organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of 5-nitro­uracil monohydrate

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: psidonio@pollux.fis.uc.pt

(Received 13 May 2008; accepted 13 May 2008; online 17 May 2008)

In the title compound, C4H3N3O4·H2O, mol­ecules of 5-nitro­­uracil are hydrogen bonded in pairs across crystallographic centers of symmetry. The resulting dimers are also hydrogen bonded to the water mol­ecules, forming a three-dimensional network. The pyrimidine ring is almost planar (with a maximum deviation of 0.0156 (9) Å for the one of the N atoms) and the nitro group is rotated by 12.4 (1)° out of the uracil plane, while in the other polymorph the value for the same angle is 5°.

Related literature

For the non-linear optical properties of 5-nitro­uracil, see: Bergman et al. (1972[Bergman, J. G., Crane, G. R., Levine, B. F. & Bethea, C. G. (1972). Appl. Phys. Lett. 20, 21-23.]); Puccetti et al. (1993[Puccetti, G., Perigaud, A., Badan, J., Ledoux, I. & Zyss, J. (1993). J. Opt. Soc. Am. B, 10, 733-744.]); Youping et al. (1992[Youping, H., Genbo, S., Bochang, W. & Rihong, J. (1992). J. Cryst. Growth, 119, 393-398.]). For the crystal structure of another polymorph, see: Craven (1967[Craven, B. M. (1967). Acta Cryst. 23, 376-383.]). For related literature, see: Pettier & Byrn (1982[Pettier, P. R. & Byrn, S. R. (1982). J. Org. Chem. 47, 4671-4676.]); Rao et al. (1995[Rao, T. S., Rando, R. F., Huffman, J. H. & Revankar, G. R. (1995). Nucleosides Nucleotides, 14, 1997-2008.]).

[Scheme 1]

Experimental

Crystal data
  • C4H3N3O4·H2O

  • Mr = 175.11

  • Monoclinic, P 21 /c

  • a = 6.2799 (1) Å

  • b = 7.8481 (2) Å

  • c = 13.8068 (3) Å

  • β = 93.842 (1)°

  • V = 678.94 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 (2) K

  • 0.44 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.890, Tmax = 0.969

  • 15135 measured reflections

  • 2232 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.00

  • 2232 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 1.99 2.8503 (13) 173
N1—H1⋯O9ii 0.86 1.88 2.6736 (12) 153
O9—H9A⋯O4iii 0.87 (2) 1.92 (2) 2.7640 (13) 165 (2)
O9—H9A⋯O7iii 0.87 (2) 2.41 (3) 2.9101 (13) 117 (2)
O9—H9B⋯O7iv 0.84 (3) 2.29 (3) 3.0940 (15) 162 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Nitrouracil (5NU) is an interesting molecule due to its nonlinear optical properties (Bergman et al., 1972; Puccetti et al., 1993; Youping et al., 1992) and is also of relevance to biological and pharmaceutical sciences (Rao et al., 1995; Pettier & Byrn, 1982).

In the framework of our study of new compounds with potential NLO properties, we have crystallized a new polymorph of 5-nitrouracil monohydrate (Fig.1). Molecules of 5NU are hydrogen bonded in pairs across crystallographic centers of symmetry. The resulting dimers are also hydrogen bonded by the water molecules forming a three dimensional network (Table 1; Fig. 2). The difference in intermolecular interactions between the two polymorphs seems to have a small effect on the molecular structure of the 5NU moiety, with all bond lengths and angles being in good agreement with the previously reported structure (Craven, 1967). The pyrimidine ring is almost planar and the main conformational difference is the large twist of the nitro group away from the plane of the ring [12.4 (1)°], whereas it approaches coplanarity in the other polymorph (5.0° for the same angle).

Related literature top

For the non-linear optical properties of 5-nitrouracil, see: Bergman et al. (1972); Puccetti et al. (1993); Youping et al. (1992). For the crystal structure of another polymorph, see: Craven (1967). For related literature, see: Pettier & Byrn (1982); Rao et al. (1995).

Experimental top

The title compound was prepared by adding 5-nitrouracil (Aldrich, 98%, 1 mmol) to L-serine (Aldrich 99%, 1 mmol) in a solution of water (10 ml) and piridine (Aldrich 99%, 30 ml). The solution was slowly warmed and then left to evaporate under ambient conditions. After a few days, small colourless single crystals were deposited.

Refinement top

All hydrogen atoms were located in a difference Fourier synthesis at an intermediate stage of the refinement. Hydrogen atoms bonded to N and C were placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N)]. The coordinates of the hydrogen atoms of the water molecule were refined with Uiso = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Spek,2003) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed down the a axis, with the hydrogen bonds depicted as dashed lines.
5-nitrouracil monohydrate top
Crystal data top
C4H3N3O4·H2OF(000) = 360
Mr = 175.11Dx = 1.713 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8093 reflections
a = 6.2799 (1) Åθ = 3.0–33.5°
b = 7.8481 (2) ŵ = 0.16 mm1
c = 13.8068 (3) ÅT = 293 K
β = 93.842 (1)°Block, colourless
V = 678.94 (3) Å30.44 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 33.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.890, Tmax = 0.969k = 1011
15135 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.1592P]
where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max = 0.002
115 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C4H3N3O4·H2OV = 678.94 (3) Å3
Mr = 175.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2799 (1) ŵ = 0.16 mm1
b = 7.8481 (2) ÅT = 293 K
c = 13.8068 (3) Å0.44 × 0.22 × 0.20 mm
β = 93.842 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1918 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.969Rint = 0.018
15135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
2232 reflectionsΔρmin = 0.37 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.10857 (13)0.07025 (12)0.38353 (6)0.0403 (2)
O40.51917 (15)0.21379 (14)0.54232 (6)0.0478 (3)
O70.75926 (14)0.44337 (13)0.44352 (7)0.0459 (2)
O80.67663 (18)0.46987 (19)0.29111 (8)0.0674 (4)
N10.11205 (14)0.24517 (12)0.30605 (6)0.0306 (2)
H10.02100.25400.25690.037*
N30.20903 (15)0.14746 (12)0.46071 (6)0.0330 (2)
H30.17730.08940.51060.040*
N50.63828 (16)0.41810 (13)0.37147 (7)0.0371 (2)
C20.06017 (16)0.14825 (13)0.38398 (7)0.0290 (2)
C40.40561 (16)0.22918 (14)0.46790 (7)0.0309 (2)
C50.44553 (16)0.32373 (13)0.38070 (7)0.0292 (2)
C60.29851 (16)0.32614 (14)0.30377 (7)0.0307 (2)
H60.32870.38580.24810.037*
O90.90537 (17)0.18878 (17)0.13340 (7)0.0555 (3)
H9A0.790 (4)0.206 (3)0.0966 (18)0.083*
H9B0.975 (4)0.119 (3)0.1021 (18)0.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0332 (4)0.0481 (5)0.0381 (4)0.0115 (3)0.0090 (3)0.0058 (3)
O40.0397 (5)0.0639 (6)0.0370 (4)0.0138 (4)0.0176 (3)0.0143 (4)
O70.0378 (5)0.0521 (5)0.0457 (5)0.0136 (4)0.0137 (4)0.0035 (4)
O80.0525 (6)0.1010 (10)0.0474 (6)0.0336 (6)0.0066 (4)0.0276 (6)
N10.0274 (4)0.0381 (4)0.0251 (4)0.0006 (3)0.0067 (3)0.0008 (3)
N30.0301 (4)0.0406 (5)0.0271 (4)0.0066 (3)0.0066 (3)0.0064 (3)
N50.0308 (4)0.0408 (5)0.0387 (5)0.0065 (4)0.0055 (3)0.0064 (4)
C20.0272 (4)0.0313 (4)0.0278 (4)0.0005 (3)0.0046 (3)0.0010 (3)
C40.0278 (5)0.0353 (5)0.0286 (4)0.0025 (4)0.0067 (3)0.0020 (3)
C50.0259 (4)0.0324 (5)0.0285 (4)0.0023 (3)0.0040 (3)0.0017 (3)
C60.0292 (5)0.0358 (5)0.0264 (4)0.0003 (4)0.0030 (3)0.0022 (3)
O90.0458 (5)0.0762 (7)0.0413 (5)0.0151 (5)0.0218 (4)0.0152 (5)
Geometric parameters (Å, º) top
O2—C21.2234 (12)N3—C41.3888 (13)
O4—C41.2169 (11)N3—H30.8600
O7—N51.2268 (13)N5—C51.4320 (13)
O8—N51.2206 (14)C4—C51.4502 (14)
N1—C61.3345 (13)C5—C61.3601 (13)
N1—C21.3745 (13)C6—H60.9300
N1—H10.8600O9—H9A0.87 (2)
N3—C21.3651 (12)O9—H9B0.84 (3)
C6—N1—C2122.44 (8)N3—C2—N1115.09 (9)
C6—N1—H1118.8O4—C4—N3118.84 (9)
C2—N1—H1118.8O4—C4—C5128.88 (10)
C2—N3—C4127.78 (9)N3—C4—C5112.29 (8)
C2—N3—H3116.1C6—C5—N5117.19 (9)
C4—N3—H3116.1C6—C5—C4120.62 (9)
O8—N5—O7122.28 (10)N5—C5—C4122.19 (9)
O8—N5—C5118.20 (10)N1—C6—C5121.72 (9)
O7—N5—C5119.52 (9)N1—C6—H6119.1
O2—C2—N3123.33 (9)C5—C6—H6119.1
O2—C2—N1121.57 (9)H9A—O9—H9B104 (2)
C4—N3—C2—O2179.00 (11)O7—N5—C5—C411.85 (17)
C4—N3—C2—N11.51 (16)O4—C4—C5—C6179.88 (12)
C6—N1—C2—O2177.51 (10)N3—C4—C5—C60.19 (15)
C6—N1—C2—N32.99 (15)O4—C4—C5—N50.29 (19)
C2—N3—C4—O4179.72 (11)N3—C4—C5—N5179.97 (10)
C2—N3—C4—C50.00 (16)C2—N1—C6—C52.99 (16)
O8—N5—C5—C612.45 (17)N5—C5—C6—N1178.58 (10)
O7—N5—C5—C6168.00 (11)C4—C5—C6—N11.27 (17)
O8—N5—C5—C4167.71 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.992.8503 (13)173
N1—H1···O9ii0.861.882.6736 (12)153
O9—H9A···O4iii0.87 (2)1.92 (2)2.7640 (13)165 (2)
O9—H9A···O7iii0.87 (2)2.41 (3)2.9101 (13)117 (2)
O9—H9B···O7iv0.84 (3)2.29 (3)3.0940 (15)162 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H3N3O4·H2O
Mr175.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.2799 (1), 7.8481 (2), 13.8068 (3)
β (°) 93.842 (1)
V3)678.94 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.44 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.890, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
15135, 2232, 1918
Rint0.018
(sin θ/λ)max1)0.779
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.00
No. of reflections2232
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.992.8503 (13)173.1
N1—H1···O9ii0.861.882.6736 (12)152.8
O9—H9A···O4iii0.87 (2)1.92 (2)2.7640 (13)165 (2)
O9—H9A···O7iii0.87 (2)2.41 (3)2.9101 (13)117 (2)
O9—H9B···O7iv0.84 (3)2.29 (3)3.0940 (15)162 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/58309/2004

References

First citationBergman, J. G., Crane, G. R., Levine, B. F. & Bethea, C. G. (1972). Appl. Phys. Lett. 20, 21–23.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraven, B. M. (1967). Acta Cryst. 23, 376–383.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPettier, P. R. & Byrn, S. R. (1982). J. Org. Chem. 47, 4671–4676.  Google Scholar
First citationPuccetti, G., Perigaud, A., Badan, J., Ledoux, I. & Zyss, J. (1993). J. Opt. Soc. Am. B, 10, 733–744.  CrossRef CAS Google Scholar
First citationRao, T. S., Rando, R. F., Huffman, J. H. & Revankar, G. R. (1995). Nucleosides Nucleotides, 14, 1997–2008.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYouping, H., Genbo, S., Bochang, W. & Rihong, J. (1992). J. Cryst. Growth, 119, 393–398.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds