organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1001-o1002

4-(4-Bromo­benzyl­­idene­amino)-1-(di­phenyl­amino­meth­yl)-3-[1-(4-iso­butyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 April 2008; accepted 30 April 2008; online 7 May 2008)

In the title compound, C34H34BrN5S, the two phenyl rings of the diphenyl­amino­methyl group are inclined at an angle of 73.86 (8)° and they form dihedral angles of 74.04 (8) and 48.74 (8)° with the triazole ring. Intra­molecular C—H⋯S hydrogen bonds generate S(6) and S(5) ring motifs. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For related literature, see: Dave et al. (2007[Dave, T. K., Purohit, D. H., Akbari, J. D. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem. 46B, 352-356. ]); Kalluraya et al. (2003[Kalluraya, B. & Rai, G. (2003). Synth. Commun. 33, 3583-3589.], 2004[Kalluraya, B., Rai, G., Rai, S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem. 14, 127-130.], 2007[Kalluraya, B., Lingappa, B. & Rai, N. S. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1393-1401.]); Kane et al. (1990[Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772-2777.]). For literature on Mannich bases, see: Kalluraya et al. (2001[Kalluraya, B., Isloor, A. M., Chimbalkar, R. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. 10, 239-240.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C34H34BrN5S

  • Mr = 624.63

  • Monoclinic, P 21 /c

  • a = 10.9672 (1) Å

  • b = 9.7833 (1) Å

  • c = 28.6210 (3) Å

  • β = 105.966 (1)°

  • V = 2952.44 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.31 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.684

  • 55283 measured reflections

  • 13248 independent reflections

  • 7914 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.098

  • S = 1.01

  • 13248 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S1 0.93 2.52 3.217 (2) 132
C22—H22B⋯S1 0.97 2.80 3.232 (2) 108
C6—H6ACg1i 0.93 2.81 3.717 (2) 165
C21—H21CCg2ii 0.96 2.89 3.829 (2) 168
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C11–C16 and C23–C28 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Nitrogen-containing heterocyclic molecules constitute the largest portion of chemical entities, which are part of many natural products, fine chemicals, and biologically active pharmaceuticals vital for enhancing the quality of life (Kalluraya et al. 2003, 2007; Kane et al., 1990). Mannich bases are a class of heterocycles, which have attracted significant interest in medicinal chemistry (Kalluraya et al., 2004). Among the Mannich bases, 1,2,4-triazole derivatives have attracted considerable attention because of their wide variety of biological activities, such as antineoplastic, analgesic and antibiotic activity (Dave et al., 2007). Mannich bases are obtained by condensing an amine, formaldehyde and a compound containing active hydrogen atom (Kalluraya et al., 2001). It is interesting to note that the reaction is highly regioselective and furnishes only the N-Mannich base and none of the S-Mannich derivatives, though the intermediate Schiff bases can exist in the thiol-thione tautomeric equilibrium. In view of these impressive array of properties exhibited by Mannich bases, the crystal structure of the title compound is reported here.

Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The triazole ring is planar with a maximium deviation of 0.010 (2) Å for atom C1. The planes through the C4—C9, C11—C16, C23—C28 and C29—C34 rings form dihedral angles of 25.10 (8), 81.35 (8), 74.04 (8) and 48.74 (8)°, respectively, with the the triazole ring. Weak C—H···S hydrogen bonds generating S(6) and S(5) ring motifs (Bernstein et al.,(1995) are observed in the molecular structure.

The crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 (centroid Cg1) and C23–C28 (centroid Cg2) rings (Table 1).

Related literature top

For related literature, see: Dave et al. (2007); Kalluraya et al. (2003,2004,2007); Kane et al. (1990). For literature on Mannich bases, see: Kalluraya et al. (2001). For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C11-C16 and C23–C28 rings, respectively.

Experimental top

The title compound, a Mannich base, was obtained by the aminomethylation of a Schiff base, 4-{[(4-bromophenyl)methylene]amino}-5-[1-(4-isobutylphenyl)ethyl]-3-mercapto- 1,2,4-triazole which was in turn obtained by refluxing 4-amino-3-mercapto-5- [1-(4-isobutylphenyl)ethyl]-1,2,4-triazole (0.01 mol) and 4-bromo benzaldehyde (0.01 mol) in ethanol (30 ml) by adding 2 drops of concentrated sulfuric acid for 3 h. A mixture of the obtained Schiff base (0.01 mol), formaldehyde (40%, 1 ml) and diphenyl amine (0.01 mol) in ethanol (50 ml) was stirred at room temperature for 16 h. The solid product was collected by filtration, washed with ethanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from an acetone-N,N-dimethylformamide (DMF) (1:3) solution by slow evaporation (yield 68%; m.p. 381–382 K). Analysis (%) for C34H34N5BrS found (calculated): C 65.23 (65.38), H 5.33 (5.44), N 11.21 (11.17).

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating-group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
4-(4-Bromobenzylideneamino)-1-(diphenylaminomethyl)-3-[1-(4- isobutylphenyl)ethyl]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C34H34BrN5SF(000) = 1296
Mr = 624.63Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8665 reflections
a = 10.9672 (1) Åθ = 2.2–29.2°
b = 9.7833 (1) ŵ = 1.50 mm1
c = 28.6210 (3) ÅT = 100 K
β = 105.966 (1)°Block, colourless
V = 2952.44 (5) Å30.35 × 0.31 × 0.27 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
13248 independent reflections
Radiation source: fine-focus sealed tube7914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 35.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.623, Tmax = 0.684k = 1515
55283 measured reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.5449P]
where P = (Fo2 + 2Fc2)/3
13248 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C34H34BrN5SV = 2952.44 (5) Å3
Mr = 624.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9672 (1) ŵ = 1.50 mm1
b = 9.7833 (1) ÅT = 100 K
c = 28.6210 (3) Å0.35 × 0.31 × 0.27 mm
β = 105.966 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
13248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7914 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.684Rint = 0.059
55283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
13248 reflectionsΔρmin = 0.57 e Å3
372 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.543981 (15)0.004817 (17)0.133261 (6)0.02529 (5)
S10.15515 (5)0.27622 (4)0.091481 (16)0.02758 (10)
N10.11707 (12)0.00549 (12)0.06174 (4)0.0177 (2)
N20.01822 (12)0.07970 (13)0.11283 (5)0.0194 (3)
N30.05163 (13)0.05530 (13)0.12340 (4)0.0192 (3)
N40.05997 (13)0.03122 (13)0.20801 (5)0.0213 (3)
N50.16650 (12)0.00579 (12)0.02217 (4)0.0186 (2)
C10.11076 (15)0.11338 (15)0.09263 (5)0.0194 (3)
C20.05841 (14)0.10666 (15)0.07525 (5)0.0176 (3)
C30.25133 (14)0.08055 (15)0.01851 (5)0.0191 (3)
H3A0.27370.15210.04060.023*
C40.31254 (14)0.06601 (15)0.02038 (5)0.0170 (3)
C50.41316 (15)0.15262 (15)0.02088 (5)0.0193 (3)
H5A0.43420.22310.00170.023*
C60.48243 (15)0.13606 (15)0.05424 (5)0.0194 (3)
H6A0.55020.19350.05390.023*
C70.44857 (15)0.03203 (15)0.08809 (5)0.0194 (3)
C80.34706 (15)0.05398 (16)0.08930 (5)0.0202 (3)
H8A0.32500.12240.11270.024*
C90.27910 (15)0.03763 (15)0.05571 (5)0.0195 (3)
H9A0.21110.09510.05640.023*
C100.04978 (14)0.24247 (15)0.05043 (5)0.0196 (3)
H10A0.02360.22700.01520.023*
C110.17723 (14)0.31489 (14)0.06341 (5)0.0181 (3)
C120.21998 (15)0.37842 (15)0.02736 (5)0.0203 (3)
H12A0.17430.36830.00500.024*
C130.32967 (16)0.45656 (16)0.03905 (6)0.0220 (3)
H13A0.35650.49790.01430.026*
C140.40058 (15)0.47425 (15)0.08733 (6)0.0198 (3)
C150.35851 (15)0.40810 (16)0.12319 (6)0.0218 (3)
H15A0.40470.41700.15560.026*
C160.24913 (15)0.32926 (16)0.11149 (5)0.0208 (3)
H16A0.22350.28550.13610.025*
C170.05057 (16)0.33197 (16)0.06350 (6)0.0258 (3)
H17A0.13060.28510.05500.039*
H17B0.05860.41650.04590.039*
H17C0.02540.35040.09780.039*
C180.51856 (15)0.56133 (16)0.09975 (6)0.0228 (3)
H18A0.52880.60090.13170.027*
H18B0.50650.63600.07660.027*
C190.64115 (15)0.48568 (15)0.09976 (5)0.0193 (3)
H19A0.62740.43950.06830.023*
C200.74986 (16)0.58645 (16)0.10501 (6)0.0262 (3)
H20A0.72810.65170.07900.039*
H20B0.82500.53800.10380.039*
H20C0.76500.63320.13560.039*
C210.67544 (15)0.37717 (16)0.13955 (6)0.0227 (3)
H21A0.74930.32810.13710.034*
H21B0.60590.31470.13570.034*
H21C0.69270.42040.17080.034*
C220.02950 (16)0.12061 (16)0.16644 (5)0.0224 (3)
H22A0.05880.14750.15930.027*
H22B0.08080.20260.17400.027*
C230.18209 (15)0.02413 (15)0.22580 (5)0.0196 (3)
C240.29008 (16)0.04544 (17)0.22172 (6)0.0227 (3)
H24A0.28210.12970.20610.027*
C250.40981 (16)0.01206 (17)0.24111 (6)0.0258 (3)
H25A0.48160.03550.23910.031*
C260.42321 (16)0.13885 (18)0.26334 (6)0.0275 (4)
H26A0.50320.17680.27610.033*
C270.31547 (17)0.20828 (17)0.26626 (6)0.0275 (4)
H27A0.32360.29400.28080.033*
C280.19685 (15)0.15264 (16)0.24802 (6)0.0231 (3)
H28A0.12580.20090.25050.028*
C290.03703 (14)0.00563 (15)0.22995 (5)0.0183 (3)
C300.14889 (15)0.06584 (17)0.20375 (6)0.0234 (3)
H30A0.16230.08400.17080.028*
C310.24132 (15)0.09931 (17)0.22671 (6)0.0252 (3)
H31A0.31700.13890.20900.030*
C320.22099 (15)0.07391 (16)0.27591 (6)0.0238 (3)
H32A0.28300.09620.29120.029*
C330.10801 (15)0.01518 (15)0.30232 (6)0.0222 (3)
H33A0.09380.00060.33540.027*
C340.01663 (15)0.01996 (15)0.27969 (6)0.0207 (3)
H34A0.05850.06060.29740.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02348 (8)0.03478 (9)0.01983 (7)0.00250 (7)0.00969 (6)0.00190 (7)
S10.0432 (3)0.01778 (18)0.0276 (2)0.00609 (17)0.01949 (19)0.00226 (15)
N10.0210 (6)0.0184 (6)0.0148 (5)0.0036 (5)0.0069 (5)0.0005 (5)
N20.0205 (6)0.0183 (6)0.0200 (6)0.0040 (5)0.0064 (5)0.0002 (5)
N30.0237 (6)0.0183 (6)0.0171 (6)0.0025 (5)0.0079 (5)0.0003 (5)
N40.0200 (6)0.0272 (7)0.0181 (6)0.0008 (5)0.0076 (5)0.0047 (5)
N50.0207 (6)0.0199 (6)0.0161 (5)0.0001 (5)0.0066 (5)0.0017 (5)
C10.0221 (7)0.0199 (7)0.0168 (7)0.0015 (6)0.0067 (6)0.0008 (5)
C20.0165 (7)0.0195 (7)0.0168 (6)0.0023 (5)0.0044 (6)0.0018 (5)
C30.0225 (7)0.0192 (7)0.0156 (6)0.0008 (6)0.0052 (6)0.0002 (5)
C40.0188 (7)0.0173 (7)0.0144 (6)0.0004 (5)0.0037 (5)0.0014 (5)
C50.0251 (8)0.0165 (7)0.0160 (6)0.0018 (6)0.0053 (6)0.0006 (5)
C60.0208 (7)0.0178 (7)0.0193 (7)0.0025 (6)0.0051 (6)0.0032 (5)
C70.0209 (7)0.0231 (7)0.0146 (6)0.0007 (6)0.0056 (6)0.0030 (5)
C80.0215 (7)0.0212 (7)0.0170 (7)0.0027 (6)0.0037 (6)0.0018 (6)
C90.0197 (7)0.0206 (7)0.0175 (7)0.0033 (6)0.0040 (6)0.0008 (5)
C100.0209 (7)0.0191 (7)0.0178 (7)0.0040 (6)0.0036 (6)0.0001 (5)
C110.0206 (7)0.0151 (6)0.0191 (7)0.0051 (5)0.0062 (6)0.0004 (5)
C120.0242 (7)0.0200 (7)0.0151 (6)0.0052 (6)0.0028 (6)0.0019 (5)
C130.0256 (8)0.0210 (7)0.0200 (7)0.0043 (6)0.0075 (6)0.0048 (6)
C140.0222 (7)0.0162 (7)0.0212 (7)0.0043 (5)0.0061 (6)0.0011 (5)
C150.0239 (8)0.0240 (8)0.0172 (7)0.0031 (6)0.0052 (6)0.0019 (6)
C160.0245 (8)0.0220 (7)0.0175 (7)0.0024 (6)0.0088 (6)0.0013 (6)
C170.0220 (8)0.0230 (8)0.0317 (9)0.0060 (6)0.0059 (7)0.0004 (7)
C180.0265 (8)0.0180 (7)0.0239 (8)0.0008 (6)0.0068 (6)0.0011 (6)
C190.0242 (7)0.0185 (7)0.0163 (6)0.0004 (6)0.0074 (6)0.0008 (5)
C200.0297 (9)0.0208 (8)0.0320 (9)0.0001 (7)0.0151 (7)0.0009 (7)
C210.0251 (8)0.0213 (7)0.0213 (7)0.0005 (6)0.0059 (6)0.0012 (6)
C220.0266 (8)0.0234 (8)0.0191 (7)0.0006 (6)0.0099 (6)0.0016 (6)
C230.0218 (7)0.0220 (8)0.0164 (6)0.0015 (6)0.0074 (6)0.0027 (5)
C240.0265 (8)0.0241 (7)0.0201 (7)0.0031 (6)0.0108 (6)0.0007 (6)
C250.0218 (7)0.0350 (9)0.0231 (7)0.0051 (7)0.0106 (6)0.0053 (7)
C260.0216 (8)0.0352 (9)0.0270 (8)0.0035 (7)0.0088 (7)0.0029 (7)
C270.0297 (9)0.0237 (8)0.0301 (9)0.0030 (7)0.0101 (7)0.0006 (7)
C280.0218 (7)0.0215 (8)0.0278 (8)0.0019 (6)0.0102 (7)0.0033 (6)
C290.0196 (6)0.0181 (7)0.0179 (6)0.0001 (6)0.0062 (5)0.0011 (6)
C300.0260 (8)0.0258 (8)0.0171 (7)0.0016 (7)0.0038 (6)0.0019 (6)
C310.0194 (7)0.0266 (8)0.0280 (8)0.0029 (6)0.0035 (6)0.0025 (7)
C320.0200 (7)0.0243 (8)0.0299 (8)0.0005 (6)0.0116 (6)0.0030 (7)
C330.0254 (8)0.0246 (8)0.0182 (7)0.0008 (6)0.0087 (6)0.0004 (6)
C340.0203 (7)0.0231 (8)0.0180 (7)0.0030 (6)0.0042 (6)0.0020 (6)
Geometric parameters (Å, º) top
Br1—C71.8925 (16)C17—H17A0.96
S1—C11.6688 (15)C17—H17B0.96
N1—C21.3800 (19)C17—H17C0.96
N1—N51.3879 (18)C18—C191.535 (2)
N1—C11.3907 (19)C18—H18A0.97
N2—C21.2968 (19)C18—H18B0.97
N2—N31.3818 (18)C19—C201.522 (2)
N3—C11.354 (2)C19—C211.526 (2)
N3—C221.466 (2)C19—H19A0.98
N4—C231.404 (2)C20—H20A0.96
N4—C291.422 (2)C20—H20B0.96
N4—C221.4399 (19)C20—H20C0.96
N5—C31.2821 (19)C21—H21A0.96
C2—C101.497 (2)C21—H21B0.96
C3—C41.456 (2)C21—H21C0.96
C3—H3A0.93C22—H22A0.97
C4—C51.395 (2)C22—H22B0.97
C4—C91.408 (2)C23—C281.398 (2)
C5—C61.383 (2)C23—C241.398 (2)
C5—H5A0.93C24—C251.396 (2)
C6—C71.384 (2)C24—H24A0.93
C6—H6A0.93C25—C261.383 (2)
C7—C81.388 (2)C25—H25A0.93
C8—C91.378 (2)C26—C271.385 (2)
C8—H8A0.93C26—H26A0.93
C9—H9A0.93C27—C281.374 (2)
C10—C111.519 (2)C27—H27A0.93
C10—C171.531 (2)C28—H28A0.93
C10—H10A0.98C29—C301.381 (2)
C11—C121.392 (2)C29—C341.402 (2)
C11—C161.392 (2)C30—C311.390 (2)
C12—C131.386 (2)C30—H30A0.93
C12—H12A0.93C31—C321.386 (2)
C13—C141.397 (2)C31—H31A0.93
C13—H13A0.93C32—C331.386 (2)
C14—C151.395 (2)C32—H32A0.93
C14—C181.508 (2)C33—C341.378 (2)
C15—C161.387 (2)C33—H33A0.93
C15—H15A0.93C34—H34A0.93
C16—H16A0.93
C2—N1—N5118.83 (12)H17B—C17—H17C109.5
C2—N1—C1108.47 (13)C14—C18—C19114.99 (13)
N5—N1—C1132.69 (12)C14—C18—H18A108.5
C2—N2—N3104.23 (12)C19—C18—H18A108.5
C1—N3—N2113.84 (12)C14—C18—H18B108.5
C1—N3—C22125.69 (13)C19—C18—H18B108.5
N2—N3—C22120.35 (12)H18A—C18—H18B107.5
C23—N4—C29119.80 (12)C20—C19—C21110.56 (13)
C23—N4—C22121.01 (13)C20—C19—C18110.48 (12)
C29—N4—C22119.14 (13)C21—C19—C18111.82 (13)
C3—N5—N1118.00 (12)C20—C19—H19A107.9
N3—C1—N1102.21 (12)C21—C19—H19A107.9
N3—C1—S1127.43 (12)C18—C19—H19A107.9
N1—C1—S1130.26 (12)C19—C20—H20A109.5
N2—C2—N1111.21 (13)C19—C20—H20B109.5
N2—C2—C10125.62 (13)H20A—C20—H20B109.5
N1—C2—C10123.10 (13)C19—C20—H20C109.5
N5—C3—C4119.71 (13)H20A—C20—H20C109.5
N5—C3—H3A120.1H20B—C20—H20C109.5
C4—C3—H3A120.1C19—C21—H21A109.5
C5—C4—C9118.73 (14)C19—C21—H21B109.5
C5—C4—C3118.76 (13)H21A—C21—H21B109.5
C9—C4—C3122.39 (14)C19—C21—H21C109.5
C6—C5—C4121.49 (14)H21A—C21—H21C109.5
C6—C5—H5A119.3H21B—C21—H21C109.5
C4—C5—H5A119.3N4—C22—N3112.04 (13)
C5—C6—C7118.48 (14)N4—C22—H22A109.2
C5—C6—H6A120.8N3—C22—H22A109.2
C7—C6—H6A120.8N4—C22—H22B109.2
C6—C7—C8121.48 (15)N3—C22—H22B109.2
C6—C7—Br1119.31 (12)H22A—C22—H22B107.9
C8—C7—Br1119.20 (12)C28—C23—C24118.75 (15)
C9—C8—C7119.73 (14)C28—C23—N4119.42 (14)
C9—C8—H8A120.1C24—C23—N4121.83 (14)
C7—C8—H8A120.1C25—C24—C23119.77 (15)
C8—C9—C4120.05 (14)C25—C24—H24A120.1
C8—C9—H9A120.0C23—C24—H24A120.1
C4—C9—H9A120.0C26—C25—C24120.90 (16)
C2—C10—C11111.34 (12)C26—C25—H25A119.5
C2—C10—C17110.33 (13)C24—C25—H25A119.5
C11—C10—C17110.39 (12)C25—C26—C27118.88 (16)
C2—C10—H10A108.2C25—C26—H26A120.6
C11—C10—H10A108.2C27—C26—H26A120.6
C17—C10—H10A108.2C28—C27—C26121.13 (16)
C12—C11—C16118.23 (14)C28—C27—H27A119.4
C12—C11—C10120.12 (13)C26—C27—H27A119.4
C16—C11—C10121.44 (14)C27—C28—C23120.54 (15)
C13—C12—C11120.94 (14)C27—C28—H28A119.7
C13—C12—H12A119.5C23—C28—H28A119.7
C11—C12—H12A119.5C30—C29—C34119.83 (14)
C12—C13—C14121.13 (15)C30—C29—N4121.92 (14)
C12—C13—H13A119.4C34—C29—N4118.25 (13)
C14—C13—H13A119.4C29—C30—C31119.85 (14)
C15—C14—C13117.60 (15)C29—C30—H30A120.1
C15—C14—C18121.65 (14)C31—C30—H30A120.1
C13—C14—C18120.75 (14)C32—C31—C30120.24 (15)
C16—C15—C14121.29 (14)C32—C31—H31A119.9
C16—C15—H15A119.4C30—C31—H31A119.9
C14—C15—H15A119.4C31—C32—C33119.87 (15)
C15—C16—C11120.77 (15)C31—C32—H32A120.1
C15—C16—H16A119.6C33—C32—H32A120.1
C11—C16—H16A119.6C34—C33—C32120.24 (15)
C10—C17—H17A109.5C34—C33—H33A119.9
C10—C17—H17B109.5C32—C33—H33A119.9
H17A—C17—H17B109.5C33—C34—C29119.96 (14)
C10—C17—H17C109.5C33—C34—H34A120.0
H17A—C17—H17C109.5C29—C34—H34A120.0
C2—N2—N3—C10.72 (16)C11—C12—C13—C140.1 (2)
C2—N2—N3—C22175.64 (13)C12—C13—C14—C151.3 (2)
C2—N1—N5—C3159.63 (14)C12—C13—C14—C18178.97 (14)
C1—N1—N5—C321.9 (2)C13—C14—C15—C161.0 (2)
N2—N3—C1—N11.58 (16)C18—C14—C15—C16179.34 (14)
C22—N3—C1—N1174.54 (13)C14—C15—C16—C110.6 (2)
N2—N3—C1—S1175.19 (11)C12—C11—C16—C151.8 (2)
C22—N3—C1—S18.7 (2)C10—C11—C16—C15173.02 (14)
C2—N1—C1—N31.81 (15)C15—C14—C18—C1991.60 (18)
N5—N1—C1—N3179.61 (14)C13—C14—C18—C1988.07 (18)
C2—N1—C1—S1174.83 (12)C14—C18—C19—C20171.34 (13)
N5—N1—C1—S13.7 (3)C14—C18—C19—C2165.06 (17)
N3—N2—C2—N10.53 (15)C23—N4—C22—N358.20 (18)
N3—N2—C2—C10177.61 (13)C29—N4—C22—N3119.16 (15)
N5—N1—C2—N2179.65 (12)C1—N3—C22—N4134.71 (15)
C1—N1—C2—N21.54 (17)N2—N3—C22—N441.18 (18)
N5—N1—C2—C102.5 (2)C29—N4—C23—C2828.3 (2)
C1—N1—C2—C10178.71 (13)C22—N4—C23—C28149.07 (15)
N1—N5—C3—C4175.35 (12)C29—N4—C23—C24152.09 (15)
N5—C3—C4—C5173.71 (14)C22—N4—C23—C2430.6 (2)
N5—C3—C4—C92.3 (2)C28—C23—C24—C252.1 (2)
C9—C4—C5—C62.0 (2)N4—C23—C24—C25178.29 (14)
C3—C4—C5—C6174.15 (14)C23—C24—C25—C261.6 (2)
C4—C5—C6—C71.0 (2)C24—C25—C26—C270.2 (2)
C5—C6—C7—C80.5 (2)C25—C26—C27—C280.7 (3)
C5—C6—C7—Br1178.70 (11)C26—C27—C28—C230.2 (3)
C6—C7—C8—C91.0 (2)C24—C23—C28—C271.2 (2)
Br1—C7—C8—C9178.16 (11)N4—C23—C28—C27179.18 (15)
C7—C8—C9—C40.1 (2)C23—N4—C29—C30121.59 (16)
C5—C4—C9—C81.4 (2)C22—N4—C29—C3055.8 (2)
C3—C4—C9—C8174.57 (14)C23—N4—C29—C3458.07 (19)
N2—C2—C10—C11103.74 (17)C22—N4—C29—C34124.55 (15)
N1—C2—C10—C1173.02 (18)C34—C29—C30—C310.7 (2)
N2—C2—C10—C1719.2 (2)N4—C29—C30—C31179.60 (14)
N1—C2—C10—C17164.05 (13)C29—C30—C31—C320.7 (2)
C2—C10—C11—C12135.56 (14)C30—C31—C32—C330.1 (2)
C17—C10—C11—C12101.54 (16)C31—C32—C33—C341.0 (2)
C2—C10—C11—C1649.71 (19)C32—C33—C34—C291.0 (2)
C17—C10—C11—C1673.20 (17)C30—C29—C34—C330.1 (2)
C16—C11—C12—C131.5 (2)N4—C29—C34—C33179.55 (14)
C10—C11—C12—C13173.45 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S10.932.523.217 (2)132
C22—H22B···S10.972.803.232 (2)108
C6—H6A···Cg1i0.932.813.717 (2)165
C21—H21C···Cg2ii0.962.893.829 (2)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H34BrN5S
Mr624.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9672 (1), 9.7833 (1), 28.6210 (3)
β (°) 105.966 (1)
V3)2952.44 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.35 × 0.31 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.623, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
55283, 13248, 7914
Rint0.059
(sin θ/λ)max1)0.815
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.098, 1.02
No. of reflections13248
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.57

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S10.932.523.217 (2)132
C22—H22B···S10.972.803.232 (2)108
C6—H6A···Cg1i0.932.813.717 (2)165
C21—H21C···Cg2ii0.962.893.829 (2)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDave, T. K., Purohit, D. H., Akbari, J. D. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem. 46B, 352–356.   CAS Google Scholar
First citationKalluraya, B., Isloor, A. M., Chimbalkar, R. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. 10, 239–240.  CAS Google Scholar
First citationKalluraya, B., Lingappa, B. & Rai, N. S. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1393–1401.  Web of Science CrossRef CAS Google Scholar
First citationKalluraya, B. & Rai, G. (2003). Synth. Commun. 33, 3583–3589.  Web of Science CrossRef Google Scholar
First citationKalluraya, B., Rai, G., Rai, S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem. 14, 127–130.  CAS Google Scholar
First citationKane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772–2777.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1001-o1002
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds