (6)0.0030 (6)0.0039 (5)0.0014 (6)
O40.0102 (6)0.0099 (7)0.0074 (6)0.0011 (5)0.0041 (5)0.0002 (5)
O50.0216 (8)0.0185 (9)0.0221 (8)0.0064 (7)0.0027 (7)0.0083 (7)
O60.0166 (7)0.0129 (8)0.0087 (6)0.0010 (6)0.0049 (5)0.0004 (5)
O70.0217 (9)0.0131 (8)0.0250 (8)0.0031 (7)0.0146 (7)0.0054 (7)
O80.0096 (6)0.0217 (10)0.0103 (6)0.0025 (5)0.0045 (5)0.0045 (6)
N10.0111 (7)0.0069 (8)0.0096 (7)0.0002 (6)0.0053 (6)0.0004 (6)
N20.0096 (7)0.0125 (9)0.0084 (7)0.0010 (6)0.0026 (6)0.0032 (6)
C10.0131 (8)0.0086 (10)0.0067 (7)0.0002 (7)0.0043 (6)0.0005 (7)
C20.0099 (8)0.0060 (10)0.0107 (8)0.0019 (6)0.0058 (6)0.0008 (6)
C30.0118 (8)0.0109 (9)0.0088 (7)0.0005 (7)0.0060 (6)0.0001 (7)
C40.0114 (8)0.0130 (10)0.0088 (8)0.0038 (7)0.0024 (6)0.0032 (7)
C50.0126 (9)0.0095 (10)0.0124 (9)0.0007 (7)0.0034 (7)0.0003 (7)
C60.0117 (9)0.0186 (11)0.0099 (8)0.0019 (7)0.0052 (7)0.0024 (8)
Geometric parameters (Å, º) top
Mo1—O11.6905 (17)O5—C51.238 (3)
Mo1—O42.2366 (16)O6—C51.279 (3)
Mo1—N12.2662 (19)O7—H110.837
Mo1—S12.3201 (6)O7—H120.835
Mo1—S22.3378 (6)O8—H130.841
Mo1—S32.5572 (6)O8—H140.838
Mo1—Mo22.8354 (3)N1—C11.481 (3)
Mo2—O21.6914 (16)N1—H10.915
Mo2—N22.2419 (19)N1—H20.917
Mo2—O62.3044 (18)N2—C41.484 (3)
Mo2—S22.3276 (6)N2—H30.914
Mo2—S12.3368 (6)N2—H40.915
Mo2—S42.5428 (6)C1—C31.523 (3)
Zn1—O82.0052 (17)C1—C21.526 (3)
Zn1—O72.0275 (19)C1—H70.995
Zn1—S4i2.3072 (6)C3—H50.989
Zn1—S32.3599 (6)C3—H60.991
S3—C31.852 (2)C4—C51.527 (3)
S4—C61.838 (3)C4—C61.531 (4)
S4—Zn1ii2.3072 (6)C4—H100.996
O3—C21.237 (3)C6—H80.989
O4—C21.290 (2)C6—H90.989
O1—Mo1—O4162.73 (7)C6—S4—Zn1ii102.50 (7)
O1—Mo1—N194.11 (7)C6—S4—Mo299.79 (8)
O4—Mo1—N169.93 (6)Zn1ii—S4—Mo299.22 (2)
O1—Mo1—S1104.04 (6)C2—O4—Mo1119.10 (14)
O4—Mo1—S189.50 (4)C5—O6—Mo2117.99 (14)
N1—Mo1—S1154.97 (5)Zn1—O7—H11123.4
O1—Mo1—S2102.18 (6)Zn1—O7—H12110.6
O4—Mo1—S284.32 (4)H11—O7—H12122.9
N1—Mo1—S287.91 (5)Zn1—O8—H13109.3
S1—Mo1—S2104.59 (2)Zn1—O8—H14111.1
O1—Mo1—S391.69 (6)H13—O8—H14116.3
O4—Mo1—S378.52 (4)C1—N1—Mo1107.99 (13)
N1—Mo1—S376.70 (5)C1—N1—H1113.9
S1—Mo1—S385.55 (2)Mo1—N1—H1109.3
S2—Mo1—S3160.022 (19)C1—N1—H2108.3
O1—Mo1—Mo2105.18 (6)Mo1—N1—H2112.6
O4—Mo1—Mo291.51 (4)H1—N1—H2104.8
N1—Mo1—Mo2138.35 (5)C4—N2—Mo2108.76 (13)
S1—Mo1—Mo252.760 (15)C4—N2—H3109.3
S2—Mo1—Mo252.411 (14)Mo2—N2—H3113.3
S3—Mo1—Mo2137.441 (15)C4—N2—H4109.0
O2—Mo2—N291.69 (8)Mo2—N2—H4109.8
O2—Mo2—O6162.14 (7)H3—N2—H4106.6
N2—Mo2—O670.64 (6)N1—C1—C3108.11 (17)
O2—Mo2—S2103.00 (6)N1—C1—C2107.01 (16)
N2—Mo2—S2156.97 (5)C3—C1—C2109.49 (18)
O6—Mo2—S293.10 (5)N1—C1—H7114.5
O2—Mo2—S1102.18 (6)C3—C1—H7107.9
N2—Mo2—S189.44 (5)C2—C1—H7109.8
O6—Mo2—S180.89 (5)O3—C2—O4123.7 (2)
S2—Mo2—S1104.38 (2)O3—C2—C1121.88 (18)
O2—Mo2—S498.59 (6)O4—C2—C1114.38 (18)
N2—Mo2—S477.44 (5)C1—C3—S3109.75 (13)
O6—Mo2—S475.53 (5)C1—C3—H5109.6
S2—Mo2—S482.83 (2)S3—C3—H5112.2
S1—Mo2—S4155.71 (2)C1—C3—H6109.6
O2—Mo2—Mo1104.26 (5)S3—C3—H6109.0
N2—Mo2—Mo1140.49 (5)H5—C3—H6106.7
O6—Mo2—Mo191.59 (4)N2—C4—C5107.66 (18)
S2—Mo2—Mo152.737 (15)N2—C4—C6107.82 (19)
S1—Mo2—Mo152.226 (15)C5—C4—C6108.60 (18)
S4—Mo2—Mo1133.300 (15)N2—C4—H10116.5
O8—Zn1—O796.70 (7)C5—C4—H10107.4
O8—Zn1—S4i129.42 (5)C6—C4—H10108.7
O7—Zn1—S4i107.94 (6)O5—C5—O6125.6 (2)
O8—Zn1—S393.73 (5)O5—C5—C4119.9 (2)
O7—Zn1—S3104.55 (6)O6—C5—C4114.4 (2)
S4i—Zn1—S3120.25 (2)C4—C6—S4110.80 (15)
Mo1—S1—Mo275.014 (19)C4—C6—H8104.8
Mo2—S2—Mo174.853 (18)S4—C6—H8108.1
C3—S3—Zn198.94 (7)C4—C6—H9114.2
C3—S3—Mo1100.08 (7)S4—C6—H9109.0
Zn1—S3—Mo197.09 (2)H8—C6—H9109.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H11···O3iii0.842.032.832 (2)161
O7—H11···O4iii0.842.753.139 (2)110
O7—H12···O5iii0.842.533.239 (3)144
O7—H12···O6iii0.842.663.285 (2)133
O7—H12···O8iv0.842.643.093 (2)116
O8—H13···O5iii0.841.772.604 (2)171
O8—H14···O4i0.842.002.789 (2)158
O8—H14···O6i0.842.372.844 (2)116
N1—H2···O4iii0.922.493.179 (2)132
N1—H2···O70.922.453.224 (2)143
N2—H3···O2v0.912.323.212 (2)164
N2—H4···O1v0.922.562.934 (2)105
N2—H4···O3vi0.922.133.011 (2)161
Symmetry codes: (i) x1, y, z; (iii) x, y+1/2, z+2; (iv) x1, y+1/2, z+2; (v) x, y1/2, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mo2Zn(C3H5NO2S)2O2S2(H2O)2]
Mr627.69
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)8.6881 (11), 10.3529 (8), 9.8686 (11)
β (°) 108.2022 (14)
V3)843.23 (16)
Z2
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.382, 0.727
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9357, 4556, 4549
Rint0.019
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.02
No. of reflections4556
No. of parameters209
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.94
Absolute structureFlack (1983), with 2010 Friedel pairs
Absolute structure parameter0.002 (7)

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2007).

Selected geometric parameters (Å, º) top
Mo1—S12.3201 (6)Mo2—S42.5428 (6)
Mo1—S22.3378 (6)Zn1—O82.0052 (17)
Mo1—S32.5572 (6)Zn1—O72.0275 (19)
Mo1—Mo22.8354 (3)Zn1—S4i2.3072 (6)
Mo2—S22.3276 (6)Zn1—S32.3599 (6)
Mo2—S12.3368 (6)
O8—Zn1—O796.70 (7)O8—Zn1—S393.73 (5)
O8—Zn1—S4i129.42 (5)O7—Zn1—S3104.55 (6)
O7—Zn1—S4i107.94 (6)S4i—Zn1—S3120.25 (2)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H11···O3ii0.8372.0282.832 (2)160.9
O8—H13···O5ii0.8411.7702.604 (2)170.9
O8—H14···O4i0.8381.9962.789 (2)157.7
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+2.
 

Acknowledgements

This work was partly supported by a Special Grant for Cooperative Research administered by the Japan Private School Promotion Foundation.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, D. H. & Jeffreys, J. A. D. (1973). J. Chem. Soc. Dalton Trans. pp. 732–735.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHong, M.-C., Shi, J., Huang, Z. & Liu, H. (1983). Jiegou Huaxue, 2, 153–156.  CAS Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421–2428.  CrossRef Google Scholar
First citationKnox, J. R. & Prout, C. K. (1969). Acta Cryst. B25, 1857–1866.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLee, M. S., Gippert, G. P., Soman, K. V., Case, D. A. & Wright, P. E. (1989). Science, 245, 635–637.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, H. & Williams, G. J. B. (1981). Acta Cryst. B37, 2065–2067.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, T., Kuroya, H., Matsumoto, K. & Ooi, S. (1987). Bull. Chem. Soc. Jpn, 60, 2277–2279.  CrossRef CAS Web of Science Google Scholar
First citationXing, Y.-H., Xu, J.-Q., Li, D.-M., Sun, H.-R., Bu, W.-M., Ye, L., Yang, G.-D. & Fan, Y.-G. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1493–1503.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m605-m606
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds