organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(undecyl­sulfan­yl)benzene

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: j1306709@ed.kagu.tus.ac.jp

(Received 4 May 2008; accepted 15 May 2008; online 21 May 2008)

In the title compound, C28H50S2, the alkyl chains adopt a fully extended all-trans conformation and each of them is almost perfectly planar. One of the alkyl chains is coplanar with the benzene ring and the other is twisted out of the benzene ring plane; the C—C—S—C torsion angles are 176.4 (2) and 80.8 (3)°. In the crystal structure, an inter­molecular S⋯S inter­action [3.2123 (13) Å] links the mol­ecules into a centrosymmetric dimer; dimers are linked through weak C—H⋯π and C—H⋯S inter­actions, forming a column along the a axis.

Related literature

For related literature, see: Alves et al. (2004[Alves, H., Simão, D., Santos, I. C., Gama, V., Henriques, R. T., Novais, H. & Almeida, M. (2004). Eur. J. Inorg. Chem. 6, 1318-1329.]); Huynh et al. (2002[Huynh, H. V., Schulze-Isfort, C., Seidel, W. W., Lugger, T., Frohlich, R., Kataeva, O. & Hahn, F. E. (2002). Chem. Eur. J. 8, 1327-1335.]); Liu et al. (2007[Liu, G.-X., Huang, L.-F. & Ren, X.-M. (2007). Appl. Organomet. Chem. 21 1054-1058.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Salvatore et al. (2005[Salvatore, R. N., Smith, R. A., Nischwitz, A. K. & Gavin, T. (2005). Tetrahedron Lett. 46, 8931-8935.]); Tomiyama et al. (2007[Tomiyama, E., Tomono, K. & Miyamura, K. (2007). Acta Cryst. E63, m2741.]).

[Scheme 1]

Experimental

Crystal data
  • C28H50S2

  • Mr = 450.80

  • Monoclinic, P 21 /c

  • a = 5.4024 (10) Å

  • b = 16.863 (3) Å

  • c = 29.611 (5) Å

  • β = 91.245 (3)°

  • V = 2696.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 (1) K

  • 0.55 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: analytical (XPREP; Bruker 2000[Bruker (2000). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.991

  • 15683 measured reflections

  • 5958 independent reflections

  • 4452 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.205

  • S = 1.14

  • 5958 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯S1i 0.99 2.99 3.749 (4) 134
C7—H7ACgii 0.99 2.67 3.567 (16) 151
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z. Cg is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, KENX (Sakai, 2002[Sakai, K. (2002). KENX. Tokyo University of Science, Japan.]), ORTEPIII and Mercury.

Supporting information


Comment top

Thioethers have emerged as preeminent classes of organic compounds, which hold useful applications as key reagents in organic synthesis, bio-organic, mechanical, and heterocyclic chemistry. The coordination chemistry of dithiolate ligands has also been extensively studied (Liu et al., 2007; Alves et al., 2004; Huynh et al., 2002). In recent years, transition metal bis(dithiolene) complexes, with square-planar coordination geometry, have been used widely as building blocks for conducting and magnetic materials (Robertson & Cronin, 2002). We previously reported the crystal structure of a dithiolate complex salt (Tomiyama et al., 2007). In order to explore crystal structures of new dithiole compounds and to gain more insight into the structure-regulating ability of intermolecular S···S, C—H···S interactions, the title compound was synthesized and its structure was analysized by X-ray analysis.

The structure of the title molecule is shown in Fig. 1. The alkyl chains are in the fully extended all-trans conformation and each alkyl chain is almost perfectly planar. The C8—C7—S1—C1 and C19—C18—S2—C6 torsion angles of 176.4 (2)° and 80.8 (3)°, respectively, indicate that non-hydrogen atoms of one of the side chains is coplanar with the benzene ring, and the other chain is twisted out of the benzene plane.

In the crystal structure, an intermolecular S···S interaction [S2···S2(1-x,-y,1-z) = 3.2123 (13) Å] shorter than 3.70 Å, the sum of van der Waals radii, links the molecules into a centrosymmetric dimer (Fig. 2). The dimers are linked through weak C—H···π (between C7—H7A and benzene ring) and C—H···S interactions (Table 1) to form a column along the a axis.

Related literature top

For related literature, see: Alves et al. (2004); Huynh et al. (2002); Liu et al. (2007); Robertson & Cronin (2002); Salvatore et al. (2005); Tomiyama et al. (2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

All starting materials were of reagent grade and used without further purification. 1,2-Bis(undecylthio)benzene was prepared by a literature procedure (Salvatore et al., 2005): Benzene-1,2-dithiol (1 mmol) was stirred under argon atmosphere at temperature for 1 h in the presence of caesium carbonate (2.2 mmol), tetrabutylammonium iodide (TBAI; 2.2 mmol) and anhydrous DMF. The reaction mixture was subsequently cooled to 273 K, added with undecylbromide (2.2 mmol), and the reaction mixture stirred for 2 h and then allowed to return to room temperature. The title compound was obtained by slow evaporation method from the reaction mixture at room temperature. White needle-shaped crystals of suitable size for X-ray diffraction were obtained. 1H NMR (CDCl3): δ 0.88 (t, J = 6.7, 6H), 1.26–1.44 (m, 32H), 1.66 (quin, J = 7.3, 4H), 2.90 (t, J = 7.4, 4H), 7.11–7.14 (m, 2H), 7.24–7.27 (m, 2H). 13C NMR (CDCl3): δ 14.1, 22.7, 28.8, 29.0, 29.2, 29.3, 29.5, 29.6, 31.9, 33.2, 125.9, 128.5, 137.2.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C-H = 0.95–0.99 Å and Uiso = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), KENX (Sakai, 2002), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Burnett & Johnson, 1996) view of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, showing symmetrically paired molecules. S···S interactions are shown by dashed lines.
1,2-Bis(undecylsulfanyl)benzene top
Crystal data top
C28H50S2F(000) = 1000
Mr = 450.80Dx = 1.110 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3006 reflections
a = 5.4024 (10) Åθ = 2.4–27.7°
b = 16.863 (3) ŵ = 0.21 mm1
c = 29.611 (5) ÅT = 100 K
β = 91.245 (3)°Needle, white
V = 2696.9 (8) Å30.55 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5958 independent reflections
Radiation source: fine-focus sealed tube4452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 65
Absorption correction: analytical
(XPREP; Bruker 2000)
k = 2121
Tmin = 0.901, Tmax = 0.991l = 2437
15683 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0976P)2]
where P = (Fo2 + 2Fc2)/3
5958 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C28H50S2V = 2696.9 (8) Å3
Mr = 450.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4024 (10) ŵ = 0.21 mm1
b = 16.863 (3) ÅT = 100 K
c = 29.611 (5) Å0.55 × 0.11 × 0.10 mm
β = 91.245 (3)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5958 independent reflections
Absorption correction: analytical
(XPREP; Bruker 2000)
4452 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.991Rint = 0.086
15683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.14Δρmax = 0.75 e Å3
5958 reflectionsΔρmin = 0.55 e Å3
273 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.2338 (0.0068) x - 0.2627 (0.0262) y + 24.0951 (0.0272) z = 10.3067 (0.0188)

* -0.0131 (0.0025) C1 * 0.0083 (0.0027) C2 * 0.0004 (0.0029) C3 * -0.0044 (0.0028) C4 * -0.0004 (0.0026) C5 * 0.0092 (0.0026) C6

Rms deviation of fitted atoms = 0.0076

1.5719 (0.0210) x + 16.1263 (0.0188) y + 0.6605 (0.0846) z = 2.7127 (0.0343)

Angle to previous plane (with approximate e.s.d.) = 80.44 (0.21)

* 0.0000 (0.0001) S2 * 0.0000 (0.0000) C18 * 0.0000 (0.0000) C19

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3636 (6)0.23339 (18)0.47850 (11)0.0143 (7)
C20.3445 (6)0.31584 (19)0.47775 (11)0.0177 (7)
H20.21290.34040.46110.021*
C30.5152 (6)0.36204 (19)0.50091 (12)0.0206 (8)
H30.50280.41820.49980.025*
C40.7044 (6)0.3267 (2)0.52580 (11)0.0196 (7)
H40.82180.35880.54170.024*
C50.7236 (6)0.24514 (19)0.52766 (11)0.0172 (7)
H50.85400.22130.54490.021*
C60.5529 (6)0.19786 (18)0.50448 (10)0.0126 (6)
C70.0418 (6)0.23663 (19)0.41612 (11)0.0161 (7)
H7A0.14060.26890.43700.019*
H7B0.05700.27290.39730.019*
C80.2111 (6)0.18638 (19)0.38639 (11)0.0156 (7)
H8A0.30700.15020.40570.019*
H8B0.10910.15340.36630.019*
C90.3894 (6)0.23563 (19)0.35769 (11)0.0160 (7)
H9A0.49460.26740.37780.019*
H9B0.29330.27300.33910.019*
C100.5543 (6)0.18594 (19)0.32679 (11)0.0166 (7)
H10A0.65310.14960.34550.020*
H10B0.44860.15310.30730.020*
C110.7305 (6)0.23463 (19)0.29673 (11)0.0165 (7)
H11A0.83840.26680.31620.020*
H11B0.63200.27160.27840.020*
C120.8924 (6)0.1844 (2)0.26526 (11)0.0175 (7)
H12A0.78450.15240.24580.021*
H12B0.99040.14730.28360.021*
C131.0683 (6)0.23277 (19)0.23545 (11)0.0171 (7)
H13A1.17680.26450.25500.021*
H13B0.97020.27020.21730.021*
C141.2293 (6)0.18315 (19)0.20373 (11)0.0167 (7)
H14A1.32520.14510.22190.020*
H14B1.12080.15210.18380.020*
C151.4082 (6)0.2314 (2)0.17450 (11)0.0174 (7)
H15A1.31290.27010.15670.021*
H15B1.51930.26160.19430.021*
C161.5645 (6)0.1807 (2)0.14234 (11)0.0203 (8)
H16A1.65640.14110.16010.024*
H16B1.45330.15140.12210.024*
C171.7491 (7)0.2284 (2)0.11360 (12)0.0247 (8)
H17A1.86480.25580.13330.037*
H17B1.84130.19260.09330.037*
H17C1.65980.26750.09570.037*
C180.8229 (6)0.06584 (19)0.53962 (10)0.0147 (7)
H18A0.87490.01170.53110.018*
H18B0.96100.10210.53270.018*
C190.7839 (6)0.06751 (19)0.58997 (11)0.0151 (7)
H19A0.65650.02800.59790.018*
H19B0.72410.12060.59900.018*
C201.0263 (6)0.04874 (19)0.61545 (11)0.0169 (7)
H20A1.08640.00370.60550.020*
H20B1.15180.08860.60710.020*
C211.0057 (6)0.04781 (19)0.66646 (11)0.0182 (7)
H21A0.90200.00220.67530.022*
H21B0.92140.09690.67620.022*
C221.2558 (6)0.0419 (2)0.69080 (11)0.0172 (7)
H22A1.33830.00740.68110.021*
H22B1.35970.08700.68130.021*
C231.2446 (6)0.04204 (19)0.74200 (11)0.0190 (7)
H23A1.14810.00460.75170.023*
H23B1.15550.09020.75180.023*
C241.4977 (6)0.0400 (2)0.76552 (11)0.0182 (7)
H24A1.58640.00820.75580.022*
H24B1.59430.08650.75560.022*
C251.4887 (6)0.0404 (2)0.81672 (11)0.0188 (7)
H25A1.38650.00490.82660.023*
H25B1.40650.08970.82660.023*
C261.7422 (6)0.0350 (2)0.83994 (11)0.0194 (7)
H26A1.82690.01330.82920.023*
H26B1.84210.08130.83090.023*
C271.7338 (7)0.0323 (2)0.89105 (12)0.0243 (8)
H27A1.66650.08310.90220.029*
H27B1.61970.01050.90010.029*
C281.9854 (7)0.0181 (2)0.91318 (13)0.0298 (9)
H28A2.05080.03300.90310.045*
H28B1.96930.01760.94610.045*
H28C2.09890.06060.90460.045*
S10.16106 (14)0.17012 (5)0.44775 (3)0.0151 (2)
S20.55814 (15)0.09312 (5)0.50441 (3)0.0171 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (16)0.0167 (16)0.0114 (17)0.0035 (13)0.0017 (12)0.0033 (13)
C20.0188 (17)0.0186 (17)0.0156 (18)0.0018 (14)0.0028 (13)0.0007 (14)
C30.0254 (18)0.0135 (17)0.0228 (19)0.0004 (14)0.0050 (14)0.0015 (14)
C40.0227 (17)0.0221 (18)0.0137 (17)0.0030 (14)0.0066 (13)0.0013 (14)
C50.0180 (17)0.0187 (17)0.0149 (17)0.0012 (13)0.0027 (13)0.0018 (13)
C60.0147 (15)0.0123 (15)0.0109 (16)0.0034 (12)0.0017 (12)0.0021 (12)
C70.0131 (16)0.0191 (17)0.0160 (18)0.0021 (13)0.0040 (12)0.0025 (13)
C80.0166 (16)0.0161 (16)0.0139 (17)0.0007 (13)0.0045 (13)0.0011 (13)
C90.0153 (16)0.0156 (16)0.0169 (18)0.0011 (13)0.0027 (13)0.0024 (13)
C100.0137 (16)0.0195 (17)0.0163 (18)0.0010 (13)0.0050 (13)0.0014 (13)
C110.0141 (16)0.0189 (17)0.0163 (18)0.0008 (13)0.0022 (13)0.0003 (13)
C120.0157 (16)0.0210 (18)0.0157 (18)0.0016 (13)0.0041 (13)0.0011 (14)
C130.0144 (16)0.0204 (17)0.0164 (18)0.0026 (13)0.0041 (13)0.0013 (14)
C140.0155 (16)0.0190 (17)0.0155 (18)0.0002 (13)0.0038 (13)0.0006 (13)
C150.0155 (16)0.0211 (17)0.0153 (18)0.0014 (13)0.0058 (13)0.0030 (13)
C160.0206 (17)0.0234 (18)0.0165 (18)0.0009 (14)0.0083 (14)0.0005 (14)
C170.0254 (19)0.029 (2)0.0190 (19)0.0005 (15)0.0125 (15)0.0036 (15)
C180.0125 (15)0.0175 (16)0.0139 (17)0.0016 (13)0.0055 (12)0.0001 (13)
C190.0159 (16)0.0152 (16)0.0141 (17)0.0024 (13)0.0033 (12)0.0016 (13)
C200.0173 (16)0.0176 (17)0.0157 (18)0.0003 (13)0.0054 (13)0.0002 (13)
C210.0222 (17)0.0167 (17)0.0154 (18)0.0014 (14)0.0043 (14)0.0030 (13)
C220.0204 (17)0.0181 (17)0.0128 (17)0.0009 (13)0.0070 (13)0.0017 (13)
C230.0228 (18)0.0155 (16)0.0184 (19)0.0007 (14)0.0061 (14)0.0017 (13)
C240.0208 (17)0.0181 (17)0.0153 (18)0.0010 (14)0.0071 (13)0.0001 (13)
C250.0218 (18)0.0183 (17)0.0160 (18)0.0014 (14)0.0052 (14)0.0020 (13)
C260.0244 (18)0.0154 (16)0.0180 (19)0.0018 (14)0.0090 (14)0.0032 (14)
C270.030 (2)0.0217 (18)0.020 (2)0.0010 (15)0.0054 (15)0.0003 (15)
C280.039 (2)0.029 (2)0.020 (2)0.0013 (17)0.0158 (17)0.0016 (16)
S10.0137 (4)0.0177 (4)0.0135 (4)0.0001 (3)0.0076 (3)0.0013 (3)
S20.0189 (4)0.0147 (4)0.0173 (5)0.0011 (3)0.0110 (3)0.0021 (3)
Geometric parameters (Å, º) top
C1—C21.394 (4)C16—C171.526 (4)
C1—C61.401 (4)C16—H16A0.99
C1—S11.767 (3)C16—H16B0.99
C2—C31.379 (4)C17—H17A0.98
C2—H20.95C17—H17B0.98
C3—C41.382 (4)C17—H17C0.98
C3—H30.95C18—C191.511 (4)
C4—C51.381 (4)C18—S21.811 (3)
C4—H40.95C18—H18A0.99
C5—C61.389 (4)C18—H18B0.99
C5—H50.95C19—C201.530 (4)
C6—S21.766 (3)C19—H19A0.99
C7—C81.515 (4)C19—H19B0.99
C7—S11.814 (3)C20—C211.517 (4)
C7—H7A0.99C20—H20A0.99
C7—H7B0.99C20—H20B0.99
C8—C91.518 (4)C21—C221.521 (4)
C8—H8A0.99C21—H21A0.99
C8—H8B0.99C21—H21B0.99
C9—C101.516 (4)C22—C231.519 (5)
C9—H9A0.99C22—H22A0.99
C9—H9B0.99C22—H22B0.99
C10—C111.528 (4)C23—C241.522 (4)
C10—H10A0.99C23—H23A0.99
C10—H10B0.99C23—H23B0.99
C11—C121.521 (4)C24—C251.518 (4)
C11—H11A0.99C24—H24A0.99
C11—H11B0.99C24—H24B0.99
C12—C131.520 (4)C25—C261.521 (4)
C12—H12A0.99C25—H25A0.99
C12—H12B0.99C25—H25B0.99
C13—C141.517 (4)C26—C271.516 (5)
C13—H13A0.99C26—H26A0.99
C13—H13B0.99C26—H26B0.99
C14—C151.519 (4)C27—C281.516 (5)
C14—H14A0.99C27—H27A0.99
C14—H14B0.99C27—H27B0.99
C15—C161.522 (4)C28—H28A0.98
C15—H15A0.99C28—H28B0.98
C15—H15B0.99C28—H28C0.98
S2···S2i3.2134 (18)
C2—C1—C6119.2 (3)C17—C16—H16B108.9
C2—C1—S1123.3 (2)H16A—C16—H16B107.7
C6—C1—S1117.5 (2)C16—C17—H17A109.5
C3—C2—C1120.5 (3)C16—C17—H17B109.5
C3—C2—H2119.8H17A—C17—H17B109.5
C1—C2—H2119.8C16—C17—H17C109.5
C2—C3—C4120.1 (3)H17A—C17—H17C109.5
C2—C3—H3120.0H17B—C17—H17C109.5
C4—C3—H3120.0C19—C18—S2116.0 (2)
C5—C4—C3120.3 (3)C19—C18—H18A108.3
C5—C4—H4119.9S2—C18—H18A108.3
C3—C4—H4119.9C19—C18—H18B108.3
C4—C5—C6120.3 (3)S2—C18—H18B108.3
C4—C5—H5119.9H18A—C18—H18B107.4
C6—C5—H5119.9C18—C19—C20110.3 (3)
C5—C6—C1119.6 (3)C18—C19—H19A109.6
C5—C6—S2124.3 (2)C20—C19—H19A109.6
C1—C6—S2116.0 (2)C18—C19—H19B109.6
C8—C7—S1107.7 (2)C20—C19—H19B109.6
C8—C7—H7A110.2H19A—C19—H19B108.1
S1—C7—H7A110.2C21—C20—C19114.3 (3)
C8—C7—H7B110.2C21—C20—H20A108.7
S1—C7—H7B110.2C19—C20—H20A108.7
H7A—C7—H7B108.5C21—C20—H20B108.7
C7—C8—C9112.8 (3)C19—C20—H20B108.7
C7—C8—H8A109.0H20A—C20—H20B107.6
C9—C8—H8A109.0C20—C21—C22112.9 (3)
C7—C8—H8B109.0C20—C21—H21A109.0
C9—C8—H8B109.0C22—C21—H21A109.0
H8A—C8—H8B107.8C20—C21—H21B109.0
C10—C9—C8113.1 (3)C22—C21—H21B109.0
C10—C9—H9A108.9H21A—C21—H21B107.8
C8—C9—H9A108.9C23—C22—C21114.7 (3)
C10—C9—H9B108.9C23—C22—H22A108.6
C8—C9—H9B108.9C21—C22—H22A108.6
H9A—C9—H9B107.8C23—C22—H22B108.6
C9—C10—C11113.9 (3)C21—C22—H22B108.6
C9—C10—H10A108.8H22A—C22—H22B107.6
C11—C10—H10A108.8C22—C23—C24113.7 (3)
C9—C10—H10B108.8C22—C23—H23A108.8
C11—C10—H10B108.8C24—C23—H23A108.8
H10A—C10—H10B107.7C22—C23—H23B108.8
C12—C11—C10113.6 (3)C24—C23—H23B108.8
C12—C11—H11A108.8H23A—C23—H23B107.7
C10—C11—H11A108.8C25—C24—C23114.1 (3)
C12—C11—H11B108.8C25—C24—H24A108.7
C10—C11—H11B108.8C23—C24—H24A108.7
H11A—C11—H11B107.7C25—C24—H24B108.7
C13—C12—C11113.7 (3)C23—C24—H24B108.7
C13—C12—H12A108.8H24A—C24—H24B107.6
C11—C12—H12A108.8C24—C25—C26113.8 (3)
C13—C12—H12B108.8C24—C25—H25A108.8
C11—C12—H12B108.8C26—C25—H25A108.8
H12A—C12—H12B107.7C24—C25—H25B108.8
C14—C13—C12114.0 (3)C26—C25—H25B108.8
C14—C13—H13A108.8H25A—C25—H25B107.7
C12—C13—H13A108.8C27—C26—C25114.0 (3)
C14—C13—H13B108.8C27—C26—H26A108.8
C12—C13—H13B108.8C25—C26—H26A108.8
H13A—C13—H13B107.7C27—C26—H26B108.8
C13—C14—C15114.0 (3)C25—C26—H26B108.8
C13—C14—H14A108.8H26A—C26—H26B107.6
C15—C14—H14A108.8C28—C27—C26113.0 (3)
C13—C14—H14B108.8C28—C27—H27A109.0
C15—C14—H14B108.8C26—C27—H27A109.0
H14A—C14—H14B107.7C28—C27—H27B109.0
C14—C15—C16113.2 (3)C26—C27—H27B109.0
C14—C15—H15A108.9H27A—C27—H27B107.8
C16—C15—H15A108.9C27—C28—H28A109.5
C14—C15—H15B108.9C27—C28—H28B109.5
C16—C15—H15B108.9H28A—C28—H28B109.5
H15A—C15—H15B107.8C27—C28—H28C109.5
C15—C16—C17113.6 (3)H28A—C28—H28C109.5
C15—C16—H16A108.9H28B—C28—H28C109.5
C17—C16—H16A108.9C1—S1—C7104.66 (15)
C15—C16—H16B108.9C6—S2—C18105.42 (15)
C6—C1—C2—C32.4 (5)C13—C14—C15—C16179.0 (3)
S1—C1—C2—C3177.1 (3)C14—C15—C16—C17178.6 (3)
C1—C2—C3—C41.2 (5)S2—C18—C19—C20176.2 (2)
C2—C3—C4—C50.1 (5)C18—C19—C20—C21179.2 (3)
C3—C4—C5—C60.1 (5)C19—C20—C21—C22171.0 (3)
C4—C5—C6—C11.2 (5)C20—C21—C22—C23179.1 (3)
C4—C5—C6—S2179.9 (3)C21—C22—C23—C24177.3 (3)
C2—C1—C6—C52.4 (5)C22—C23—C24—C25179.8 (3)
S1—C1—C6—C5177.1 (3)C23—C24—C25—C26177.6 (3)
C2—C1—C6—S2178.6 (3)C24—C25—C26—C27177.9 (3)
S1—C1—C6—S21.9 (4)C25—C26—C27—C28173.9 (3)
S1—C7—C8—C9179.5 (2)C2—C1—S1—C73.0 (3)
C7—C8—C9—C10178.3 (3)C6—C1—S1—C7176.4 (3)
C8—C9—C10—C11178.5 (3)C8—C7—S1—C1176.4 (2)
C9—C10—C11—C12179.0 (3)C5—C6—S2—C180.0 (3)
C10—C11—C12—C13179.8 (3)C1—C6—S2—C18179.0 (3)
C11—C12—C13—C14179.6 (3)C19—C18—S2—C680.8 (3)
C12—C13—C14—C15179.0 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···S1ii0.992.993.749 (4)134
C7—H7A···Cg1iii0.992.673.567 (16)151
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H50S2
Mr450.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.4024 (10), 16.863 (3), 29.611 (5)
β (°) 91.245 (3)
V3)2696.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.55 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionAnalytical
(XPREP; Bruker 2000)
Tmin, Tmax0.901, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15683, 5958, 4452
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.205, 1.14
No. of reflections5958
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.55

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), KENX (Sakai, 2002), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···S1i0.992.993.749 (4)134
C7—H7A···Cg1ii0.992.673.567 (16)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationAlves, H., Simão, D., Santos, I. C., Gama, V., Henriques, R. T., Novais, H. & Almeida, M. (2004). Eur. J. Inorg. Chem. 6, 1318-1329.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHuynh, H. V., Schulze-Isfort, C., Seidel, W. W., Lugger, T., Frohlich, R., Kataeva, O. & Hahn, F. E. (2002). Chem. Eur. J. 8, 1327–1335.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, G.-X., Huang, L.-F. & Ren, X.-M. (2007). Appl. Organomet. Chem. 21 1054–1058.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSakai, K. (2002). KENX. Tokyo University of Science, Japan.  Google Scholar
First citationSalvatore, R. N., Smith, R. A., Nischwitz, A. K. & Gavin, T. (2005). Tetrahedron Lett. 46, 8931–8935.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomiyama, E., Tomono, K. & Miyamura, K. (2007). Acta Cryst. E63, m2741.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds