organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4,5-Tri­meth­oxy­phen­yl)-1H-benzimidazole

aDepartment of Science, Gorgan University of Agricultrual Sciences and Natural Resources, Gorgan 49189-43464, Iran, bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 29 April 2008; accepted 12 May 2008; online 17 May 2008)

In the title compound, C16H16N2O3, the dihedral angle between the mean planes of the aromatic ring systems is 30.90 (15)°. In the crystal structure, the mol­ecules form [010] chains by way of N—H⋯N hydrogen bonds.

Related literature

For a related structure, see: Rashid et al. (2007[Rashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402-o1403.]). For background, see: Gupta et al. (2004[Gupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem. 39, 805-814.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Orthorhombic, P b c a

  • a = 8.2270 (16) Å

  • b = 9.5750 (19) Å

  • c = 37.375 (7) Å

  • V = 2944.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5421 measured reflections

  • 2733 independent reflections

  • 960 reflections with I > 2σ(I)

  • Rint = 0.085

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 0.94

  • 2733 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.07 2.918 (4) 169
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1), complements substituted imidazoles with biological properties (Gupta et al., 2004). The dihedral angle between the N1/N2/C10—C16 and C4—C9 aromatic ring planes in (I) is 30.90 (15)°. This twisting may help to relieve steric strain between H1a and H5a (H1a···H5a = 2.32 Å) and a number of related 2-phenyl-1H-benzimidazoles show a similar dihedral angle between the adjacent ring planes (Rashid et al., 2007). Atoms C1, C2 and C3 in (I) are displaced from the mean plane of the C4—C9 ring by 1.010 (5) Å, 0.115 (5)Å and 0.257 (4) Å, respectively. Otherwise, the geometry of (I) may be regarded as normal (Allen et al., 1987).

In the crystal of (I), an N—H···N hydrogen bond (Table 1) links the molecules into chains propagating in [010] (Fig. 2). There are no aromatic π-π stacking interactions in (I) as the closest centroid-centroid separation of aromatic rings is greater than 5.11 Å, which contrasts with the situation in 2-(4-fluorophenyl)-1H-benzimidazole (Rashid et al., 2007) in which both N—H···N and π-π stacking help to establish the packing.

Related literature top

For a related structure, see: Rashid et al. (2007). For background, see: Gupta et al. (2004). For reference structural data, see: Allen et al. (1987).

Experimental top

1,2-Phenylenediamine (2 mmol, 216 mg) and 3,4,5-trimethoxybenzaldehyde (2 mmol, 392 mg) were dissolved in methanol (25 ml) at 323 K. The mixture was stirred for 30 min to give a colourless solution. After the solution had been allowed to stand in air for 3 d, colourless blocks of (I) formed, in about 74% yield, on slow evaporation of the solvent at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Fragment of a [010] hydrogen bonded chain of molecules in the crystal of (I). Symmetry code: (i) 3/2 - x, y - 1/2, z.
2-(3,4,5-Trimethoxyphenyl)-1H-benzimidazole top
Crystal data top
C16H16N2O3F(000) = 1200
Mr = 284.31Dx = 1.283 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.2270 (16) Åθ = 4–14°
b = 9.5750 (19) ŵ = 0.09 mm1
c = 37.375 (7) ÅT = 295 K
V = 2944.2 (10) Å3Block, colourless
Z = 80.25 × 0.20 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.085
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.1°
Graphite monochromatorh = 90
ω scansk = 110
5421 measured reflectionsl = 4444
2733 independent reflections3 standard reflections every 100 reflections
960 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0483P)2]
where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H16N2O3V = 2944.2 (10) Å3
Mr = 284.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2270 (16) ŵ = 0.09 mm1
b = 9.5750 (19) ÅT = 295 K
c = 37.375 (7) Å0.25 × 0.20 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.085
5421 measured reflections3 standard reflections every 100 reflections
2733 independent reflections intensity decay: none
960 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
2733 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2012 (3)0.2286 (3)0.03723 (7)0.0646 (9)
O20.9428 (3)0.3940 (3)0.03507 (7)0.0591 (9)
O31.2638 (3)0.0641 (3)0.09566 (8)0.0609 (8)
N10.7160 (3)0.0683 (3)0.16552 (8)0.0387 (8)
H1A0.77050.00740.16230.046*
N20.6374 (3)0.2921 (3)0.15868 (8)0.0406 (8)
C11.3578 (5)0.2888 (6)0.04310 (12)0.0800 (15)
H1B1.41970.28520.02130.120*
H1C1.41340.23750.06150.120*
H1D1.34550.38430.05050.120*
C20.8079 (6)0.4863 (5)0.03285 (12)0.0772 (15)
H2B0.81530.54020.01120.116*
H2C0.80830.54790.05310.116*
H2D0.70890.43320.03270.116*
C31.3004 (5)0.0119 (5)0.12749 (11)0.0772 (15)
H3A1.40320.05810.12480.116*
H3B1.21710.08010.13170.116*
H3C1.30550.05130.14740.116*
C41.1200 (5)0.1366 (4)0.09509 (12)0.0446 (11)
C51.0041 (5)0.1274 (4)0.12166 (11)0.0429 (10)
H5A1.02030.06720.14090.052*
C60.8635 (4)0.2074 (4)0.11992 (10)0.0368 (9)
C70.8382 (4)0.2994 (4)0.09110 (10)0.0397 (10)
H7A0.74480.35400.09010.048*
C80.9539 (5)0.3074 (4)0.06435 (11)0.0422 (10)
C91.0951 (4)0.2256 (4)0.06576 (10)0.0446 (11)
C100.7391 (5)0.1932 (4)0.14767 (9)0.0374 (9)
C110.5910 (4)0.0866 (4)0.18929 (10)0.0338 (9)
C120.5161 (5)0.0025 (4)0.21332 (10)0.0453 (11)
H12A0.54930.09480.21580.054*
C130.3906 (5)0.0513 (4)0.23340 (11)0.0532 (11)
H13A0.33870.00550.25000.064*
C140.3390 (5)0.1916 (5)0.22919 (12)0.0541 (11)
H14A0.25220.22420.24280.065*
C150.4139 (4)0.2808 (4)0.20549 (10)0.0508 (11)
H15A0.38010.37300.20310.061*
C160.5427 (4)0.2280 (4)0.18510 (10)0.0359 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (19)0.085 (2)0.0526 (18)0.0022 (18)0.0156 (16)0.0106 (18)
O20.061 (2)0.068 (2)0.048 (2)0.0042 (18)0.0086 (16)0.0139 (18)
O30.0506 (18)0.0599 (19)0.072 (2)0.0141 (17)0.0108 (18)0.0009 (18)
N10.0409 (19)0.0233 (17)0.052 (2)0.0028 (16)0.0007 (18)0.0074 (17)
N20.044 (2)0.0254 (17)0.052 (2)0.0002 (18)0.0067 (17)0.0009 (19)
C10.059 (3)0.100 (4)0.081 (3)0.011 (3)0.019 (3)0.009 (3)
C20.085 (4)0.074 (3)0.073 (4)0.019 (3)0.007 (3)0.029 (3)
C30.067 (3)0.096 (4)0.069 (3)0.034 (3)0.013 (3)0.004 (3)
C40.034 (2)0.042 (3)0.057 (3)0.004 (2)0.004 (2)0.008 (2)
C50.042 (2)0.031 (2)0.056 (3)0.001 (2)0.005 (2)0.002 (2)
C60.038 (2)0.030 (2)0.042 (2)0.002 (2)0.005 (2)0.001 (2)
C70.036 (2)0.032 (2)0.051 (3)0.000 (2)0.002 (2)0.003 (2)
C80.045 (3)0.042 (2)0.040 (2)0.003 (2)0.001 (2)0.003 (2)
C90.041 (3)0.053 (3)0.040 (2)0.006 (2)0.007 (2)0.004 (2)
C100.038 (2)0.027 (2)0.047 (2)0.003 (2)0.006 (2)0.003 (2)
C110.033 (2)0.030 (2)0.038 (2)0.0061 (18)0.005 (2)0.003 (2)
C120.047 (3)0.034 (2)0.054 (3)0.007 (2)0.002 (2)0.006 (2)
C130.054 (3)0.053 (3)0.053 (3)0.010 (2)0.005 (2)0.010 (3)
C140.050 (3)0.051 (3)0.062 (3)0.002 (3)0.017 (2)0.005 (3)
C150.052 (3)0.037 (3)0.064 (3)0.008 (2)0.012 (2)0.004 (2)
C160.040 (2)0.023 (2)0.044 (2)0.0011 (19)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
C9—O11.379 (4)C4—C51.379 (5)
C1—O11.428 (5)C4—C91.403 (5)
C8—O21.377 (4)C5—C61.389 (5)
C2—O21.422 (4)C5—H5A0.9300
C4—O31.372 (4)C6—C71.407 (5)
C3—O31.427 (4)C6—C101.464 (5)
N1—C111.371 (4)C7—C81.383 (5)
N1—C101.383 (4)C7—H7A0.9300
N1—H1A0.8600C8—C91.401 (5)
N2—C101.329 (4)C11—C121.383 (5)
N2—C161.400 (4)C11—C161.419 (5)
C1—H1B0.9600C12—C131.376 (5)
C1—H1C0.9600C12—H12A0.9300
C1—H1D0.9600C13—C141.418 (5)
C2—H2B0.9600C13—H13A0.9300
C2—H2C0.9600C14—C151.376 (5)
C2—H2D0.9600C14—H14A0.9300
C3—H3A0.9600C15—C161.400 (5)
C3—H3B0.9600C15—H15A0.9300
C3—H3C0.9600
C9—O1—C1117.4 (3)C5—C6—C10119.9 (4)
C8—O2—C2118.2 (3)C7—C6—C10119.8 (3)
C4—O3—C3116.9 (3)C8—C7—C6119.1 (4)
C11—N1—C10107.7 (3)C8—C7—H7A120.5
C11—N1—H1A126.1C6—C7—H7A120.5
C10—N1—H1A126.1O2—C8—C7124.2 (4)
C10—N2—C16104.8 (3)O2—C8—C9114.9 (4)
O1—C1—H1B109.5C7—C8—C9120.8 (4)
O1—C1—H1C109.5O1—C9—C8118.9 (4)
H1B—C1—H1C109.5O1—C9—C4121.6 (4)
O1—C1—H1D109.5C8—C9—C4119.3 (4)
H1B—C1—H1D109.5N2—C10—N1112.4 (3)
H1C—C1—H1D109.5N2—C10—C6126.4 (3)
O2—C2—H2B109.5N1—C10—C6121.2 (3)
O2—C2—H2C109.5N1—C11—C12132.5 (4)
H2B—C2—H2C109.5N1—C11—C16105.1 (3)
O2—C2—H2D109.5C12—C11—C16122.4 (4)
H2B—C2—H2D109.5C13—C12—C11117.2 (4)
H2C—C2—H2D109.5C13—C12—H12A121.4
O3—C3—H3A109.5C11—C12—H12A121.4
O3—C3—H3B109.5C12—C13—C14121.3 (4)
H3A—C3—H3B109.5C12—C13—H13A119.4
O3—C3—H3C109.5C14—C13—H13A119.4
H3A—C3—H3C109.5C15—C14—C13121.7 (4)
H3B—C3—H3C109.5C15—C14—H14A119.2
O3—C4—C5123.5 (4)C13—C14—H14A119.2
O3—C4—C9116.4 (4)C14—C15—C16117.7 (4)
C5—C4—C9120.0 (4)C14—C15—H15A121.1
C4—C5—C6120.4 (4)C16—C15—H15A121.1
C4—C5—H5A119.8N2—C16—C15130.3 (3)
C6—C5—H5A119.8N2—C16—C11109.9 (3)
C5—C6—C7120.3 (3)C15—C16—C11119.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.072.918 (4)169
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)8.2270 (16), 9.5750 (19), 37.375 (7)
V3)2944.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5421, 2733, 960
Rint0.085
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 0.94
No. of reflections2733
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.072.918 (4)169
Symmetry code: (i) x+3/2, y1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem. 39, 805–814.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402–o1403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds