organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o954-o955

(E)-3-(4-Methyl­phen­yl)-1-(4-nitro­phenyl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2008; accepted 28 April 2008; online 3 May 2008)

The asymmetric unit of the title compound, C16H13NO3, contains two independent mol­ecules related approximately by a pseudo-twofold rotation axis. The dihedral angle between the nitro­benzene and methyl­phenyl rings is 42.18 (6)° in one mol­ecule and 12.97 (6)° in the other. In both mol­ecules, the nitro group is slightly twisted away from the attached benzene ring. In the crystal structure, the mol­ecules are stacked along the b axis and are linked via C—H⋯O and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2007[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561-o562.]); Patil et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]a[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738-o1740.],b[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497-o2498.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]). For background to the applications of substituted chalcones, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3

  • Mr = 267.27

  • Triclinic, [P \overline 1]

  • a = 5.8857 (1) Å

  • b = 7.8800 (1) Å

  • c = 27.4745 (4) Å

  • α = 88.793 (1)°

  • β = 85.665 (1)°

  • γ = 82.645 (1)°

  • V = 1260.07 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.43 × 0.26 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.977

  • 32268 measured reflections

  • 6666 independent reflections

  • 5182 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.09

  • 6666 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O1Bi 0.93 2.58 3.2597 (17) 131
C9A—H9A⋯O1A 0.93 2.48 2.8045 (17) 101
C9B—H9B⋯O1B 0.93 2.48 2.8112 (17) 101
C1B—H1BCg1 0.93 2.90 3.4853 (15) 123
C4B—H4BCg1ii 0.93 2.86 3.4837 (15) 126
C16A—H16CCg2iii 0.96 2.91 3.7837 (15) 151
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z; (iii) x+1, y, z. Cg1 and Cg2 are centroids of the C10A–C15A and C1B–C6B rings, ,respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Substituted chalcones exhibit second-harmonic generation in crystalline form and possess optical limiting behavior with femtosecond laser pulse at 780 nm wavelength (Gu et al., 2008; Patil et al., 2006, 2007c; Agrinskaya et al., 1999). The main idea behind the above studies was to introduce various donor/acceptor substituents [OCH3, N(CH3)2, NH2, F, Cl, Br, CH3, NO2] on either side of benzene rings and to observe the structure-activity relationship. In view of the importance of substituted chalcones, the title compound was synthesized and its crystal structure is reported here.

There are two independent molecules, A and B, in the asymmetric unit of the title compound (Fig. 1). Bond lengths and angles in both molecules are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun et al., 2007; Patil et al., 2007a,b). The dihedral angles between the nitrobenzene and methylphenyl rings are 42.18 (6)° and 12.97 (6)° in molecule A and B, respectively. In molecule A, atoms O1A, C6A, C7A and C8A are coplanar and the least-squares plane through these atoms makes dihedral angles of 20.21 (8)° and 24.41 (7)° with the nitrobenzene (C1A–C6A) and methylbenzene (C10A–C15A) rings, repectively. However, in molecule B atoms O1B, C6B, C7B, C8B, C9B and C10B are coplanar, and the dihedral angles formed by the mean plane through these atoms with the nirobenzene and methylbenzene rings are 16.85 (6)° and 16.97 (6)°, respectively. The nitro groups are slightly twisted away from the plane of the attached benzene rings, with the O2—N1—C3—C2 torsion angles being 11.2 (2)° and 5.84 (19)° in molecules A and B, respectively, and the O3—N1—C3—C4 torsion angles being 11.5 (2)° and 4.54 (19)°, in A and B,respectively. In each of the independent molecules, a weak C9—H9···O1 interaction generates an S(5) ring motif (Bernstein et al., 1995) (Table 1).

In the crystal structure (Fig. 2), the molecules are stacked in as anti-parallel pairs approximately along the b axis. The crystal structure is stabilized by weak C—H···O hydrogen bonds and C—H···π interactions (Table 1) involving the C10A-C15A (centroid Cg1) and C1B-C6B (centroid Cg2) benzene rings.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2007); Patil et al. (2007a,b); Patil, Dharmaprakash et al. (2007). For background to the applications of substituted chalcones, see: Agrinskaya et al. (1999); Gu et al. (2008); Patil et al. (2006); Patil, Dharmaprakash et al. (2007). Cg1 and Cg2 are centroids of the C10A–C15A and C1B–C6B rings,respectively.

Experimental top

The title compound was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 4-nitroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 2 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from N,N-dimethylformamide (DMF).

Refinement top

All H atoms were placed in calculated positions, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for and aromatic H and d(C—H) = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Weak C—H···O intramolecular interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis showing stacking of anti-parallel pairs of molecules approximately along the b axis. Hydrogen bonds are drawn as dashed lines.
3-(4-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C16H13NO3Z = 4
Mr = 267.27F(000) = 560
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8857 (1) ÅCell parameters from 6666 reflections
b = 7.8800 (1) Åθ = 0.7–29.0°
c = 27.4745 (4) ŵ = 0.10 mm1
α = 88.793 (1)°T = 100 K
β = 85.665 (1)°Block, yellow
γ = 82.645 (1)°0.43 × 0.26 × 0.23 mm
V = 1260.07 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6666 independent reflections
Radiation source: fine-focus sealed tube5182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 0.7°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 108
Tmin = 0.959, Tmax = 0.977l = 3737
32268 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.061P)2 + 0.3735P]
where P = (Fo2 + 2Fc2)/3
6666 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H13NO3γ = 82.645 (1)°
Mr = 267.27V = 1260.07 (3) Å3
Triclinic, P1Z = 4
a = 5.8857 (1) ÅMo Kα radiation
b = 7.8800 (1) ŵ = 0.10 mm1
c = 27.4745 (4) ÅT = 100 K
α = 88.793 (1)°0.43 × 0.26 × 0.23 mm
β = 85.665 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5182 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.977Rint = 0.033
32268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
6666 reflectionsΔρmin = 0.26 e Å3
363 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.21638 (17)0.20887 (14)0.77198 (4)0.0239 (2)
O2A0.88278 (19)0.18446 (17)0.96280 (4)0.0382 (3)
O3A0.52447 (19)0.18264 (14)0.98705 (4)0.0271 (2)
N1A0.6782 (2)0.14787 (16)0.95730 (4)0.0219 (3)
C1A0.7223 (2)0.03671 (18)0.83164 (5)0.0193 (3)
H1A0.83400.04630.80630.023*
C2A0.7813 (2)0.04744 (18)0.87474 (5)0.0196 (3)
H2A0.93190.09550.87850.024*
C3A0.6122 (2)0.05826 (17)0.91193 (5)0.0171 (3)
C4A0.3867 (2)0.00997 (18)0.90810 (5)0.0203 (3)
H4A0.27610.00090.93370.024*
C5A0.3298 (2)0.09255 (18)0.86483 (5)0.0197 (3)
H5A0.17860.13940.86130.024*
C6A0.4958 (2)0.10657 (17)0.82647 (5)0.0158 (3)
C7A0.4201 (2)0.19297 (17)0.77999 (5)0.0169 (3)
C8A0.5949 (2)0.25902 (17)0.74603 (5)0.0174 (3)
H8A0.74500.25550.75480.021*
C9A0.5374 (2)0.32427 (17)0.70247 (5)0.0170 (3)
H9A0.38910.31560.69410.020*
C10A0.6854 (2)0.40782 (17)0.66680 (5)0.0158 (3)
C11A0.6179 (2)0.43784 (17)0.61919 (5)0.0172 (3)
H11A0.48110.40260.61090.021*
C12A0.7501 (2)0.51888 (17)0.58421 (5)0.0185 (3)
H12A0.70270.53500.55270.022*
C13A0.9536 (2)0.57638 (17)0.59585 (5)0.0179 (3)
C14A1.0189 (2)0.54932 (17)0.64355 (5)0.0181 (3)
H14A1.15250.58870.65210.022*
C15A0.8900 (2)0.46549 (17)0.67837 (5)0.0177 (3)
H15A0.93960.44740.70960.021*
C16A1.0971 (2)0.66602 (19)0.55834 (5)0.0224 (3)
H16A0.99970.75090.54140.034*
H16B1.17530.58410.53540.034*
H16C1.20790.72030.57430.034*
O1B0.02096 (17)0.84372 (13)0.73497 (4)0.0228 (2)
O2B0.65858 (19)1.10645 (15)0.52474 (4)0.0302 (3)
O3B0.3249 (2)1.25845 (15)0.52514 (4)0.0342 (3)
N1B0.4637 (2)1.14949 (16)0.54285 (4)0.0227 (3)
C1B0.4905 (2)0.88516 (18)0.65652 (5)0.0193 (3)
H1B0.59790.81230.67260.023*
C2B0.5542 (2)0.95813 (18)0.61183 (5)0.0196 (3)
H2B0.70300.93390.59760.024*
C3B0.3911 (2)1.06743 (17)0.58920 (5)0.0181 (3)
C4B0.1681 (2)1.10666 (18)0.60879 (5)0.0204 (3)
H4B0.06251.18170.59280.024*
C5B0.1060 (2)1.03113 (18)0.65291 (5)0.0192 (3)
H5B0.04411.05410.66650.023*
C6B0.2662 (2)0.92085 (17)0.67722 (5)0.0167 (3)
C7B0.1851 (2)0.84063 (17)0.72448 (5)0.0175 (3)
C8B0.3587 (2)0.75994 (18)0.75670 (5)0.0190 (3)
H8B0.51390.75410.74660.023*
C9B0.2950 (2)0.69516 (17)0.80024 (5)0.0186 (3)
H9B0.13800.70500.80890.022*
C10B0.4455 (2)0.61059 (17)0.83569 (5)0.0176 (3)
C11B0.3559 (2)0.57945 (18)0.88324 (5)0.0196 (3)
H11B0.20140.61410.89190.024*
C12B0.4946 (2)0.49752 (18)0.91766 (5)0.0203 (3)
H12B0.43200.47920.94910.024*
C13B0.7260 (2)0.44249 (18)0.90559 (5)0.0194 (3)
C14B0.8147 (2)0.47184 (18)0.85790 (5)0.0197 (3)
H14B0.96840.43480.84900.024*
C15B0.6776 (2)0.55527 (18)0.82360 (5)0.0192 (3)
H15B0.74080.57460.79220.023*
C16B0.8747 (3)0.3557 (2)0.94323 (5)0.0236 (3)
H16D0.84750.41840.97310.035*
H16E1.03340.35200.93170.035*
H16F0.83850.24130.94890.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0172 (5)0.0334 (6)0.0213 (5)0.0041 (4)0.0029 (4)0.0080 (4)
O2A0.0253 (6)0.0570 (8)0.0311 (6)0.0002 (5)0.0093 (5)0.0183 (6)
O3A0.0333 (6)0.0294 (6)0.0187 (5)0.0066 (5)0.0006 (4)0.0073 (4)
N1A0.0267 (6)0.0219 (6)0.0173 (6)0.0033 (5)0.0037 (5)0.0040 (5)
C1A0.0173 (6)0.0225 (7)0.0174 (6)0.0017 (5)0.0016 (5)0.0022 (5)
C2A0.0172 (6)0.0226 (7)0.0187 (7)0.0005 (5)0.0023 (5)0.0035 (5)
C3A0.0205 (7)0.0170 (6)0.0143 (6)0.0036 (5)0.0030 (5)0.0023 (5)
C4A0.0190 (7)0.0243 (7)0.0175 (6)0.0040 (5)0.0014 (5)0.0032 (5)
C5A0.0165 (6)0.0232 (7)0.0187 (6)0.0009 (5)0.0009 (5)0.0037 (5)
C6A0.0171 (6)0.0146 (6)0.0161 (6)0.0034 (5)0.0014 (5)0.0010 (5)
C7A0.0186 (6)0.0172 (6)0.0147 (6)0.0024 (5)0.0002 (5)0.0017 (5)
C8A0.0159 (6)0.0177 (6)0.0184 (6)0.0025 (5)0.0000 (5)0.0012 (5)
C9A0.0159 (6)0.0181 (6)0.0166 (6)0.0015 (5)0.0002 (5)0.0005 (5)
C10A0.0166 (6)0.0146 (6)0.0155 (6)0.0002 (5)0.0001 (5)0.0012 (5)
C11A0.0163 (6)0.0178 (6)0.0176 (6)0.0027 (5)0.0010 (5)0.0002 (5)
C12A0.0223 (7)0.0190 (7)0.0132 (6)0.0001 (5)0.0004 (5)0.0014 (5)
C13A0.0190 (6)0.0149 (6)0.0184 (6)0.0005 (5)0.0028 (5)0.0013 (5)
C14A0.0150 (6)0.0189 (7)0.0204 (7)0.0028 (5)0.0001 (5)0.0006 (5)
C15A0.0185 (6)0.0187 (7)0.0155 (6)0.0010 (5)0.0011 (5)0.0005 (5)
C16A0.0235 (7)0.0222 (7)0.0208 (7)0.0040 (6)0.0038 (5)0.0027 (5)
O1B0.0193 (5)0.0286 (6)0.0201 (5)0.0027 (4)0.0007 (4)0.0026 (4)
O2B0.0307 (6)0.0363 (6)0.0235 (5)0.0083 (5)0.0044 (4)0.0055 (5)
O3B0.0455 (7)0.0300 (6)0.0249 (6)0.0027 (5)0.0036 (5)0.0107 (5)
N1B0.0318 (7)0.0202 (6)0.0169 (6)0.0065 (5)0.0013 (5)0.0020 (5)
C1B0.0185 (6)0.0180 (7)0.0209 (7)0.0001 (5)0.0033 (5)0.0033 (5)
C2B0.0173 (6)0.0197 (7)0.0212 (7)0.0014 (5)0.0009 (5)0.0002 (5)
C3B0.0255 (7)0.0152 (6)0.0140 (6)0.0045 (5)0.0020 (5)0.0012 (5)
C4B0.0227 (7)0.0179 (7)0.0201 (7)0.0006 (5)0.0052 (5)0.0019 (5)
C5B0.0181 (6)0.0191 (7)0.0199 (7)0.0002 (5)0.0016 (5)0.0002 (5)
C6B0.0187 (6)0.0160 (6)0.0156 (6)0.0029 (5)0.0022 (5)0.0001 (5)
C7B0.0191 (6)0.0163 (6)0.0170 (6)0.0021 (5)0.0015 (5)0.0004 (5)
C8B0.0176 (6)0.0206 (7)0.0187 (7)0.0014 (5)0.0022 (5)0.0017 (5)
C9B0.0193 (6)0.0181 (7)0.0184 (6)0.0020 (5)0.0016 (5)0.0008 (5)
C10B0.0204 (7)0.0177 (6)0.0155 (6)0.0047 (5)0.0028 (5)0.0018 (5)
C11B0.0181 (6)0.0225 (7)0.0179 (6)0.0024 (5)0.0003 (5)0.0024 (5)
C12B0.0234 (7)0.0222 (7)0.0152 (6)0.0036 (6)0.0010 (5)0.0035 (5)
C13B0.0215 (7)0.0175 (7)0.0198 (7)0.0043 (5)0.0032 (5)0.0011 (5)
C14B0.0179 (6)0.0214 (7)0.0194 (7)0.0015 (5)0.0012 (5)0.0018 (5)
C15B0.0226 (7)0.0200 (7)0.0150 (6)0.0040 (5)0.0001 (5)0.0012 (5)
C16B0.0237 (7)0.0290 (8)0.0177 (7)0.0020 (6)0.0027 (5)0.0057 (6)
Geometric parameters (Å, º) top
O1A—C7A1.2256 (16)O1B—C7B1.2224 (17)
O2A—N1A1.2219 (16)O2B—N1B1.2245 (16)
O3A—N1A1.2263 (16)O3B—N1B1.2264 (16)
N1A—C3A1.4728 (17)N1B—C3B1.4751 (17)
C1A—C2A1.3903 (18)C1B—C2B1.3909 (19)
C1A—C6A1.3919 (18)C1B—C6B1.3944 (19)
C1A—H1A0.93C1B—H1B0.93
C2A—C3A1.3805 (19)C2B—C3B1.3808 (19)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.3780 (19)C3B—C4B1.380 (2)
C4A—C5A1.3857 (18)C4B—C5B1.3839 (19)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.3944 (18)C5B—C6B1.3969 (18)
C5A—H5A0.93C5B—H5B0.93
C6A—C7A1.5048 (18)C6B—C7B1.5039 (18)
C7A—C8A1.4735 (18)C7B—C8B1.4759 (18)
C8A—C9A1.3422 (18)C8B—C9B1.3370 (19)
C8A—H8A0.93C8B—H8B0.93
C9A—C10A1.4644 (18)C9B—C10B1.4594 (18)
C9A—H9A0.93C9B—H9B0.93
C10A—C15A1.4002 (19)C10B—C15B1.3966 (19)
C10A—C11A1.4024 (18)C10B—C11B1.4002 (18)
C11A—C12A1.3876 (18)C11B—C12B1.3903 (18)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.395 (2)C12B—C13B1.393 (2)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.3976 (19)C13B—C14B1.3992 (19)
C13A—C16A1.5050 (18)C13B—C16B1.5024 (19)
C14A—C15A1.3853 (18)C14B—C15B1.3874 (19)
C14A—H14A0.93C14B—H14B0.93
C15A—H15A0.93C15B—H15B0.93
C16A—H16A0.96C16B—H16D0.96
C16A—H16B0.96C16B—H16E0.96
C16A—H16C0.96C16B—H16F0.96
O2A—N1A—O3A123.99 (12)O2B—N1B—O3B124.08 (12)
O2A—N1A—C3A117.98 (12)O2B—N1B—C3B118.32 (12)
O3A—N1A—C3A118.03 (12)O3B—N1B—C3B117.60 (12)
C2A—C1A—C6A119.95 (12)C2B—C1B—C6B120.27 (12)
C2A—C1A—H1A120.0C2B—C1B—H1B119.9
C6A—C1A—H1A120.0C6B—C1B—H1B119.9
C3A—C2A—C1A118.73 (12)C3B—C2B—C1B118.31 (13)
C3A—C2A—H2A120.6C3B—C2B—H2B120.8
C1A—C2A—H2A120.6C1B—C2B—H2B120.8
C4A—C3A—C2A122.82 (12)C4B—C3B—C2B122.99 (12)
C4A—C3A—N1A119.25 (12)C4B—C3B—N1B119.29 (12)
C2A—C3A—N1A117.92 (12)C2B—C3B—N1B117.69 (12)
C3A—C4A—C5A117.86 (12)C3B—C4B—C5B118.12 (12)
C3A—C4A—H4A121.1C3B—C4B—H4B120.9
C5A—C4A—H4A121.1C5B—C4B—H4B120.9
C4A—C5A—C6A121.03 (13)C4B—C5B—C6B120.75 (13)
C4A—C5A—H5A119.5C4B—C5B—H5B119.6
C6A—C5A—H5A119.5C6B—C5B—H5B119.6
C1A—C6A—C5A119.60 (12)C1B—C6B—C5B119.56 (12)
C1A—C6A—C7A122.29 (12)C1B—C6B—C7B122.63 (12)
C5A—C6A—C7A118.08 (12)C5B—C6B—C7B117.79 (12)
O1A—C7A—C8A122.24 (12)O1B—C7B—C8B122.13 (12)
O1A—C7A—C6A119.41 (12)O1B—C7B—C6B119.37 (12)
C8A—C7A—C6A118.34 (11)C8B—C7B—C6B118.50 (12)
C9A—C8A—C7A120.01 (12)C9B—C8B—C7B120.66 (13)
C9A—C8A—H8A120.0C9B—C8B—H8B119.7
C7A—C8A—H8A120.0C7B—C8B—H8B119.7
C8A—C9A—C10A126.33 (13)C8B—C9B—C10B126.94 (13)
C8A—C9A—H9A116.8C8B—C9B—H9B116.5
C10A—C9A—H9A116.8C10B—C9B—H9B116.5
C15A—C10A—C11A117.72 (12)C15B—C10B—C11B118.17 (12)
C15A—C10A—C9A122.96 (12)C15B—C10B—C9B122.17 (12)
C11A—C10A—C9A119.28 (12)C11B—C10B—C9B119.65 (12)
C12A—C11A—C10A121.57 (13)C12B—C11B—C10B120.96 (13)
C12A—C11A—H11A119.2C12B—C11B—H11B119.5
C10A—C11A—H11A119.2C10B—C11B—H11B119.5
C11A—C12A—C13A120.58 (12)C11B—C12B—C13B120.84 (13)
C11A—C12A—H12A119.7C11B—C12B—H12B119.6
C13A—C12A—H12A119.7C13B—C12B—H12B119.6
C12A—C13A—C14A117.86 (12)C12B—C13B—C14B118.14 (12)
C12A—C13A—C16A121.01 (12)C12B—C13B—C16B120.38 (12)
C14A—C13A—C16A121.13 (13)C14B—C13B—C16B121.47 (13)
C15A—C14A—C13A121.84 (13)C15B—C14B—C13B121.19 (13)
C15A—C14A—H14A119.1C15B—C14B—H14B119.4
C13A—C14A—H14A119.1C13B—C14B—H14B119.4
C14A—C15A—C10A120.40 (12)C14B—C15B—C10B120.68 (12)
C14A—C15A—H15A119.8C14B—C15B—H15B119.7
C10A—C15A—H15A119.8C10B—C15B—H15B119.7
C13A—C16A—H16A109.5C13B—C16B—H16D109.5
C13A—C16A—H16B109.5C13B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C13A—C16A—H16C109.5C13B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C6A—C1A—C2A—C3A0.6 (2)C6B—C1B—C2B—C3B0.8 (2)
C1A—C2A—C3A—C4A0.4 (2)C1B—C2B—C3B—C4B0.3 (2)
C1A—C2A—C3A—N1A179.99 (13)C1B—C2B—C3B—N1B177.49 (12)
O2A—N1A—C3A—C4A169.19 (14)O2B—N1B—C3B—C4B176.27 (13)
O3A—N1A—C3A—C4A11.5 (2)O3B—N1B—C3B—C4B4.54 (19)
O2A—N1A—C3A—C2A11.2 (2)O2B—N1B—C3B—C2B5.84 (19)
O3A—N1A—C3A—C2A168.15 (13)O3B—N1B—C3B—C2B173.35 (13)
C2A—C3A—C4A—C5A0.0 (2)C2B—C3B—C4B—C5B0.7 (2)
N1A—C3A—C4A—C5A179.61 (13)N1B—C3B—C4B—C5B178.43 (12)
C3A—C4A—C5A—C6A0.2 (2)C3B—C4B—C5B—C6B1.2 (2)
C2A—C1A—C6A—C5A0.5 (2)C2B—C1B—C6B—C5B0.3 (2)
C2A—C1A—C6A—C7A177.56 (13)C2B—C1B—C6B—C7B177.65 (13)
C4A—C5A—C6A—C1A0.0 (2)C4B—C5B—C6B—C1B0.7 (2)
C4A—C5A—C6A—C7A178.06 (13)C4B—C5B—C6B—C7B178.75 (13)
C1A—C6A—C7A—O1A159.57 (14)C1B—C6B—C7B—O1B162.74 (14)
C5A—C6A—C7A—O1A18.5 (2)C5B—C6B—C7B—O1B15.3 (2)
C1A—C6A—C7A—C8A21.7 (2)C1B—C6B—C7B—C8B17.1 (2)
C5A—C6A—C7A—C8A160.26 (13)C5B—C6B—C7B—C8B164.91 (12)
O1A—C7A—C8A—C9A6.7 (2)O1B—C7B—C8B—C9B3.8 (2)
C6A—C7A—C8A—C9A174.58 (12)C6B—C7B—C8B—C9B176.38 (13)
C7A—C8A—C9A—C10A174.30 (12)C7B—C8B—C9B—C10B179.38 (13)
C8A—C9A—C10A—C15A15.3 (2)C8B—C9B—C10B—C15B13.8 (2)
C8A—C9A—C10A—C11A167.03 (13)C8B—C9B—C10B—C11B167.69 (14)
C15A—C10A—C11A—C12A1.2 (2)C15B—C10B—C11B—C12B0.7 (2)
C9A—C10A—C11A—C12A179.00 (12)C9B—C10B—C11B—C12B179.31 (13)
C10A—C11A—C12A—C13A1.3 (2)C10B—C11B—C12B—C13B0.7 (2)
C11A—C12A—C13A—C14A0.1 (2)C11B—C12B—C13B—C14B0.1 (2)
C11A—C12A—C13A—C16A179.37 (13)C11B—C12B—C13B—C16B179.37 (14)
C12A—C13A—C14A—C15A1.2 (2)C12B—C13B—C14B—C15B0.8 (2)
C16A—C13A—C14A—C15A179.32 (13)C16B—C13B—C14B—C15B178.62 (14)
C13A—C14A—C15A—C10A1.3 (2)C13B—C14B—C15B—C10B0.8 (2)
C11A—C10A—C15A—C14A0.09 (19)C11B—C10B—C15B—C14B0.0 (2)
C9A—C10A—C15A—C14A177.62 (12)C9B—C10B—C15B—C14B178.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O1Bi0.932.583.2597 (17)131
C9A—H9A···O1A0.932.482.8045 (17)101
C9B—H9B···O1B0.932.482.8112 (17)101
C1B—H1B···Cg10.932.903.4853 (15)123
C4B—H4B···Cg1ii0.932.863.4837 (15)126
C16A—H16C···Cg2iii0.962.913.7837 (15)151
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13NO3
Mr267.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8857 (1), 7.8800 (1), 27.4745 (4)
α, β, γ (°)88.793 (1), 85.665 (1), 82.645 (1)
V3)1260.07 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
32268, 6666, 5182
Rint0.033
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.09
No. of reflections6666
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O1Bi0.932.583.2597 (17)131
C9A—H9A···O1A0.932.482.8045 (17)101
C9B—H9B···O1B0.932.482.8112 (17)101
C1B—H1B···Cg10.932.903.4853 (15)123
C4B—H4B···Cg1ii0.932.863.4837 (15)126
C16A—H16C···Cg2iii0.962.913.7837 (15)151
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o954-o955
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds