

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[(*u*-3,5-dinitro-2-oxidobenzoato)-(*u*-3-hydroxypyridine)copper(II)]

Jian-Bin Yan, Wen-Dong Song,* Hao Wang and Li-Li Ji

College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China

Correspondence e-mail: songwd60@126.com

Received 25 January 2008; accepted 6 April 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.093; data-to-parameter ratio = 14.2.

A new coordination polymer, $[Cu(C_7H_2N_2O_7)(C_5H_5NO)]_n$ exhibits a double-chain structure, in which 3,5-dinitro-2oxidobenzoate and 3-hydroxypyridine both act as bridging ligands, connecting adjacent copper(II) centers to form an infinite double-stranded chain. The asymmetric unit contains one Cu^{II} ion, one 3,5-dinitro-2-oxidobenzoate ligand and a 3hydroxypyridine ligand. Coordination by one N atom and three O atoms from two different 3,5-dinitro-2-oxidobenzoate ligands and a 3-hydroxypyridine ligand creates a squareplanar Cu^{II} center, which is augmented by a less tightly bonded fifth phenol O atom to form a square-pyramidal fivecoordinate complex with an essentially planar base. The double-stranded chains are stabilized by intrachain $\pi - \pi$ interactions [the centroid-to-centroid distance between adjacent aromatic rings is 3.719(7) Å], and further linked through $O-H \cdots O$ hydrogen bonds, forming a three-dimensional supramolecular network.

Related literature

For related literature, see: Bradshaw et al. (2005); Eddaoudi et al. (2001); Fujita et al. (1994); Gable et al. (1990); Gao et al. (2005); He et al. (2006); Li et al. (1999); Losier & Zaworotko (1996); Moulton & Zaworotko (2001); Song & Xi (2006) Song et al., 2006; Song, Guo & Guo, 2007; Song, Guo & He, 2007; Song, Guo & Zhang, 2007; Song, Yan et al., 2007); Stang & Olenyuk (1997); Withersby et al. (1999); Yaghi & Li (1995).

V = 1357.23 (8) Å³

Mo Ka radiation

 $0.25 \times 0.16 \times 0.09 \text{ mm}$

12917 measured reflections

3094 independent reflections

2275 reflections with $I > 2\sigma(I)$

 $\mu = 1.66 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.061$

Z = 4

Experimental

Crystal data

 $[Cu(C_7H_2N_2O_7)(C_5H_5NO)]$ $M_r = 384.75$ Monoclinic, $P2_1/n$ a = 8.1055 (3) Å b = 6.2208 (2) Å c = 26.9837 (9) Å $\beta = 94.030(3)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.681, T_{\max} = 0.865$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	218 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
3094 reflections	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O8−H8A···O4 ⁱ	0.82	1.94	2.738 (3)	165
6	1 0			

Symmetry code: (i) x - 1, y - 2, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank Guang Dong Ocean University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2099).

References

- Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.
- Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
- Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
- Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
- Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677-1678.
- Gao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m133m135
- He, X., Bi, M. H., Ye, K. Q., Fang, Q. R., Zhang, P., Xu, J. N. & Wang, Y. (2006). Inorg. Chem. Commun. 9, 1165-1168.
- Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.
- Losier, P. & Zaworotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 2779-2782
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Guo, X.-X. & Guo, R. F. (2007). Acta Cryst. E63, m737-m739.
- Song, W. D., Guo, X. X. & He, H. (2007). *Acta Cryst.* E63, m610–m612. Song, W.-D., Guo, X.-X. & He, H. (2007). *Acta Cryst.* E63, m610–m612.
- Song, W.-D. & Xi, D.-L. (2006). Acta Cryst. E62, m3083-m3085.
- Song, W.-D., Yan, J.-B., Guo, X.-X. & Ng, S. W. (2007). Acta Cryst. E63, m1307m1308.
- Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502-518.
- Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (1999). New J. Chem. 23, 573-576.
- Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401-10402.

supporting information

Acta Cryst. (2008). E64, m651-m652 [doi:10.1107/S1600536808009392]

Poly[(µ-3,5-dinitro-2-oxidobenzoato)(µ-3-hydroxypyridine)copper(II)]

Jian-Bin Yan, Wen-Dong Song, Hao Wang and Li-Li Ji

S1. Comment

Inorganic-organic coordination polymers have been a focus of contemporary research interest not only because of the intriguing variety of architectures and topologies but also because of their potential application in gas storage, catalysis, as molecular magnets, in molecular recognition and photoluminescene (Stang & Olenyuk,1997; Moulton & Zaworotko, 2001; Eddaoudi *et al.*, 2001; Bradshaw *et al.*, 2005). Over the past few decades considerable efforts have documented many networks with various structural motifs including honeycomb, brick-wall, rectangular grid, bilayer, ladder, herringbone, diamondoid and octahedral geometries (Gable *et al.*, 1990; Fujita *et al.*, 1994; Yaghi & Li, 1995; Losier & Zaworotko, 1996; Withersby *et al.*, 1999; Li *et al.*, 1999). Building blocks based on aromatic acids, such as benzoic acid and/or its substituted derivatives, have been used in the construction of coordination polymers. However, there are few examples of metal derivatives of 3,5-dinitrosalicylic acid, and examples of crystal structure reports are limited to silver and tin complexes (He *et al.*, 2006). Recently, some new structures with the 3,5-dinitrosalicylicate have been synthesized by our group (Song & Xi (2006), 2006; Song, Guo & Guo, 2007; Song, Guo & He, 2007; Song,Guo & Zhang, 2007; Song, Yan *et al.*, 2007).

With the intention of studying the influences of aromatic bridging ligands on the frameworks of possible structures, we chose another non-chelating ligand, 3-hydroxyprridine, as a second ligand (Gao *et al.*, 2005), and a new coordination polymer, $[Cu(C_7H_3N_2O_7)(C_5H_5NO)]_n$, (I), was successfully synthesized.

The coordination environment of the copper center in complex (I) is depicted in Fig. 1. The asymmetric unit contains one Cu^{II} ion, one 3,5-dinitro-2-oxidobenzoate ligand and a 3-hydroxypyridine ligand. Coordination by one N atom and three O atoms from two different 3,5-dinitro-2-oxidobenzoate ligands and 3-hydroxypyridine ligand create a square planar Cu^{II} center, which is augmented by a less tightly bonded fifth phenol oxygen atom to form a square pyramidal fivecoordinated complex with a basically flat base. The compound exhibits a double chain structure, in which the 3,5-dinitro-2-oxidobenzoate and 3-hydroxypyridine both act as bridging ligands interconnecting adjacent copper(II) centers to form an infinite double stranded chain along the *b* axis of the unit cell (Fig 2.). These double stranded chains are stabilized by intra-chain π - π interactions, and further linked through O—H···O hydrogen bonding interaction involving the hydroxyl group of the 3-hydroxypyridine ligand as the H-donor and a nitryl group of the 3,5-dinitro-2-oxidobenzoate ligand as the acceptor, thus forming a three-dimensional supramolecular network (Fig. 3). The centroid-to-centroid distance of adjacent aromatic rings is 3.719 (7) Å.

S2. Experimental

A mixture of $CuCl_2$ (0.134 g; 1 mmol), 3,5-dinitrosalicylic acid (0.228 g; 1 mmol), 3-hydroxypyridine (0.095 g; 1 mmol) and H_2O (10 ml) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to and maintained at 433 K for 5 days, and then cooled to room temperature at 5 K

h⁻¹. The blue plate single crystals were obtained in *ca* 78% yield based on CuCl₂.

S3. Refinement

Aromatic and hydroxyl H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, O—H = 0.82 Å (hydroxyl group) and with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C, O)$. Hydroxyl H atoms were allowed to rotate around the C—O direction to best fit the experimental electron denisty.

Figure 1

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related to the labelled atoms by the symmetry operator (x, 0.5 - y, -1/2 + z).

Figure 3

A packing view of (I) along the b axis. Hydrogen bonds are depicted as broken lines.

Poly[(µ-3,5-dinitro-2-oxidobenzoato)(µ-3-hydroxypyridine)copper(II)]

Crystal data

[Cu(C₇H₂N₂O₇)(C₅H₅NO)] $M_r = 384.75$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.1055 (3) Å b = 6.2208 (2) Å c = 26.9837 (9) Å $\beta = 94.030$ (3)° V = 1357.23 (8) Å³ Z = 4

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.681, T_{\max} = 0.865$ F(000) = 772 $D_x = 1.883 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2895 reflections $\theta = 2.4-27.9^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$ T = 296 KPlate, blue $0.25 \times 0.16 \times 0.09 \text{ mm}$

12917 measured reflections 3094 independent reflections 2275 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -8 \rightarrow 8$ $l = -31 \rightarrow 34$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.03	H-atom parameters constrained
3094 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2]$
218 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.38 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.12663 (5)	0.27589 (5)	0.187438 (14)	0.02720 (13)
01	0.2121 (3)	0.3893 (3)	0.12851 (7)	0.0336 (5)
C3	0.4627 (4)	0.8652 (4)	0.15767 (12)	0.0300 (7)
H3	0.5168	0.9353	0.1846	0.036*
C7	0.2967 (4)	0.5637 (4)	0.12445 (11)	0.0266 (6)
C2	0.3785 (4)	0.6762 (4)	0.16517 (11)	0.0257 (6)
C6	0.3114 (4)	0.6587 (4)	0.07688 (11)	0.0303 (7)
C5	0.3921 (4)	0.8497 (5)	0.06963 (12)	0.0339 (7)
Н5	0.3957	0.9089	0.0381	0.041*
C4	0.4673 (4)	0.9503 (4)	0.11085 (12)	0.0319 (7)
N2	0.2313 (3)	0.5572 (4)	0.03232 (10)	0.0383 (7)
N3	0.5560 (3)	1.1514 (4)	0.10454 (13)	0.0432 (7)
O5	0.5735 (3)	1.2190 (4)	0.06299 (10)	0.0593 (8)
O4	0.6093 (3)	1.2453 (3)	0.14266 (11)	0.0569 (7)
O6	0.1611 (3)	0.6731 (4)	0.00078 (10)	0.0580 (7)
07	0.2381 (4)	0.3631 (4)	0.02875 (9)	0.0591 (7)
N1	0.0150 (3)	0.0378 (3)	0.14852 (9)	0.0280 (6)
C10	-0.1449 (4)	-0.2943 (4)	0.09616 (13)	0.0354 (8)
H10	-0.1983	-0.4056	0.0785	0.043*
C8	-0.0260 (4)	-0.1437 (4)	0.17174 (12)	0.0308 (7)
H8	-0.0007	-0.1566	0.2058	0.037*
C9	-0.1048 (4)	-0.3115 (4)	0.14630 (12)	0.0294 (7)
C12	-0.0227 (4)	0.0547 (4)	0.09966 (12)	0.0335 (7)
H12	0.0064	0.1790	0.0832	0.040*
C11	-0.1036 (4)	-0.1078 (5)	0.07304 (13)	0.0377 (8)

supporting information

H11	-0.1303	-0.0907	0.0392	0.045*	
08	-0.1323 (3)	-0.4927 (3)	0.17369 (9)	0.0429 (6)	
H8A	-0.2046	-0.5657	0.1591	0.064*	
C1	0.3686 (4)	0.6059 (4)	0.21742 (11)	0.0272 (7)	
O2	0.2620 (3)	0.4681 (3)	0.22901 (8)	0.0378 (5)	
O3	0.4641 (2)	0.6940 (3)	0.25017 (8)	0.0290 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.0369 (2)	0.02288 (17)	0.0209 (2)	-0.00557 (14)	-0.00425 (16)	0.00164 (14)
01	0.0472 (14)	0.0299 (10)	0.0231 (12)	-0.0138 (9)	-0.0003 (10)	-0.0021 (8)
C3	0.0300 (17)	0.0254 (13)	0.034 (2)	-0.0014 (11)	-0.0011 (14)	-0.0047 (12)
C7	0.0291 (17)	0.0262 (13)	0.0241 (17)	-0.0016 (11)	-0.0008 (13)	-0.0019 (11)
C2	0.0298 (17)	0.0255 (13)	0.0215 (17)	-0.0004 (11)	-0.0002 (13)	-0.0009 (11)
C6	0.0342 (18)	0.0365 (15)	0.0195 (18)	-0.0052 (12)	-0.0021 (14)	-0.0005 (12)
C5	0.0335 (19)	0.0391 (15)	0.0294 (19)	-0.0064 (13)	0.0038 (15)	0.0076 (14)
C4	0.0291 (17)	0.0282 (13)	0.038 (2)	-0.0066 (12)	0.0038 (15)	0.0039 (13)
N2	0.0425 (17)	0.0507 (16)	0.0216 (16)	-0.0148 (13)	0.0006 (13)	-0.0006 (12)
N3	0.0349 (17)	0.0343 (13)	0.060 (2)	-0.0077 (12)	0.0038 (16)	0.0058 (14)
05	0.0653 (19)	0.0535 (14)	0.060 (2)	-0.0221 (12)	0.0112 (15)	0.0213 (13)
O4	0.0575 (17)	0.0447 (13)	0.068 (2)	-0.0267 (11)	0.0005 (15)	-0.0063 (12)
06	0.0634 (19)	0.0757 (17)	0.0321 (16)	-0.0060 (14)	-0.0154 (13)	0.0153 (13)
07	0.090 (2)	0.0474 (14)	0.0379 (17)	-0.0132 (13)	-0.0070 (15)	-0.0116 (12)
N1	0.0331 (15)	0.0236 (11)	0.0265 (15)	-0.0028 (9)	-0.0037 (11)	0.0018 (10)
C10	0.0395 (19)	0.0282 (14)	0.037 (2)	-0.0087 (12)	-0.0082 (16)	-0.0089 (13)
C8	0.0362 (18)	0.0258 (13)	0.0291 (19)	-0.0049 (12)	-0.0072 (15)	0.0043 (12)
C9	0.0279 (17)	0.0246 (13)	0.035 (2)	-0.0017 (11)	-0.0038 (14)	0.0030 (12)
C12	0.0430 (19)	0.0294 (14)	0.0269 (19)	-0.0071 (13)	-0.0052 (15)	-0.0006 (12)
C11	0.045 (2)	0.0382 (16)	0.0282 (19)	-0.0047 (14)	-0.0052 (16)	-0.0036 (14)
08	0.0481 (16)	0.0281 (10)	0.0501 (16)	-0.0143 (9)	-0.0124 (12)	0.0091 (10)
C1	0.0321 (17)	0.0246 (13)	0.0242 (18)	0.0024 (11)	-0.0024 (14)	-0.0046 (11)
02	0.0511 (15)	0.0399 (11)	0.0214 (12)	-0.0187 (10)	-0.0040 (10)	0.0005 (9)
03	0.0315 (12)	0.0313 (10)	0.0231 (12)	-0.0031 (8)	-0.0055 (9)	-0.0073 (8)

Geometric parameters (Å, °)

Cu1—O1	1.9132 (19)	N3—O5	1.215 (4)	
Cu1—O2	1.929 (2)	N3—O4	1.234 (4)	
Cu1—O3 ⁱ	1.952 (2)	N1—C12	1.336 (4)	
Cu1—N1	1.996 (2)	N1—C8	1.344 (3)	
O1—C7	1.292 (3)	C10—C11	1.370 (4)	
C3—C4	1.373 (4)	С10—С9	1.373 (5)	
C3—C2	1.382 (4)	C10—H10	0.9300	
С3—Н3	0.9300	C8—C9	1.381 (4)	
С7—С6	1.426 (4)	C8—H8	0.9300	
С7—С2	1.426 (4)	C9—O8	1.375 (3)	
C2—C1	1.484 (4)	C12—C11	1.379 (4)	

1.377 (4)	C12—H12	0.9300
1.468 (4)	C11—H11	0.9300
1.380 (4)	O8—H8A	0.8200
0.9300	C1—O3	1.259 (3)
1.459 (3)	C1—O2	1.271 (3)
1.213 (3)	O3—Cu1 ⁱⁱ	1.952 (2)
1.224 (3)		
91.74 (8)	O5—N3—O4	123.3 (3)
173.49 (8)	O5—N3—C4	119.7 (3)
83.90 (8)	O4—N3—C4	117.1 (3)
90.78 (9)	C12—N1—C8	118.6 (2)
169.99 (10)	C12—N1—Cu1	121.62 (18)
94.34 (9)	C8—N1—Cu1	119.7 (2)
127.25 (19)	C11—C10—C9	117.8 (3)
120.6 (3)	C11—C10—H10	121.1
119.7	С9—С10—Н10	121.1
119.7	N1—C8—C9	121.6 (3)
120.2 (3)	N1—C8—H8	119.2
124.6 (3)	С9—С8—Н8	119.2
115.2 (2)	C10—C9—O8	123.9 (3)
120.8 (3)	C10—C9—C8	120.0 (3)
116.8 (3)	O8—C9—C8	116.1 (3)
122.3 (2)	N1—C12—C11	121.6 (3)
123.8 (3)	N1—C12—H12	119.2
116.2 (3)	C11—C12—H12	119.2
119.9 (2)	C10-C11-C12	120.4 (3)
117.7 (3)	C10—C11—H11	119.8
121.2	C12—C11—H11	119.8
121.2	С9—О8—Н8А	109.5
121.8 (3)	O3—C1—O2	121.0 (3)
118.9 (3)	O3—C1—C2	117.9 (3)
119.2 (3)	O2—C1—C2	121.0 (3)
123.5 (3)	C1—O2—Cu1	130.1 (2)
118.2 (3)	C1O3Cu1 ⁱⁱ	117.95 (19)
118.2 (3)		
	1.377 (4) 1.468 (4) 1.380 (4) 0.9300 1.459 (3) 1.213 (3) 1.224 (3) 91.74 (8) 173.49 (8) 83.90 (8) 90.78 (9) 169.99 (10) 94.34 (9) 127.25 (19) 120.6 (3) 119.7 120.2 (3) 124.6 (3) 115.2 (2) 120.8 (3) 116.8 (3) 122.3 (2) 123.8 (3) 116.2 (3) 119.9 (2) 117.7 (3) 121.2 121.2 121.8 (3) 118.9 (3) 118.2 (3) 118.2 (3) 118.2 (3)	1.377(4) $C12$ —H12 $1.468(4)$ $C11$ —H11 $1.380(4)$ $O8$ —H8A 0.9300 $C1$ —O2 $1.213(3)$ $O3$ —Cu1 ⁱⁱ $1.224(3)$ 03 —Cu1 ⁱⁱ $91.74(8)$ $O5$ —N3—O4 $173.49(8)$ $O5$ —N3—C4 $83.90(8)$ 04 —N3—C4 $90.78(9)$ $C12$ —N1—C8 $169.99(10)$ $C12$ —N1—Cu1 $94.34(9)$ $C8$ —N1—Cu1 $127.25(19)$ $C11$ —C10—H10 119.7 $C9$ —C10—H10 119.7 $C9$ —C10—H10 119.7 $N1$ —C8—C9 $120.2(3)$ $N1$ —C8—H8 $124.6(3)$ $C9$ —C8 $123.8(3)$ $C10$ —C9—C8 $120.8(3)$ $C10$ —C9—C8 $122.3(2)$ $N1$ —C12—H12 $116.8(3)$ $O8$ —C9—C8 $122.3(2)$ $N1$ —C12—H12 $119.9(2)$ $C10$ —C11—H11 121.2 $C9$ —O8—H8A $121.8(3)$ $O3$ —C1—C2 $118.9(3)$ $O3$ —C1—C2 $123.5(3)$ $C1$ —O2—Cu1 $118.2(3)$

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O8—H8A···O4 ⁱⁱⁱ	0.82	1.94	2.738 (3)	165

Symmetry code: (iii) x-1, y-2, z.