

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[diaquazinc(II)]-µ-L-cysteinato(2–)- κ^4 S:S.N.O-[di-*u*-sulfido-bis-[oxidomolybdate(V)](Mo—Mo)]-µ-L-cysteinato(2–)- κ^4 S,N,O:S]

Takashi Shibahara,* Shinobu Ogasahara and Genta Sakane

Department of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan

Correspondence e-mail: shiba@chem.ous.ac.jp

Received 6 March 2008; accepted 21 March 2008

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.020; wR factor = 0.049; data-to-parameter ratio = 21.8.

The title compound, [Mo₂Zn(C₃H₅NO₂S)₂O₂S₂(H₂O)₂], forms a one-dimensional chain. The cysteine S atom of the dinuclear molybdenum complex anion coordinates to the zinc ion, which has a tetrahedral environment by the additional coordination of two water molecules. The one-dimensional chains are connected to each other by hydrogen bonds. The Zn-S(cysteine) distances [2.3599 (6) and 2.3072 (6) Å] are close to the value in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported for the sodium and potassium di- μ -sulfide species.

Related literature

For related literature, see: Brown & Jeffreys (1973); Hong et al. (1983); Kay & Mitchell (1970); Knox & Prout (1969); Shibahara et al. (1987); Lee et al. (1989); Liu & Williams (1981); Xing et al. (1998).

V = 843.23 (16) Å³

Mo Ka radiation

 $0.35 \times 0.30 \times 0.10 \text{ mm}$

9357 measured reflections

4556 independent reflections 4549 reflections with $F^2 > 2\sigma(F^2)$

 $\mu = 3.40 \text{ mm}^-$

T = 93.1 K

 $R_{\rm int} = 0.019$

Z = 2

Experimental

Crystal data

 $[Mo_2Zn(C_3H_5NO_2S)_2O_2S_2(H_2O)_2]$ $M_r = 627.69$ Monoclinic, P21 a = 8.6881 (11) Åb = 10.3529 (8) Å c = 9.8686 (11) Å $\beta = 108.2022 \ (14)^{\circ}$

Data collection

Rigaku Mercury diffractometer Absorption correction: multi-scan (Jacobson, 1998) $T_{\min} = 0.382, T_{\max} = 0.727$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	H atoms treated by a mixture of
$wR(F^2) = 0.049$	independent and constrained
S = 1.02	refinement
4556 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
209 parameters	$\Delta \rho_{\rm min} = -0.94 \ {\rm e} \ {\rm \AA}^{-3}$
15 restraints	Absolute structure: Flack (1983),
	with 2010 Friedel pairs
	Flack parameter: 0.002 (7)

Table 1

Selected geometric parameters (Å, °).

Mo1-S1	2.3201 (6)	Mo2-S4	2.5428 (6)
Mo1-S2	2.3378 (6)	Zn1-O8	2.0052 (17)
Mo1-S3	2.5572 (6)	Zn1-O7	2.0275 (19)
Mo1-Mo2	2.8354 (3)	Zn1-S4 ⁱ	2.3072 (6)
Mo2-S2	2.3276 (6)	Zn1-S3	2.3599 (6)
Mo2-S1	2.3368 (6)		
O8-Zn1-O7	96.70 (7)	O8-Zn1-S3	93.73 (5)
$O8-Zn1-S4^{i}$	129.42 (5)	O7-Zn1-S3	104.55 (6)
$O7-Zn1-S4^{i}$	107.94 (6)	S4 ⁱ -Zn1-S3	120.25 (2)

Symmetry code: (i) x - 1, y, z.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
07–H11···O3 ⁱⁱ	0.84	2.03	2.832 (2)	161
$O8-H13\cdots O5^{n}$	0.84	1.77	2.604 (2)	171
$O8-H14\cdots O4^{i}$	0.84	2.00	2.789 (2)	158

Symmetry codes: (i) x - 1, y, z; (ii) $-x, y + \frac{1}{2}, -z + 2$.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

This work was partly supported by a Special Grant for Cooperative Research administered by the Japan Private School Promotion Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2080).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brown, D. H. & Jeffreys, J. A. D. (1973). J. Chem. Soc. Dalton Trans. pp. 732-735.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hong, M.-C., Shi, J., Huang, Z. & Liu, H. (1983). Jiegou Huaxue, 2, 153–156. Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Kay, A. & Mitchell, P. C. H. (1970). J. Chem. Soc. A, pp. 2421-2428.

- Knox, J. R. & Prout, C. K. (1969). Acta Cryst. B25, 1857-1866.
- Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A. & Wright, P. E. (1989). Science, 245, 635–637.
- Liu, H. & Williams, G. J. B. (1981). Acta Cryst. B37, 2065-2067.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibahara, T., Kuroya, H., Matsumoto, K. & Ooi, S. (1987). Bull. Chem. Soc. Jpn, 60, 2277–2279.
- Xing, Y.-H., Xu, J.-Q., Li, D.-M., Sun, H.-R., Bu, W.-M., Ye, L., Yang, G.-D. & Fan, Y.-G. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1493–1503.

supporting information

Acta Cryst. (2008). E64, m605-m606 [doi:10.1107/S1600536808007757]

catena-Poly[[diaquazinc(II)]- μ -L-cysteinato(2–)- κ^4 S:S,N,O-[di- μ -sulfido-bis-[oxidomolybdate(V)](*Mo*—*Mo*)]- μ -L-cysteinato(2–)- κ^4 S,N,O:S]

Takashi Shibahara, Shinobu Ogasahara and Genta Sakane

S1. Comment

Molybdenum and L-cysteine are important components of many enzymes. X-ray structures of sulfur/oxygen-bridged dinuclear molybdenum complexes with L-cysteine ligands: $Na_2[Mo_2(\mu-S)_2O_2(cys)_2]$.4H₂O (Brown & Jeffreys, 1973; Hong et al., 1983); K₂[Mo₂S₂O₂(cys)₂].4H₂O.CH₃OH (Xing et al., 1998), Ca[Mo₂(µ-S)(µ-O)O₂(cys)₂].3H₂O (Shibahara et al., 1987), and Na₂[Mo₂O₄(cys)₂].5H₂O (Knox & Prout, 1969; Kay & Mitchell, 1970; Liu & Williams, 1981), have been reported, where alkaline or alkaline earth metals are counter cations, and the existence of metal-oxygen (cysteine oxygen) bonds has been reported. Seeking another crystal structure type, we used Zn^{2+} ion, as the counter ion. The present structural study of the complex compound $Zn[Mo_2O_2S_2(cys)_2].2H_2O(I)$ reveals the existence of Zn—S(cysteine sulfur) bonds, which result in polymerization; this type of Zn—S bond has been found in zinc finger proteins. The asymmetric unit of I is shown in Fig. 1 and a view of part of a one-dimensional polymeric chain of I is shown in Fig. 2. The zinc ion bridges the molybdenum complex anions: the coordination of the cysteine sulfur in the complex anion to the zinc ion results in the formation of one dimensional chains, where the zinc forms a tetrahedral structure by the additional coordination of two water molecules. The one dimensional chains are connected to each other by hydrogen bonds. Intrachain hydrogen bonds also exist. The dimensions of the molybdenum complex and of the zinc tetrahedron are listed in Table 1, and the hydrogen bonds are listed in Table 2. The Zn—S(cysteine) distances (2.3599 (6), 2.3072 (6) Å) are close to that in ZnS (2.35 Å). The distances and angles within the complex are very close to those reported in the sodium and potassium salts in the di- μ -sulfide species.

S2. Experimental

The title compound was prepared by the addition of $ZnCl_2$ to a diluted aqueous solution of $Na_2[Mo_2O_2S_2(cys)_2]$.4H₂O. A crystal suitable for single-crystal X-ray diffraction was selected directly from the prepared sample.

S3. Refinement

H atoms bonded to C, N, and O (H₂O) atoms were located in a difference map and refined with distance restraints of C— H = 0.99 (1), N—H = 0.92 (1), and O—H, 0.84 (1) Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N, O)$. The absolute structure was confirmed by the value of Flack parameter (0.003 (7)).

Figure 1

The asymmetric unit of I with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A view of part of a one-dimensional polymeric chain with hydrogen bonds (dashed lines).

catena-Poly[[diaquazinc(II)]- μ -L-cysteinato(2-)- κ ⁴S:S,N,O-[di- μ -sulfido- bis[oxidomolybdate(V)](Mo—Mo)]- μ -L-cysteinato(2-)- κ ⁴S,N,O:S]

Crystal data	
$[Mo_2Zn(C_3H_5NO_2S)_2O_2S_2(H_2O)_2]$ $M_r = 627.69$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 8.6881 (11) Å b = 10.3529 (8) Å c = 9.8686 (11) Å $\beta = 108.2022 (14)^{\circ}$ $V = 843.23 (16) \text{ Å}^3$ Z = 2	F(000) = 612.00 $D_x = 2.472 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 3004 reflections $\theta = 5.5-30.0^{\circ}$ $\mu = 3.41 \text{ mm}^{-1}$ T = 93 K Platelet, orange $0.35 \times 0.30 \times 0.10 \text{ mm}$
Data collection	
Rigaku Mercury diffractometer Detector resolution: 14.63 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (Jacobson, 1998) $T_{min} = 0.382, T_{max} = 0.727$ 9357 measured reflections

4556 independent reflections	$h = -12 \rightarrow 11$
4549 reflections with $F^2 > 2\sigma(F^2)$	$k = -14 \rightarrow 14$
$R_{\rm int} = 0.019$	$l = -13 \rightarrow 13$
$\theta_{\rm max} = 30.0^{\circ}$	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 0.5406P]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.049$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.02	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
4556 reflections	$\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$
209 parameters	Absolute structure: Flack (1983), with 2010
15 restraints	Friedel pairs
H atoms treated by a mixture of independent	Absolute structure parameter: 0.002 (7)
and constrained refinement	

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F². R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0 \sigma > F^2$) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Mo1	-0.056910 (19)	0.591229 (16)	0.808774 (16)	0.00615 (4)
Mo2	0.113206 (19)	0.533750 (19)	0.613333 (16)	0.00647 (4)
Zn1	-0.46728 (3)	0.59442 (3)	0.84366 (3)	0.01008 (4)
S1	-0.07812 (7)	0.40574 (6)	0.67221 (6)	0.00917 (8)
S2	0.16158 (6)	0.70395 (5)	0.77534 (6)	0.00880 (8)
S3	-0.22984 (6)	0.46976 (5)	0.93439 (5)	0.00813 (8)
S4	0.39318 (6)	0.59322 (6)	0.60271 (5)	0.01009 (8)
O1	-0.2167 (2)	0.68209 (17)	0.71583 (17)	0.0104 (2)
O2	0.00101 (19)	0.60344 (18)	0.45909 (16)	0.0111 (2)
O3	0.2203 (2)	0.45050 (18)	1.21945 (17)	0.0125 (3)
O4	0.13324 (19)	0.49461 (16)	0.98677 (16)	0.0089 (2)
O5	0.4690 (2)	0.2383 (2)	0.7999 (2)	0.0217 (3)
O6	0.2865 (2)	0.39663 (18)	0.77426 (17)	0.0125 (3)
O7	-0.3954 (2)	0.77830 (18)	0.9006 (2)	0.0182 (3)
08	-0.54704 (19)	0.55572 (18)	1.00931 (17)	0.0136 (3)
N1	-0.0163 (2)	0.70357 (19)	1.01408 (19)	0.0087 (3)
N2	0.1744 (2)	0.3658 (2)	0.4962 (2)	0.0102 (3)
C1	0.0084 (2)	0.6095 (2)	1.1320 (2)	0.0092 (3)
C2	0.1322 (2)	0.5110 (2)	1.1161 (2)	0.0083 (3)
C3	-0.1525 (2)	0.5421 (2)	1.1147 (2)	0.0099 (3)
C4	0.3455 (2)	0.3284 (2)	0.5675 (2)	0.0112 (3)
C5	0.3694 (2)	0.3165 (2)	0.7269 (2)	0.0116 (4)
C6	0.4534 (2)	0.4378 (2)	0.5447 (2)	0.0130 (4)
H1	0.0683	0.7596	1.0256	0.010*
H2	-0.1027	0.7551	1.0124	0.010*

H3	0.1090	0.2957	0.4919	0.012*	
H4	0.1624	0.3890	0.4039	0.012*	
Н5	-0.2299	0.6042	1.1334	0.012*	
H6	-0.1366	0.4727	1.1869	0.012*	
H7	0.0460	0.6482	1.2291	0.011*	
H8	0.4318	0.4416	0.4403	0.016*	
H9	0.5706	0.4243	0.5928	0.016*	
H10	0.3821	0.2458	0.5359	0.013*	
H11	-0.3638	0.8290	0.8487	0.022*	
H12	-0.4303	0.8035	0.9659	0.022*	
H13	-0.5293	0.6197	1.0646	0.016*	
H14	-0.6424	0.5281	0.9816	0.016*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.00760 (7)	0.00633 (8)	0.00567 (7)	0.00053 (6)	0.00374 (5)	0.00047 (6)
Mo2	0.00756 (7)	0.00729 (8)	0.00565 (7)	0.00067 (6)	0.00364 (5)	0.00022 (6)
Zn1	0.01030 (10)	0.01118 (12)	0.00928 (10)	0.00082 (10)	0.00382 (8)	-0.00105 (9)
S 1	0.0114 (2)	0.0085 (2)	0.0091 (2)	-0.00148 (18)	0.00549 (17)	-0.00119 (17)
S2	0.0109 (2)	0.0077 (2)	0.0098 (2)	-0.00074 (18)	0.00601 (17)	-0.00107 (17)
S3	0.0087 (2)	0.0085 (2)	0.0086 (2)	-0.00003 (18)	0.00480 (16)	-0.00014 (17)
S4	0.0088 (2)	0.0127 (2)	0.0098 (2)	-0.0003 (2)	0.00436 (16)	0.00152 (19)
01	0.0111 (6)	0.0117 (8)	0.0102 (6)	0.0024 (5)	0.0060 (5)	0.0015 (5)
O2	0.0113 (6)	0.0135 (8)	0.0097 (6)	0.0019 (6)	0.0048 (5)	0.0014 (6)
O3	0.0152 (7)	0.0123 (8)	0.0101 (6)	0.0030 (6)	0.0039 (5)	0.0014 (6)
O4	0.0102 (6)	0.0099 (7)	0.0074 (6)	0.0011 (5)	0.0041 (5)	0.0002 (5)
O5	0.0216 (8)	0.0185 (9)	0.0221 (8)	0.0064 (7)	0.0027 (7)	0.0083 (7)
O6	0.0166 (7)	0.0129 (8)	0.0087 (6)	0.0010 (6)	0.0049 (5)	-0.0004(5)
O 7	0.0217 (9)	0.0131 (8)	0.0250 (8)	-0.0031 (7)	0.0146 (7)	-0.0054 (7)
08	0.0096 (6)	0.0217 (10)	0.0103 (6)	-0.0025 (5)	0.0045 (5)	-0.0045 (6)
N1	0.0111 (7)	0.0069 (8)	0.0096 (7)	0.0002 (6)	0.0053 (6)	0.0004 (6)
N2	0.0096 (7)	0.0125 (9)	0.0084 (7)	0.0010 (6)	0.0026 (6)	-0.0032 (6)
C1	0.0131 (8)	0.0086 (10)	0.0067 (7)	0.0002 (7)	0.0043 (6)	-0.0005 (7)
C2	0.0099 (8)	0.0060 (10)	0.0107 (8)	-0.0019 (6)	0.0058 (6)	-0.0008 (6)
C3	0.0118 (8)	0.0109 (9)	0.0088 (7)	-0.0005 (7)	0.0060 (6)	0.0001 (7)
C4	0.0114 (8)	0.0130 (10)	0.0088 (8)	0.0038 (7)	0.0024 (6)	-0.0032 (7)
C5	0.0126 (9)	0.0095 (10)	0.0124 (9)	-0.0007 (7)	0.0034 (7)	0.0003 (7)
C6	0.0117 (9)	0.0186 (11)	0.0099 (8)	0.0019 (7)	0.0052 (7)	-0.0024(8)

Geometric parameters (Å, °)

Mo1-01	1.6905 (17)	O5—C5	1.238 (3)	-
Mo1—O4	2.2366 (16)	O6—C5	1.279 (3)	
Mo1—N1	2.2662 (19)	O7—H11	0.837	
Mo1—S1	2.3201 (6)	O7—H12	0.835	
Mo1—S2	2.3378 (6)	O8—H13	0.841	
Mo1—S3	2.5572 (6)	O8—H14	0.838	

Mo1—Mo2	28354(3)	N1—C1	1481(3)
$M_0^2 = \Omega^2$	1.6014(16)	N1 H1	0.015
$M_0 2 = N_2$	2.2410(10)	N1 U2	0.915
$M_{02} = 06$	2.2419(19)	N2 C4	1.484(3)
$M_{02} = S_{2}$	2.3044(10) 2.2076(6)	N2 H2	1.464(3)
M02 - S2	2.3270(0)		0.914
M02—S1	2.3308 (0)	N2—H4	0.915
M02—54	2.5428 (6)	CI = C3	1.523 (3)
Zn1—08	2.0052 (17)		1.526 (3)
Znl—O/	2.0275 (19)	CI—H7	0.995
Zn1—S4 ⁱ	2.3072 (6)	C3—H5	0.989
Zn1—S3	2.3599 (6)	С3—Н6	0.991
S3—C3	1.852 (2)	C4—C5	1.527 (3)
S4—C6	1.838 (3)	C4—C6	1.531 (4)
S4—Zn1 ⁱⁱ	2.3072 (6)	C4—H10	0.996
O3—C2	1.237 (3)	С6—Н8	0.989
O4—C2	1.290 (2)	С6—Н9	0.989
O1—Mo1—O4	162.73 (7)	C6—S4—Zn1 ⁱⁱ	102.50 (7)
O1—Mo1—N1	94.11 (7)	C6—S4—Mo2	99.79 (8)
O4—Mo1—N1	69.93 (6)	$Zn1^{ii}$ —S4—Mo2	99.22 (2)
01—Mo1—S1	104.04 (6)	C2	119.10 (14)
04—Mo1—S1	89 50 (4)	C5-06-Mo2	117 99 (14)
N1 - Mo1 - S1	154.97 (5)	7n1 - 07 - H11	123.4
Ω_1 Mol S2	102.18(6)	7n1 07 H12	125.4
$O_1 = Mo_1 = S_2$	84.32(4)	$H_{11} = 07 = H_{12}$	122.0
$M_{1} = M_{01} = S_{2}$	87.01 (5)	7n1 - 09 - 112	122.9
N1 - M01 - S2	07.91 (J) 104.50 (2)	2 11 - 08 - 113	109.5
S1 - M01 - S2	104.59 (2)	2n1 - 08 - 114	111.1
01-M01-S3	91.69 (6)	H13 - 08 - H14	116.3
04—Mo1—S3	78.52 (4)	CI—NI—Mol	107.99 (13)
NI-MoI-S3	76.70 (5)	CI—NI—HI	113.9
S1—Mo1—S3	85.55 (2)	Mo1—N1—H1	109.3
S2—Mo1—S3	160.022 (19)	C1—N1—H2	108.3
O1—Mo1—Mo2	105.18 (6)	Mo1—N1—H2	112.6
O4—Mo1—Mo2	91.51 (4)	H1—N1—H2	104.8
N1—Mo1—Mo2	138.35 (5)	C4—N2—Mo2	108.76 (13)
S1—Mo1—Mo2	52.760 (15)	C4—N2—H3	109.3
S2—Mo1—Mo2	52.411 (14)	Mo2—N2—H3	113.3
S3—Mo1—Mo2	137.441 (15)	C4—N2—H4	109.0
O2—Mo2—N2	91.69 (8)	Mo2—N2—H4	109.8
O2—Mo2—O6	162.14 (7)	H3—N2—H4	106.6
N2—Mo2—O6	70.64 (6)	N1—C1—C3	108.11 (17)
O2—Mo2—S2	103.00 (6)	N1—C1—C2	107.01 (16)
N2—Mo2—S2	156.97 (5)	C3—C1—C2	109.49 (18)
Q6—Mo2—S2	93.10 (5)	N1—C1—H7	114.5
Ω_{2} Mo ₂ S ₁	102.18 (6)	C3—C1—H7	107.9
$N_2 - M_0^2 - S_1$	89 44 (5)	$C^2 - C^1 - H^7$	109.8
06-M02-S1	80.89 (5)	$03-C^2-04$	123 7 (2)
$S^2 = M_0^2 = S^1$	104 38 (2)	03-02-01	121.88 (18)
02 11102 01	101.00(2)	05 02 01	121.00(10)

O2—Mo2—S4	98.59 (6)	O4—C2—C1	114.38 (18)
N2—Mo2—S4	77.44 (5)	C1—C3—S3	109.75 (13)
O6—Mo2—S4	75.53 (5)	С1—С3—Н5	109.6
S2—Mo2—S4	82.83 (2)	S3—C3—H5	112.2
S1—Mo2—S4	155.71 (2)	С1—С3—Н6	109.6
O2—Mo2—Mo1	104.26 (5)	S3—C3—H6	109.0
N2—Mo2—Mo1	140.49 (5)	Н5—С3—Н6	106.7
O6—Mo2—Mo1	91.59 (4)	N2—C4—C5	107.66 (18)
S2—Mo2—Mo1	52.737 (15)	N2—C4—C6	107.82 (19)
S1—Mo2—Mo1	52.226 (15)	C5—C4—C6	108.60 (18)
S4—Mo2—Mo1	133.300 (15)	N2-C4-H10	116.5
O8—Zn1—O7	96.70 (7)	C5—C4—H10	107.4
O8—Zn1—S4 ⁱ	129.42 (5)	C6—C4—H10	108.7
$O7$ — $Zn1$ — $S4^{i}$	107.94 (6)	O5—C5—O6	125.6 (2)
O8—Zn1—S3	93.73 (5)	O5—C5—C4	119.9 (2)
O7—Zn1—S3	104.55 (6)	O6—C5—C4	114.4 (2)
S4 ⁱ —Zn1—S3	120.25 (2)	C4—C6—S4	110.80 (15)
Mo1—S1—Mo2	75.014 (19)	С4—С6—Н8	104.8
Mo2—S2—Mo1	74.853 (18)	S4—C6—H8	108.1
C3—S3—Zn1	98.94 (7)	С4—С6—Н9	114.2
C3—S3—Mo1	100.08 (7)	S4—C6—H9	109.0
Zn1—S3—Mo1	97.09 (2)	Н8—С6—Н9	109.7

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O7—H11…O3 ⁱⁱⁱ	0.84	2.03	2.832 (2)	161
O7—H11···O4 ⁱⁱⁱ	0.84	2.75	3.139 (2)	110
O7—H12…O5 ⁱⁱⁱ	0.84	2.53	3.239 (3)	144
O7—H12…O6 ⁱⁱⁱ	0.84	2.66	3.285 (2)	133
O7—H12…O8 ^{iv}	0.84	2.64	3.093 (2)	116
O8—H13···O5 ⁱⁱⁱ	0.84	1.77	2.604 (2)	171
O8—H14···O4 ⁱ	0.84	2.00	2.789 (2)	158
O8—H14···O6 ⁱ	0.84	2.37	2.844 (2)	116
N1—H2···O4 ⁱⁱⁱ	0.92	2.49	3.179 (2)	132
N1—H2…O7	0.92	2.45	3.224 (2)	143
N2—H3···O2 ^v	0.91	2.32	3.212 (2)	164
N2—H4···O1 ^v	0.92	2.56	2.934 (2)	105
N2—H4···O3 ^{vi}	0.92	2.13	3.011 (2)	161

Symmetry codes: (i) *x*-1, *y*, *z*; (iii) -*x*, *y*+1/2, -*z*+2; (iv) -*x*-1, *y*+1/2, -*z*+2; (v) -*x*, *y*-1/2, -*z*+1; (vi) *x*, *y*, *z*-1.