organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5bα,6,7,13bα,14,15-Hexa­hydro­acridino[4,3-c]acridine

aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 3 May 2008; accepted 16 May 2008; online 21 May 2008)

The racemic title compound, C24H20N2, gives spontaneous resolution with the formation of conglomerate crystals in the space group P212121 when crystallized from ethyl acetate. The twisted mol­ecules pack in parallel regions (ab plane) which then form a herringbone pattern along c.

Related literature

Condensation of two equivalents of 2-amino­benzaldehyde with one of cis-bicyclo­[4.4.0]decane-2,7-dione affords the title compound by means of Friedländer condensation (Cheng & Yan, 1982[Cheng, C.-C. & Yan, S.-J. (1982). Org. React. 28, 37-201.]). Substituted derivatives of mol­ecules of this general V-shaped type frequently show inclusion properties (Bishop, 2006[Bishop, R. (2006). Crystal Engineering of Halogenated Heteroaromatic Clathrate Systems, in Frontiers in Crystal Engineering, edited by E. R. T. Tiekink & J. J. Vittal, ch. 5, pp. 91-116. Chichester: Wiley.]). For related literature, see: Collet et al. (1980[Collet, A., Brienne, M.-J. & Jacques, J. (1980). Chem. Rev. 80, 215-230.]); Jacques et al. (1981[Jacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates, and Resolutions. New York: Wiley.]); Marjo et al. (1997[Marjo, C. E., Scudder, M. L., Craig, D. C. & Bishop, R. (1997). J. Chem. Soc., Perkin Trans. 2, pp. 2099-2104.]); Peet & Cargill (1973[Peet, N. P. & Cargill, R. G. (1973). J. Org. Chem. 38, 4281-4285.]); Smith & Opie (1955[Smith, L. I. & Opie, J. W. (1955). Org. Synth. Coll. 3, 56-58.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2

  • Mr = 336.4

  • Orthorhombic, P 21 21 21

  • a = 8.863 (3) Å

  • b = 9.759 (4) Å

  • c = 20.071 (8) Å

  • V = 1736 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.29 × 0.27 × 0.03 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1100 measured reflections

  • 1100 independent reflections

  • 737 reflections with I > 2σ(I)

  • θmax = 21°

  • 1 standard reflection frequency: 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.059

  • S = 1.64

  • 1100 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4 Manual (Schagen et al., 1989[Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Manual; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: RAELS (Rae, 2000[Rae, A. D. (2000). RAELS. Australian National University.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and CrystalMaker (CrystalMaker, 2005[CrystalMaker (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. www.CrystalMaker.co.uk.]); software used to prepare material for publication: local programs.

Supporting information


Comment top

The title compound was prepared as racemic material by Friedländer condensation (Cheng & Yan, 1982), but the crystallization process resulted in self-resolution and formation of a conglomerate (Collet et al., 1980; Jacques et al., 1981) (Fig 1). The two aromatic extremities of the molecule are essentially planar but are not coplanar, instead they exhibit a relative twist with the angle between the normals to the planes of 29.5 (2)°. These awkwardly shaped molecules pack in parallel regions in the ab plane. These regions then interact in herringbone fashion along c (Fig 2). Within the ab plane, molecules take part in edge-face aromatic interactions with H···π distance of about 3.4 Å. Because of the twisted nature of the molecule, it is not possible for them to take part in edge-edge C—H···N interactions that we have previously observed (Marjo et al., 1997). The crystals do not exhibit solvent inclusion, in contrast to other derivatives, which are V-shaped (Bishop, 2006).

Related literature top

Condensation of two equivalents of 2-aminobenzaldehyde with one of cis-bicyclo[4.4.0]decane-2,7-dione affords the title compound by means of Friedländer condensation (Cheng & Yan, 1982). Substituted derivatives of molecules of this general V-shaped type frequently show inclusion properties (Bishop, 2006). For related literature, see: Collet et al. (1980); Jacques et al. (1981); Marjo et al. (1997); Peet & Cargill (1973); Smith & Opie (1955).

Experimental top

Racemic cis-bicyclo[4.4.0]decane-2,7-dione (Peet & Cargill, 1973) (0.54 g, 3.25 mmol) and 2-aminobenzaldehyde (Smith & Opie, 1955) (0.88 g, 7.26 mmol) were dissolved in methanol (15 mL) with heating. To the cooled solution was added sodium hydroxide solution (2M; 2.5 mL) and the mixture stirred at rt for 2 days. The solid precipitate was filtered, and then recrystallised from ethyl acetate to yield the title compound (0.63 g, 58%) as pale yellow plates. 13C NMR (75.5 MHz, CDCl3) δ: 27.9 (CH2), 29.5 (CH2), 42.7 (CH), 126.2 (CH), 127.3 (CH), 127.6 (C), 128.7 (CH), 128.9 (CH), 130.4 (C), 135.6 (CH), 147.5 (C), 161.4 (C); 1H NMR (300 MHz, CDCl3) δ: 2.09-2.23 (m, 2H), 2.45-2.50 (m, 2H), 3.07-3.16 (m, 2H), 3.23-3.34 (m, 2H), 3.70 (d, J = 9.6 Hz, 2H), 7.44-7.49 (m, 2H), 7.61-7.65 (m, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.86-7.90 (m, 2H), 8.05 (d, J = 8.7 Hz, 2H). X-ray quality crystals were obtained from ethyl acetate solution. The identical product is obtained if trans-bicyclo[4.4.0]decane-2,7-dione is used but the reaction takes longer.

Refinement top

Hydrogen atoms attached to C were included at calculated positions (C—H = 1.0 Å) and were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Computing details top

Data collection: CAD-4 Manual (Schagen et al., 1989); cell refinement: CAD-4 Manual (Schagen et al., 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Johnson, 1976) and CrystalMaker (CrystalMaker, 2005); software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound, with ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Cell diagram showing the parallel regions (in the ab plane) which pack in a herringbone pattern.
5bα,6,7,13bα,14,15-Hexahydroacridino[4,3-c]acridine top
Crystal data top
C24H20N2Dx = 1.29 Mg m3
Mr = 336.4Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11 reflections
a = 8.863 (3) Åθ = 10–11°
b = 9.759 (4) ŵ = 0.08 mm1
c = 20.071 (8) ÅT = 294 K
V = 1736 (1) Å3Plate, colourless
Z = 40.29 × 0.27 × 0.03 mm
F(000) = 712.0
Data collection top
Enraf–Nonius CAD-4
diffractometer
h = 08
ω–2θ scansk = 09
1100 measured reflectionsl = 020
1100 independent reflections1 standard reflections every 30 min
737 reflections with I > 2σ(I) intensity decay: none
θmax = 21°
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(F) + 0.0004F2]
S = 1.64(Δ/σ)max = 0.001
1100 reflectionsΔρmax = 0.26 e Å3
94 parametersΔρmin = 0.42 e Å3
Crystal data top
C24H20N2V = 1736 (1) Å3
Mr = 336.4Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.863 (3) ŵ = 0.08 mm1
b = 9.759 (4) ÅT = 294 K
c = 20.071 (8) Å0.29 × 0.27 × 0.03 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 21°
1100 measured reflections1 standard reflections every 30 min
1100 independent reflections intensity decay: none
737 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.64Δρmax = 0.26 e Å3
1100 reflectionsΔρmin = 0.42 e Å3
94 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2254 (5)0.4393 (4)0.4278 (2)0.0464 (9)
N20.2369 (5)0.5930 (4)0.2179 (2)0.0470 (7)
C10.0205 (6)0.4796 (5)0.3538 (3)0.0427 (9)
C20.1687 (6)0.5253 (6)0.3840 (3)0.0442 (8)
C30.2383 (6)0.6509 (6)0.3667 (3)0.0517 (6)
C40.1694 (6)0.7391 (5)0.3130 (3)0.060 (1)
C50.0008 (6)0.7137 (5)0.3058 (3)0.0535 (6)
C60.0323 (6)0.5681 (5)0.2944 (3)0.0438 (8)
C70.1968 (6)0.5402 (5)0.2756 (3)0.0435 (8)
C80.2927 (6)0.4617 (6)0.3160 (3)0.0478 (8)
C90.2386 (7)0.3999 (6)0.3811 (3)0.055 (1)
C100.0995 (6)0.4728 (6)0.4075 (2)0.0500 (9)
C110.3538 (6)0.4784 (6)0.4617 (3)0.0491 (9)
C120.4120 (7)0.3867 (6)0.5090 (3)0.055 (1)
C130.5368 (6)0.4207 (6)0.5461 (3)0.059 (1)
C140.6080 (7)0.5469 (6)0.5353 (3)0.061 (1)
C150.5551 (7)0.6374 (6)0.4883 (3)0.062 (1)
C160.4254 (7)0.6036 (5)0.4505 (3)0.0541 (7)
C170.3670 (7)0.6883 (6)0.4001 (3)0.0587 (9)
C180.3795 (6)0.5649 (5)0.1950 (3)0.0481 (7)
C190.4207 (7)0.6142 (6)0.1309 (3)0.0553 (9)
C200.5578 (7)0.5824 (6)0.1045 (3)0.058 (1)
C210.6593 (6)0.4985 (6)0.1403 (3)0.057 (1)
C220.6250 (7)0.4515 (6)0.2028 (3)0.057 (1)
C230.4821 (6)0.4854 (6)0.2310 (3)0.0502 (8)
C240.4353 (6)0.4356 (6)0.2941 (3)0.053 (1)
HC10.03550.38430.33670.045
H1C40.18620.83760.32460.074
H2C40.21980.71800.26960.065
H1C50.05300.74390.34740.057
H2C50.03970.76790.26710.061
HC60.03020.53980.25530.047
H1C90.32120.40720.41490.066
H2C90.21360.30110.37360.060
H1C100.12750.56790.42140.054
H2C100.05910.42150.44680.056
HC120.36220.29580.51590.062
HC130.57650.35590.58040.066
HC140.69870.57160.56240.067
HC150.60800.72660.48080.073
HC170.41930.77600.38860.072
HC190.34870.67260.10510.064
HC200.58670.61840.05960.065
HC210.75810.47310.11970.062
HC220.69880.39430.22820.066
HC240.50660.38150.32240.065
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0488 (6)0.048 (1)0.0427 (8)0.0013 (6)0.0019 (6)0.0061 (6)
N20.0502 (7)0.047 (1)0.0444 (9)0.0024 (6)0.0029 (7)0.0088 (7)
C10.0464 (7)0.041 (1)0.0409 (9)0.0038 (7)0.0000 (6)0.0070 (8)
C20.0470 (7)0.043 (1)0.0429 (9)0.0032 (6)0.0012 (7)0.0052 (7)
C30.0523 (7)0.0458 (8)0.057 (1)0.0085 (8)0.0076 (7)0.0085 (9)
C40.061 (1)0.049 (1)0.072 (2)0.015 (1)0.015 (1)0.019 (2)
C50.058 (1)0.0405 (9)0.062 (1)0.0067 (8)0.0120 (9)0.0108 (9)
C60.0476 (7)0.041 (1)0.0431 (9)0.0047 (7)0.0011 (7)0.0084 (8)
C70.0470 (7)0.042 (1)0.0418 (9)0.0028 (6)0.0007 (7)0.0061 (7)
C80.0464 (7)0.053 (1)0.0440 (8)0.0058 (6)0.0002 (6)0.0085 (7)
C90.0490 (7)0.068 (2)0.0476 (9)0.0108 (8)0.0007 (7)0.0178 (8)
C100.0475 (7)0.061 (2)0.041 (1)0.0037 (7)0.0006 (7)0.0095 (7)
C110.0493 (7)0.054 (1)0.0445 (9)0.0010 (6)0.0033 (6)0.0019 (6)
C120.0547 (9)0.064 (2)0.047 (1)0.0039 (9)0.0065 (9)0.0055 (8)
C130.055 (1)0.074 (2)0.049 (1)0.008 (1)0.008 (1)0.001 (1)
C140.053 (1)0.073 (2)0.056 (2)0.006 (1)0.010 (1)0.010 (1)
C150.055 (1)0.065 (2)0.067 (2)0.002 (1)0.014 (1)0.005 (1)
C160.0513 (8)0.0549 (9)0.056 (1)0.0030 (8)0.0080 (8)0.0006 (9)
C170.0559 (9)0.0520 (9)0.068 (2)0.011 (1)0.013 (1)0.007 (1)
C180.0497 (7)0.050 (1)0.0442 (9)0.0004 (6)0.0032 (7)0.0044 (6)
C190.055 (1)0.064 (2)0.047 (1)0.0023 (9)0.006 (1)0.009 (1)
C200.055 (1)0.070 (2)0.048 (1)0.007 (1)0.007 (1)0.001 (1)
C210.0507 (8)0.068 (2)0.052 (1)0.0038 (8)0.0070 (9)0.005 (1)
C220.0484 (7)0.068 (2)0.054 (1)0.0035 (7)0.0051 (7)0.001 (1)
C230.0473 (7)0.056 (1)0.0470 (8)0.0025 (6)0.0025 (6)0.0027 (7)
C240.0471 (7)0.064 (2)0.0490 (8)0.0082 (6)0.0015 (6)0.0097 (7)
Geometric parameters (Å, º) top
N1—C21.316 (6)C10—H2C101.000
N1—C111.378 (6)C11—C121.404 (7)
N2—C71.316 (6)C11—C161.395 (7)
N2—C181.373 (6)C12—C131.373 (7)
C1—C21.514 (7)C12—HC121.000
C1—C61.544 (7)C13—C141.400 (8)
C1—C101.516 (6)C13—HC131.000
C1—HC11.000C14—C151.376 (7)
C2—C31.415 (7)C14—HC141.000
C3—C41.508 (7)C15—C161.417 (7)
C3—C171.373 (7)C15—HC151.000
C4—C51.536 (7)C16—C171.405 (7)
C4—H1C41.000C17—HC171.000
C4—H2C41.000C18—C191.422 (7)
C5—C61.466 (7)C18—C231.397 (7)
C5—H1C51.000C19—C201.362 (7)
C5—H2C51.000C19—HC191.000
C6—C71.531 (7)C20—C211.413 (7)
C6—HC61.000C20—HC201.000
C7—C81.403 (6)C21—C221.370 (7)
C8—C91.517 (7)C21—HC211.000
C8—C241.362 (7)C22—C231.426 (7)
C9—C101.519 (8)C22—HC221.000
C9—H1C91.000C23—C241.418 (7)
C9—H2C91.000C24—HC241.000
C10—H1C101.000
C2—N1—C11117.9 (5)C1—C10—H2C10109.3
C7—N2—C18117.7 (5)C9—C10—H1C10109.3
C2—C1—C6114.0 (4)C9—C10—H2C10109.3
C2—C1—C10109.7 (4)H1C10—C10—H2C10109.5
C2—C1—HC1107.2N1—C11—C12117.4 (5)
C6—C1—C10111.1 (4)N1—C11—C16122.5 (5)
C6—C1—HC1107.2C12—C11—C16120.0 (5)
C10—C1—HC1107.2C11—C12—C13120.5 (6)
N1—C2—C1114.3 (5)C11—C12—HC12119.7
N1—C2—C3123.3 (5)C13—C12—HC12119.7
C1—C2—C3122.3 (5)C12—C13—C14119.5 (6)
C2—C3—C4119.6 (5)C12—C13—HC13120.2
C2—C3—C17118.2 (5)C14—C13—HC13120.2
C4—C3—C17122.2 (5)C13—C14—C15121.1 (5)
C3—C4—C5111.9 (5)C13—C14—HC14119.4
C3—C4—H1C4108.8C15—C14—HC14119.4
C3—C4—H2C4108.8C14—C15—C16119.6 (6)
C5—C4—H1C4108.8C14—C15—HC15120.2
C5—C4—H2C4108.8C16—C15—HC15120.2
H1C4—C4—H2C4109.5C11—C16—C15119.1 (5)
C4—C5—C6110.9 (5)C11—C16—C17117.7 (5)
C4—C5—H1C5109.1C15—C16—C17123.2 (5)
C4—C5—H2C5109.1C3—C17—C16120.1 (5)
C6—C5—H1C5109.1C3—C17—HC17120.0
C6—C5—H2C5109.1C16—C17—HC17120.0
H1C5—C5—H2C5109.5N2—C18—C19118.1 (5)
C1—C6—C5111.4 (5)N2—C18—C23122.5 (5)
C1—C6—C7112.3 (4)C19—C18—C23119.3 (6)
C1—C6—HC6106.5C18—C19—C20120.3 (6)
C5—C6—C7113.0 (5)C18—C19—HC19119.8
C5—C6—HC6106.5C20—C19—HC19119.8
C7—C6—HC6106.5C19—C20—C21120.1 (5)
N2—C7—C6113.9 (5)C19—C20—HC20119.9
N2—C7—C8124.0 (5)C21—C20—HC20119.9
C6—C7—C8122.1 (5)C20—C21—C22121.2 (6)
C7—C8—C9121.6 (5)C20—C21—HC21119.4
C7—C8—C24118.6 (5)C22—C21—HC21119.4
C9—C8—C24119.8 (5)C21—C22—C23118.9 (6)
C8—C9—C10111.8 (5)C21—C22—HC22120.5
C8—C9—H1C9108.9C23—C22—HC22120.5
C8—C9—H2C9108.9C18—C23—C22120.1 (5)
C10—C9—H1C9108.9C18—C23—C24117.5 (5)
C10—C9—H2C9108.9C22—C23—C24122.4 (5)
H1C9—C9—H2C9109.5C8—C24—C23119.7 (5)
C1—C10—C9110.0 (4)C8—C24—HC24120.2
C1—C10—H1C10109.3C23—C24—HC24120.2
C11—N1—C2—C1174.9 (4)C7—C8—C9—H1C9141.1
C11—N1—C2—C34.6 (7)C7—C8—C9—H2C999.6
C2—N1—C11—C12179.0 (5)C24—C8—C9—C10162.6 (5)
C2—N1—C11—C160.9 (7)C24—C8—C9—H1C942.3
C18—N2—C7—C6175.6 (4)C24—C8—C9—H2C977.1
C18—N2—C7—C82.6 (7)C7—C8—C24—C231.2 (8)
C7—N2—C18—C19176.1 (5)C7—C8—C24—HC24178.8
C7—N2—C18—C231.1 (7)C9—C8—C24—C23175.6 (5)
C6—C1—C2—N1170.4 (4)C9—C8—C24—HC244.4
C6—C1—C2—C310.1 (7)C8—C9—C10—C152.2 (6)
C10—C1—C2—N164.2 (6)C8—C9—C10—H1C1067.9
C10—C1—C2—C3115.2 (6)C8—C9—C10—H2C10172.3
HC1—C1—C2—N151.9H1C9—C9—C10—C1172.6
HC1—C1—C2—C3128.6H1C9—C9—C10—H1C1052.5
C2—C1—C6—C538.9 (6)H1C9—C9—C10—H2C1067.4
C2—C1—C6—C7166.9 (4)H2C9—C9—C10—C168.1
C2—C1—C6—HC676.8H2C9—C9—C10—H1C10171.8
C10—C1—C6—C585.6 (6)H2C9—C9—C10—H2C1052.0
C10—C1—C6—C742.4 (6)N1—C11—C12—C13178.0 (5)
C10—C1—C6—HC6158.6N1—C11—C12—HC122.0
HC1—C1—C6—C5157.5C16—C11—C12—C131.9 (8)
HC1—C1—C6—C774.5C16—C11—C12—HC12178.1
HC1—C1—C6—HC641.7N1—C11—C16—C15178.7 (5)
C2—C1—C10—C9168.5 (5)N1—C11—C16—C173.4 (8)
C2—C1—C10—H1C1071.5C12—C11—C16—C151.2 (8)
C2—C1—C10—H2C1048.4C12—C11—C16—C17176.7 (5)
C6—C1—C10—C964.6 (6)C11—C12—C13—C141.3 (8)
C6—C1—C10—H1C1055.5C11—C12—C13—HC13178.7
C6—C1—C10—H2C10175.3HC12—C12—C13—C14178.7
HC1—C1—C10—C952.3HC12—C12—C13—HC131.3
HC1—C1—C10—H1C10172.4C12—C13—C14—C150.1 (9)
HC1—C1—C10—H2C1067.7C12—C13—C14—HC14179.9
N1—C2—C3—C4176.5 (5)HC13—C13—C14—C15179.9
N1—C2—C3—C173.9 (8)HC13—C13—C14—HC140.1
C1—C2—C3—C44.1 (8)C13—C14—C15—C160.8 (9)
C1—C2—C3—C17175.5 (5)C13—C14—C15—HC15179.2
C2—C3—C4—C525.4 (7)HC14—C14—C15—C16179.2
C2—C3—C4—H1C4145.7HC14—C14—C15—HC150.8
C2—C3—C4—H2C495.0C14—C15—C16—C110.2 (8)
C17—C3—C4—C5154.2 (6)C14—C15—C16—C17178.0 (5)
C17—C3—C4—H1C433.8HC15—C15—C16—C11179.8
C17—C3—C4—H2C485.5HC15—C15—C16—C172.0
C2—C3—C17—C160.6 (8)C11—C16—C17—C34.0 (8)
C2—C3—C17—HC17179.4C11—C16—C17—HC17176.0
C4—C3—C17—C16179.0 (5)C15—C16—C17—C3178.2 (6)
C4—C3—C17—HC171.0C15—C16—C17—HC171.8
C3—C4—C5—C654.8 (7)N2—C18—C19—C20176.2 (5)
C3—C4—C5—H1C565.5N2—C18—C19—HC193.8
C3—C4—C5—H2C5175.0C23—C18—C19—C201.0 (9)
H1C4—C4—C5—C6175.1C23—C18—C19—HC19179.0
H1C4—C4—C5—H1C554.9N2—C18—C23—C22175.6 (5)
H1C4—C4—C5—H2C564.6N2—C18—C23—C241.4 (8)
H2C4—C4—C5—C665.6C19—C18—C23—C221.6 (8)
H2C4—C4—C5—H1C5174.2C19—C18—C23—C24178.5 (5)
H2C4—C4—C5—H2C554.6C18—C19—C20—C210.8 (9)
C4—C5—C6—C161.8 (6)C18—C19—C20—HC20179.2
C4—C5—C6—C7170.6 (5)HC19—C19—C20—C21179.2
C4—C5—C6—HC654.0HC19—C19—C20—HC200.8
H1C5—C5—C6—C158.5C19—C20—C21—C222.2 (9)
H1C5—C5—C6—C769.2C19—C20—C21—HC21177.8
H1C5—C5—C6—HC6174.2HC20—C20—C21—C22177.8
H2C5—C5—C6—C1178.0HC20—C20—C21—HC212.2
H2C5—C5—C6—C750.4C20—C21—C22—C231.6 (9)
H2C5—C5—C6—HC666.2C20—C21—C22—HC22178.4
C1—C6—C7—N2167.5 (4)HC21—C21—C22—C23178.4
C1—C6—C7—C810.7 (7)HC21—C21—C22—HC221.6
C5—C6—C7—N265.3 (6)C21—C22—C23—C180.3 (8)
C5—C6—C7—C8116.4 (6)C21—C22—C23—C24177.0 (5)
HC6—C6—C7—N251.3HC22—C22—C23—C18179.7
HC6—C6—C7—C8127.0HC22—C22—C23—C243.0
N2—C7—C8—C9178.1 (5)C18—C23—C24—C82.5 (8)
N2—C7—C8—C241.4 (8)C18—C23—C24—HC24177.5
C6—C7—C8—C90.1 (8)C22—C23—C24—C8174.4 (5)
C6—C7—C8—C24176.6 (5)C22—C23—C24—HC245.6
C7—C8—C9—C1020.7 (7)

Experimental details

Crystal data
Chemical formulaC24H20N2
Mr336.4
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.863 (3), 9.759 (4), 20.071 (8)
V3)1736 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.27 × 0.03
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1100, 1100, 737
Rint?
θmax (°)21
(sin θ/λ)max1)0.504
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.059, 1.64
No. of reflections1100
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.42

Computer programs: CAD-4 Manual (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEPII (Johnson, 1976) and CrystalMaker (CrystalMaker, 2005), local programs.

 

Acknowledgements

This research was supported by the UNSW Faculty Research Grants Program.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBishop, R. (2006). Crystal Engineering of Halogenated Heteroaromatic Clathrate Systems, in Frontiers in Crystal Engineering, edited by E. R. T. Tiekink & J. J. Vittal, ch. 5, pp. 91–116. Chichester: Wiley.  Google Scholar
First citationCheng, C.-C. & Yan, S.-J. (1982). Org. React. 28, 37–201.  CAS Google Scholar
First citationCollet, A., Brienne, M.-J. & Jacques, J. (1980). Chem. Rev. 80, 215–230.  CrossRef CAS Web of Science Google Scholar
First citationCrystalMaker (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. www.CrystalMaker.co.uk.  Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates, and Resolutions. New York: Wiley.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMarjo, C. E., Scudder, M. L., Craig, D. C. & Bishop, R. (1997). J. Chem. Soc., Perkin Trans. 2, pp. 2099–2104.  Google Scholar
First citationPeet, N. P. & Cargill, R. G. (1973). J. Org. Chem. 38, 4281–4285.  CrossRef CAS Web of Science Google Scholar
First citationRae, A. D. (2000). RAELS. Australian National University.  Google Scholar
First citationSchagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSmith, L. I. & Opie, J. W. (1955). Org. Synth. Coll. 3, 56–58.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds