organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o983-o984

(2E)-2-(2,4-Di­chloro­phenyl­sulfon­yl)-3-(4-methyl­anilino)-3-(methyl­sulfan­yl)acrylo­nitrile

aEscuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1051, Venezuela, and bFacultad de Farmacia, Universidad Central de Venezuela, Caracas 1051, Venezuela
*Correspondence e-mail: mariocapparelli@cantv.net

(Received 12 April 2008; accepted 29 April 2008; online 3 May 2008)

The title compound, C17H14Cl2N2O2S2, and the 3-methoxy­anilino analogue reported in the preceding paper have been used as starting materials to develop benzothia­zine derivatives with anti­malarial activity. The mol­ecule displays an E (trans) configuration about the central double bond. Due to conjugation in the C=C—C≡N group, the putative single bond shows a significant shortening [1.418 (3) Å]. The mol­ecule has a six-membered ring involving an intra­molecular N—H⋯O(sulfon­yl) bond, which is an example of resonance-assisted hydrogen bonding. In the crystal structure, bonds of the C—H⋯O(sulfon­yl) and C—H⋯N(cyano) types form double layers of mol­ecules parallel to ([\overline{1}]01). Within these layers there are ππ inter­actions between benzene rings of pairs of centrosymmetrically related mol­ecules, with distances of 3.7969 (12) Å between centroids. C—H⋯π interactions are also present.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); Baraza­rte et al. (2008[Barazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661-3670.]); Capparelli et al. (2008[Capparelli, M. V., Barazarte, A. R. & Charris, J. E. (2008). Acta Cryst. E64, o981-o982.]); Charris et al. (2005[Charris, J., Barazarte, A., Domínguez, J. & Gamboa, N. (2005). J. Chem. Res. pp. 27-28.], 2007[Charris, J., Barazarte, A., Ferrer, R., Camacho, J., Gamboa, N., Rodrigues, J., Atencio, R. & González, T. (2007). J. Chem. Res. pp. 16-18.]); Gilli et al. (1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]); Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]); Kennard et al. (2003[Kennard, C. H. L., McFadden, H. G. & Byriel, K. A. (2003). Acta Cryst. E59, o922-o923.]); Krivokolysko et al. (2002[Krivokolysko, S. G., Rusanov, E. B. & Litvinov, V. P. (2002). Chem. Heterocycl. Compd, 38, 1205-1209.]); Song et al. (2005[Song, B., Yang, S., Zhong, H., Jin, L., Hu, D. & Liu, G. (2005). J. Fluorine Chem. 126, 87-92.]); Tominaga et al. (1989[Tominaga, Y., Kohra, S., Honkawa, H. & Hosomi, A. (1989). Heterocycles, 29, 1409-1428.], 2002[Tominaga, Y., Shigemitsu, Y. & Sasaki, K. (2002). J. Heterocyclic Chem. 39, 571-591.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Cl2N2O2S2

  • Mr = 413.32

  • Monoclinic, P 21 /n

  • a = 11.3975 (6) Å

  • b = 14.8147 (8) Å

  • c = 11.7215 (6) Å

  • β = 109.444 (1)°

  • V = 1866.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 (2) K

  • 0.55 × 0.36 × 0.27 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.851

  • 12685 measured reflections

  • 4562 independent reflections

  • 3674 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.03

  • 4562 reflections

  • 229 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.20 2.756 (2) 123
C4—H4A⋯N1i 0.96 2.61 3.504 (3) 156
C5—H5C⋯O2ii 0.96 2.50 3.442 (3) 167
C4—H4BCg2 0.96 2.76 3.582 (3) 144
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg2 is the centroid of the C21–C26 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The exploration of simple molecules with different functionalities for the synthesis of heterocycles is a worthwhile contribution to the chemistry of these compounds. The title compound (II), and the 3''-methoxy analogue (I) [see previous paper: Capparelli et al., 2008)], and similar derivatives, have been used as effective synthons in the syntheses of some 1H-pyrrole-2,5-diones (Tominaga et al., 2002), pyrimidine derivatives (Tominaga et al., 1989) and 4H-1,4-benzothiazine-1,1-dioxides (Charris et al., 2005). We used (I) and (II) as starting materials to develop benzothiazine derivatives with antimalarial activity (Charris et al., 2007; Barazarte et al., 2008).

The X-ray structure determination showed that there is one molecule per asymmetric unit (Fig. 1), which displays E (trans) configuration about the C2C3 double bond. A search of the Cambridge Structural Database (version 5.29, updated Jan 2008) (Allen, 2002) produced no structures with the same central fragment (i.e. excluding the phenyl rings) of (II) for proper comparison, but a search for the more restricted fragment X—C(CN)C(SMe)-N(H)—Y gave three comparable structures, viz. TAKDOZ (Krivokolysko et al., 2002), AJULUM (Kennard et al., 2003) and DALVES (Song et al., 2005). Due to conjugation in the C3C2—C1N1 moiety, the putative single bond C2—C1 (1.418 (3) Å) shows a significant shortening, similar to the range 1.415 (7)–1.437 (4) Å observed in the aforementioned structures. Bond lengths (see Supplementary Materials) are in good agreement with the expected values (Allen et al., 1987). Within experimental error (i.e. 3 e.s.d.'s) all of the corresponding bond angles and most of the bond lengths and are equal in (I) and (II).

Aside from the σ-bonded (i.e. free rotating) phenyl and SMe groups, the molecules of (I) and (II) display a significant difference in the rigid moieties formed by the double bonds C2C3 and their neighboring atoms (S1, C1, S2, N2). The planes defined by S1—C2—C1 and N2—C3—S2 make dihedral angles of 17.08 (17)° in (I) and 11.2 (3)° in (II), but they are twisted about C2 C3 in different directions (Fig. 2), probably due to packing forces.

As in (I), the title compound displays a six-membered ring involving an intramolecular N—H···O(sulfonyl) bond (Table 1), which is an example of resonance-assisted hydrogen bonding (RAHB) (Gilli et al., 1989), as suggested by the ring bond lengths. Comparison with AJULUM and DALVES, which display similar rings [with N—H···O(carbonyl) and N—H···O(carboxyl) bonds respectively] and TAKDOZ, which does not have RAHB, reveal lengthenings of the CC distances [AJULUM, 1.371 (2) Å; DALVES, 1.386 (7) Å; TAKDOZ, 1.345 (4) Å] and shortenings of the C—N bonds [AJULUM, 1.360 (2) Å; DALVES, 1.333 (6) Å; TAKDOZ, 1.404 (4) Å]. On the other hand, the bond length of S1O2, involved in RAHB, (1.4345 (15) Å) is nearly identical to the S1 O1 (1.4343 (15) Å). The molecular geometry also allows for a possible C4—H4b···Cg2 intramolecular interaction (Cg2: see below).

In the crystal structure (Fig. 3) bonds of the C—H···O(sulfonyl) and C—H···N(cyano) type form double layers of molecules parallel to (-1 0 1). Within these layers there are π-π interactions between phenyl rings of pairs of centrosymmetrically related molecules, with Cg1···Cg1(-x, 1 - y, -z), 3.7969 (12) Å (Cgm: centroid of ring Cm1—Cm6, m = 1, 2).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Barazarte et al. (2008); Capparelli et al. (2008); Charris et al. (2005, 2007); Gilli et al. (1989); Hirshfeld (1976); Kennard et al. (2003); Krivokolysko et al. (2002); Song et al. (2005); Tominaga et al. (1989, 2002). Cg2 is the centroid of ring C21–C26.

Experimental top

To a solution of 2,4-dichlorobenzenosulfonylacetonitrile (1.50 g, 6.1 mmol) and KOH (0.46 g, 8.1 mmol) in anhydrous dioxane (10 ml) at 0°C, was added dropwise the 4-methylphenylisothiocianate (0.91 g, 6.1 mmol) dissolved in anhydrous dioxane (3 ml). The resulting solution was stirred for 4 h at room temperature and then was added iodomethane (0.87 g, 6.1 mmol) and the mixture was stirred by 5 h at room temperature. The solvent was removed under reduced pressure and the residue was dissolved in dichloromethane (20 ml), washed with water, brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The solid was purified by recrystallization from ethanol. Yield: 1.91 g (74%). Crystals suitable for X-ray analysis were obtained during the recrystallization.

The IR spectrum was determined on a Shimadzu model 470 spectrophotometer. IR data [KBr pellets, ν (cm-1)]: 3264 (NH), 2192 (CN), 1341 (SO2), 1133 (SO2).

The 1H NMR spectrum was recorded using a Jeol Eclipse 270 MHz [CDCl3/TMS, δ (p.p.m.), atomic numbering as in Fig. 1]: 2.20 (s, 3H, SCH3), 2.37 (s, 3H, CH3), 7.13 (d, 2H, H22, H26; J: 8.3 Hz), 7.21 (d, 2H, H23, H25; J: 8.3 Hz), 7.46 (dd, 1H, H15; J: 8.6, 1.9 Hz), 7.56 (d, 1H, H13; J: 1.9 Hz), 8.14 (d, 1H, H16; J: 8.6 Hz), 9.90 (brs, 1H, NH).

The elemental analysis was performed on a Perkin Elmer 2400 CHN analyzer; results (%) were within ±0.4 of predicted values. Calculated for C17H14N2O2Cl2S2: C, 49.40; H, 3.41; N, 6.78. Found: C, 49.35; H, 3.40; N, 6.83.

The melting point (uncorrected) was measured with a Fischer-Johns micro hot-stage apparatus: 182–184 °C.

Refinement top

Hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.86 Å for N, 0.93 Å for C(sp2), 0.96 Å for C(sp3)] and Uiso = p Ueq(parent atom) [p = 1.2 for N and C(sp2), 1.5 for C(sp3)].

DELU restraints (Sheldrick, 2008) were applied to C1—C2 and S1—O2 bonds which (before restraints) had values of ΔU/σ = 6.00 Å and 5.13 Å, somewhat above the standard maximun (i.e. ΔU/σ 5 Å, Spek, 1998) for the rigid-bond test (Hirshfeld, 1976).

Structure description top

The exploration of simple molecules with different functionalities for the synthesis of heterocycles is a worthwhile contribution to the chemistry of these compounds. The title compound (II), and the 3''-methoxy analogue (I) [see previous paper: Capparelli et al., 2008)], and similar derivatives, have been used as effective synthons in the syntheses of some 1H-pyrrole-2,5-diones (Tominaga et al., 2002), pyrimidine derivatives (Tominaga et al., 1989) and 4H-1,4-benzothiazine-1,1-dioxides (Charris et al., 2005). We used (I) and (II) as starting materials to develop benzothiazine derivatives with antimalarial activity (Charris et al., 2007; Barazarte et al., 2008).

The X-ray structure determination showed that there is one molecule per asymmetric unit (Fig. 1), which displays E (trans) configuration about the C2C3 double bond. A search of the Cambridge Structural Database (version 5.29, updated Jan 2008) (Allen, 2002) produced no structures with the same central fragment (i.e. excluding the phenyl rings) of (II) for proper comparison, but a search for the more restricted fragment X—C(CN)C(SMe)-N(H)—Y gave three comparable structures, viz. TAKDOZ (Krivokolysko et al., 2002), AJULUM (Kennard et al., 2003) and DALVES (Song et al., 2005). Due to conjugation in the C3C2—C1N1 moiety, the putative single bond C2—C1 (1.418 (3) Å) shows a significant shortening, similar to the range 1.415 (7)–1.437 (4) Å observed in the aforementioned structures. Bond lengths (see Supplementary Materials) are in good agreement with the expected values (Allen et al., 1987). Within experimental error (i.e. 3 e.s.d.'s) all of the corresponding bond angles and most of the bond lengths and are equal in (I) and (II).

Aside from the σ-bonded (i.e. free rotating) phenyl and SMe groups, the molecules of (I) and (II) display a significant difference in the rigid moieties formed by the double bonds C2C3 and their neighboring atoms (S1, C1, S2, N2). The planes defined by S1—C2—C1 and N2—C3—S2 make dihedral angles of 17.08 (17)° in (I) and 11.2 (3)° in (II), but they are twisted about C2 C3 in different directions (Fig. 2), probably due to packing forces.

As in (I), the title compound displays a six-membered ring involving an intramolecular N—H···O(sulfonyl) bond (Table 1), which is an example of resonance-assisted hydrogen bonding (RAHB) (Gilli et al., 1989), as suggested by the ring bond lengths. Comparison with AJULUM and DALVES, which display similar rings [with N—H···O(carbonyl) and N—H···O(carboxyl) bonds respectively] and TAKDOZ, which does not have RAHB, reveal lengthenings of the CC distances [AJULUM, 1.371 (2) Å; DALVES, 1.386 (7) Å; TAKDOZ, 1.345 (4) Å] and shortenings of the C—N bonds [AJULUM, 1.360 (2) Å; DALVES, 1.333 (6) Å; TAKDOZ, 1.404 (4) Å]. On the other hand, the bond length of S1O2, involved in RAHB, (1.4345 (15) Å) is nearly identical to the S1 O1 (1.4343 (15) Å). The molecular geometry also allows for a possible C4—H4b···Cg2 intramolecular interaction (Cg2: see below).

In the crystal structure (Fig. 3) bonds of the C—H···O(sulfonyl) and C—H···N(cyano) type form double layers of molecules parallel to (-1 0 1). Within these layers there are π-π interactions between phenyl rings of pairs of centrosymmetrically related molecules, with Cg1···Cg1(-x, 1 - y, -z), 3.7969 (12) Å (Cgm: centroid of ring Cm1—Cm6, m = 1, 2).

For related literature, see: Allen (2002); Allen et al. (1987); Barazarte et al. (2008); Capparelli et al. (2008); Charris et al. (2005, 2007); Gilli et al. (1989); Hirshfeld (1976); Kennard et al. (2003); Krivokolysko et al. (2002); Song et al. (2005); Tominaga et al. (1989, 2002). Cg2 is the centroid of ring C21–C26.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (II) showing the atomic numbering. Displacement ellipsoids are drawn at 50% probability level. Possible hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the molecules of (I) and (II) along the C2C3 bonds. Possible hydrogen bonds are shown as dashed lines. For clarity, the phenyl groups (except the C11 atoms) and the S-bonded Me groups were omitted.
[Figure 3] Fig. 3. Crystal structure of (II) viewed down the b axis. Possible hydrogen bonds are shown as dashed lines.
(2E)-2-(2,4-Dichlorophenylsulfonyl)-3-(4-methylanilino)-3- (methylsulfanyl)acrylonitrile top
Crystal data top
C17H14Cl2N2O2S2F(000) = 848
Mr = 413.32Dx = 1.471 Mg m3
Monoclinic, P21/nMelting point = 455–457 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.3975 (6) ÅCell parameters from 5367 reflections
b = 14.8147 (8) Åθ = 2.3–28.5°
c = 11.7215 (6) ŵ = 0.59 mm1
β = 109.444 (1)°T = 296 K
V = 1866.30 (17) Å3Prism, colorless
Z = 40.55 × 0.36 × 0.27 mm
Data collection top
Bruker SMART APEX
diffractometer
4562 independent reflections
Radiation source: fine-focus sealed tube3674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.13 pixels mm-1θmax = 29.0°, θmin = 2.2°
φ and ω scansh = 1412
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1919
Tmin = 0.765, Tmax = 0.851l = 1514
12685 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.5083P]
where P = (Fo2 + 2Fc2)/3
4562 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H14Cl2N2O2S2V = 1866.30 (17) Å3
Mr = 413.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3975 (6) ŵ = 0.59 mm1
b = 14.8147 (8) ÅT = 296 K
c = 11.7215 (6) Å0.55 × 0.36 × 0.27 mm
β = 109.444 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4562 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3674 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.851Rint = 0.015
12685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
4562 reflectionsΔρmin = 0.30 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36812 (4)0.42470 (4)0.06767 (4)0.04761 (14)
S20.64407 (5)0.37305 (4)0.41840 (4)0.05631 (15)
Cl10.30933 (5)0.54484 (4)0.27681 (5)0.05801 (15)
Cl20.14871 (5)0.40783 (6)0.14708 (6)0.0824 (2)
O10.35547 (15)0.36287 (12)0.02987 (13)0.0681 (4)
O20.40074 (13)0.51660 (10)0.05390 (12)0.0553 (3)
N10.4303 (2)0.21530 (14)0.23381 (18)0.0737 (6)
N20.60865 (15)0.51086 (11)0.25871 (13)0.0494 (4)
H20.59040.52660.18420.059*
C110.22335 (17)0.42192 (12)0.09442 (15)0.0438 (4)
C120.19883 (17)0.47436 (12)0.18235 (16)0.0445 (4)
C130.08383 (18)0.47058 (14)0.19803 (18)0.0522 (4)
H130.06720.50620.25620.063*
C140.00560 (18)0.41325 (15)0.12618 (18)0.0542 (5)
C150.0156 (2)0.36108 (15)0.0379 (2)0.0610 (5)
H150.04620.32340.01050.073*
C160.1306 (2)0.36578 (14)0.02256 (18)0.0554 (5)
H160.14600.33080.03680.066*
C210.67534 (18)0.57496 (13)0.34797 (16)0.0466 (4)
C220.7764 (2)0.61972 (15)0.33448 (19)0.0577 (5)
H220.79900.60980.26620.061 (6)*
C230.8437 (2)0.67925 (16)0.4231 (2)0.0639 (6)
H230.91150.70920.41330.077*
C240.8129 (2)0.69545 (14)0.5260 (2)0.0586 (5)
C250.7089 (2)0.65227 (14)0.53511 (19)0.0583 (5)
H250.68480.66340.60220.070*
C260.6398 (2)0.59308 (14)0.44742 (19)0.0534 (5)
H260.56950.56550.45530.064*
C10.45350 (19)0.28900 (14)0.22053 (17)0.0524 (4)
C20.47563 (17)0.38061 (13)0.19901 (15)0.0453 (4)
C30.57197 (17)0.42866 (13)0.28006 (15)0.0438 (4)
C40.8069 (2)0.3985 (2)0.4575 (2)0.0769 (7)
H4A0.85430.35770.51930.115*
H4B0.82190.45940.48690.115*
H4C0.83160.39220.38720.115*
C50.8896 (3)0.75847 (17)0.6233 (3)0.0873 (8)
H5A0.97530.74030.64840.131*
H5B0.86050.75630.69120.131*
H5C0.88190.81890.59210.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0439 (2)0.0669 (3)0.0322 (2)0.0030 (2)0.01291 (17)0.00344 (19)
S20.0637 (3)0.0598 (3)0.0387 (2)0.0013 (2)0.0081 (2)0.0079 (2)
Cl10.0546 (3)0.0655 (3)0.0544 (3)0.0084 (2)0.0188 (2)0.0189 (2)
Cl20.0437 (3)0.1218 (6)0.0828 (4)0.0037 (3)0.0227 (3)0.0103 (4)
O10.0607 (9)0.1015 (12)0.0413 (7)0.0062 (8)0.0161 (6)0.0211 (7)
O20.0475 (7)0.0724 (9)0.0458 (7)0.0004 (6)0.0153 (6)0.0141 (6)
N10.0953 (15)0.0615 (12)0.0611 (11)0.0123 (11)0.0217 (11)0.0057 (9)
N20.0524 (9)0.0587 (9)0.0349 (7)0.0031 (7)0.0116 (6)0.0047 (6)
C110.0420 (9)0.0517 (10)0.0366 (8)0.0000 (7)0.0115 (7)0.0002 (7)
C120.0428 (9)0.0503 (10)0.0379 (8)0.0005 (7)0.0100 (7)0.0004 (7)
C130.0476 (10)0.0653 (12)0.0455 (10)0.0058 (9)0.0177 (8)0.0005 (9)
C140.0409 (10)0.0707 (13)0.0496 (10)0.0016 (9)0.0132 (8)0.0121 (9)
C150.0523 (12)0.0683 (13)0.0556 (12)0.0123 (10)0.0088 (9)0.0044 (10)
C160.0544 (11)0.0624 (12)0.0465 (10)0.0041 (9)0.0130 (9)0.0104 (9)
C210.0468 (10)0.0504 (10)0.0412 (9)0.0003 (8)0.0129 (7)0.0037 (7)
C220.0588 (12)0.0696 (13)0.0495 (11)0.0061 (10)0.0243 (9)0.0057 (9)
C230.0618 (13)0.0639 (13)0.0672 (13)0.0165 (10)0.0228 (11)0.0040 (10)
C240.0699 (13)0.0439 (10)0.0570 (11)0.0023 (9)0.0145 (10)0.0035 (9)
C250.0749 (14)0.0521 (11)0.0532 (11)0.0017 (10)0.0282 (10)0.0035 (9)
C260.0534 (11)0.0566 (11)0.0554 (11)0.0028 (9)0.0251 (9)0.0004 (9)
C10.0586 (12)0.0573 (10)0.0413 (9)0.0000 (9)0.0167 (8)0.0073 (8)
C20.0472 (10)0.0520 (9)0.0358 (8)0.0051 (8)0.0128 (7)0.0026 (7)
C30.0445 (9)0.0543 (10)0.0334 (8)0.0070 (8)0.0139 (7)0.0004 (7)
C40.0582 (14)0.1022 (19)0.0608 (14)0.0158 (13)0.0070 (11)0.0216 (13)
C50.112 (2)0.0604 (14)0.0782 (17)0.0191 (14)0.0166 (16)0.0122 (12)
Geometric parameters (Å, º) top
S1—O11.4343 (15)C16—H160.9300
S1—O21.4345 (15)C21—C261.382 (3)
S1—C21.7442 (18)C21—C221.383 (3)
S1—C111.7796 (19)C22—C231.384 (3)
S2—C31.7596 (18)C22—H220.9300
S2—C41.798 (3)C23—C241.385 (3)
Cl1—C121.7245 (18)C23—H230.9300
Cl2—C141.730 (2)C24—C251.382 (3)
N1—C11.146 (3)C24—C51.508 (3)
N2—C31.338 (2)C25—C261.381 (3)
N2—C211.430 (2)C25—H250.9300
N2—H20.8600C26—H260.9300
C11—C161.388 (3)C1—C21.418 (3)
C11—C121.391 (3)C2—C31.386 (3)
C12—C131.384 (3)C4—H4A0.9600
C13—C141.378 (3)C4—H4B0.9600
C13—H130.9300C4—H4C0.9600
C14—C151.375 (3)C5—H5A0.9600
C15—C161.383 (3)C5—H5B0.9600
C15—H150.9300C5—H5C0.9600
O1—S1—O2118.52 (10)C23—C22—H22120.2
O1—S1—C2108.61 (9)C22—C23—C24121.7 (2)
O2—S1—C2108.81 (9)C22—C23—H23119.1
O1—S1—C11105.82 (9)C24—C23—H23119.1
O2—S1—C11109.39 (9)C25—C24—C23117.4 (2)
C2—S1—C11104.83 (9)C25—C24—C5121.6 (2)
C3—S2—C4105.22 (10)C23—C24—C5121.0 (2)
C3—N2—C21126.20 (15)C26—C25—C24121.8 (2)
C3—N2—H2116.9C26—C25—H25119.1
C21—N2—H2116.9C24—C25—H25119.1
C16—C11—C12118.95 (17)C25—C26—C21119.76 (19)
C16—C11—S1118.07 (14)C25—C26—H26120.1
C12—C11—S1122.97 (14)C21—C26—H26120.1
C13—C12—C11120.56 (17)N1—C1—C2176.8 (2)
C13—C12—Cl1117.44 (14)C3—C2—C1121.12 (17)
C11—C12—Cl1122.00 (14)C3—C2—S1125.19 (14)
C14—C13—C12118.97 (18)C1—C2—S1113.64 (14)
C14—C13—H13120.5N2—C3—C2124.40 (16)
C12—C13—H13120.5N2—C3—S2121.29 (14)
C15—C14—C13121.78 (19)C2—C3—S2114.31 (14)
C15—C14—Cl2119.36 (17)S2—C4—H4A109.5
C13—C14—Cl2118.85 (16)S2—C4—H4B109.5
C14—C15—C16118.76 (19)H4A—C4—H4B109.5
C14—C15—H15120.6S2—C4—H4C109.5
C16—C15—H15120.6H4A—C4—H4C109.5
C15—C16—C11120.96 (19)H4B—C4—H4C109.5
C15—C16—H16119.5C24—C5—H5A109.5
C11—C16—H16119.5C24—C5—H5B109.5
C26—C21—C22119.52 (19)H5A—C5—H5B109.5
C26—C21—N2120.82 (17)C24—C5—H5C109.5
C22—C21—N2119.66 (17)H5A—C5—H5C109.5
C21—C22—C23119.66 (19)H5B—C5—H5C109.5
C21—C22—H22120.2
O1—S1—C11—C160.27 (19)C21—C22—C23—C240.1 (4)
O2—S1—C11—C16128.48 (16)C22—C23—C24—C252.3 (3)
C2—S1—C11—C16114.99 (16)C22—C23—C24—C5178.2 (2)
O1—S1—C11—C12179.20 (16)C23—C24—C25—C261.9 (3)
O2—S1—C11—C1250.45 (17)C5—C24—C25—C26178.7 (2)
C2—S1—C11—C1266.08 (17)C24—C25—C26—C210.8 (3)
C16—C11—C12—C130.1 (3)C22—C21—C26—C253.1 (3)
S1—C11—C12—C13178.98 (15)N2—C21—C26—C25177.15 (18)
C16—C11—C12—Cl1179.16 (15)O1—S1—C2—C3133.90 (16)
S1—C11—C12—Cl11.9 (2)O2—S1—C2—C33.58 (19)
C11—C12—C13—C140.8 (3)C11—S1—C2—C3113.35 (17)
Cl1—C12—C13—C14178.37 (15)O1—S1—C2—C148.61 (17)
C12—C13—C14—C151.3 (3)O2—S1—C2—C1178.93 (14)
C12—C13—C14—Cl2179.34 (15)C11—S1—C2—C164.14 (15)
C13—C14—C15—C160.9 (3)C21—N2—C3—C2157.68 (18)
Cl2—C14—C15—C16179.72 (17)C21—N2—C3—S221.5 (3)
C14—C15—C16—C110.0 (3)C1—C2—C3—N2170.85 (18)
C12—C11—C16—C150.4 (3)S1—C2—C3—N211.8 (3)
S1—C11—C16—C15179.42 (17)C1—C2—C3—S29.9 (2)
C3—N2—C21—C2646.0 (3)S1—C2—C3—S2167.40 (11)
C3—N2—C21—C22134.3 (2)C4—S2—C3—N239.06 (19)
C26—C21—C22—C232.6 (3)C4—S2—C3—C2141.68 (16)
N2—C21—C22—C23177.62 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.202.756 (2)123
C4—H4A···N1i0.962.613.504 (3)156
C5—H5C···O2ii0.962.503.442 (3)167
C16—H16···O10.932.412.828 (3)107
C4—H4B···Cg20.962.763.582 (3)144
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14Cl2N2O2S2
Mr413.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.3975 (6), 14.8147 (8), 11.7215 (6)
β (°) 109.444 (1)
V3)1866.30 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.55 × 0.36 × 0.27
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.765, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
12685, 4562, 3674
Rint0.015
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.03
No. of reflections4562
No. of parameters229
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.202.756 (2)122.5
C4—H4A···N1i0.962.613.504 (3)155.8
C5—H5C···O2ii0.962.503.442 (3)167.2
C4—H4B···Cg20.962.763.582 (3)143.5
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

Financial support from the Consejo de Desarrollo Científico y Humanístico of Universidad Central de Venezuela (CDCH-UCV), project PG 06–00–6502–2006, is gratefully acknowledged. We thank Dr Ángel Álvarez-Larena (Universidad Autónoma de Barcelona, Spain) for the X-ray diffraction data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBarazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661–3670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapparelli, M. V., Barazarte, A. R. & Charris, J. E. (2008). Acta Cryst. E64, o981–o982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCharris, J., Barazarte, A., Domínguez, J. & Gamboa, N. (2005). J. Chem. Res. pp. 27–28.  CrossRef Google Scholar
First citationCharris, J., Barazarte, A., Ferrer, R., Camacho, J., Gamboa, N., Rodrigues, J., Atencio, R. & González, T. (2007). J. Chem. Res. pp. 16–18.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationKennard, C. H. L., McFadden, H. G. & Byriel, K. A. (2003). Acta Cryst. E59, o922–o923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrivokolysko, S. G., Rusanov, E. B. & Litvinov, V. P. (2002). Chem. Heterocycl. Compd, 38, 1205–1209.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, B., Yang, S., Zhong, H., Jin, L., Hu, D. & Liu, G. (2005). J. Fluorine Chem. 126, 87–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTominaga, Y., Kohra, S., Honkawa, H. & Hosomi, A. (1989). Heterocycles, 29, 1409–1428.  CrossRef CAS Google Scholar
First citationTominaga, Y., Shigemitsu, Y. & Sasaki, K. (2002). J. Heterocyclic Chem. 39, 571–591.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o983-o984
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds