supplementary materials


cs2075 scheme

Acta Cryst. (2008). E64, o1110    [ doi:10.1107/S1600536808014013 ]

1H-1,2,4-Triazole-3-carboxamide

Q.-R. Xie

Abstract top

Planar molecules of the title compound, C3H4N4O, are organized into sheets by extensive N-H...O and N-H...N hydrogen bonding in the (101) plane of the crystal structure. These hydrogen bonds may also stabilize the molecule in the Z form. The title compound is in the amide form, as shown by the C=O bond length [1.252 (2) Å].

Comment top

The title compound was obtained by the reaction of methyl 1H-1,2,4-triazole-3-carboxylate and ammonium hydroxide. The C=O bond length of 1.2524 (18) Å suggests that the title compound is in the amide form. N—H···O and N—H···N hydrogen bonds link molecules into infinite sheets. These sheets provide the two-dimensional network in and paralell to the {101} plane of the cell.

Related literature top

Azo compounds are widely utilized as dyes and analytical reagents (Malinauskas et al., 2000). The interactions of amide groups are of interest because of their importance in biochemical system (Crespo et al., 2005).

Experimental top

Added 20 ml 25% ammonium hydroxide to methyl 1H-1,2,4-triazole-3-carboxylate (20 mmol, 2540 mg) while stirring for 8 h at 353 K. The resulting white precipitate was filtered and washed several times with ethanol and dried in vacuo (yield 85%). Single crystals of C3H4N4O suitable for X-ray diffraction were obtained by slow evaporation of an 50% ethanol solution at room temperature over a period of one week.

Refinement top

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing showing the hydrogen bonded interactions as dashed lines.
1H-1,2,4-Triazole-3-carboxamide top
Crystal data top
C3H4N4OF000 = 232
Mr = 112.10Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1200 reflections
a = 3.6944 (4) Åθ = 2.3–27.5º
b = 17.527 (3) ŵ = 0.13 mm1
c = 7.0520 (17) ÅT = 298 (2) K
β = 94.4670 (10)ºPrism, colourless
V = 455.24 (14) Å30.22 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
807 independent reflections
Radiation source: fine-focus sealed tube657 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 298(2) Kθmax = 25.0º
φ and ω scansθmin = 2.3º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4→3
Tmin = 0.972, Tmax = 0.988k = 20→18
2199 measured reflectionsl = 8→8
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0653P)2 + 0.058P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
807 reflectionsΔρmax = 0.13 e Å3
73 parametersΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C3H4N4OV = 455.24 (14) Å3
Mr = 112.10Z = 4
Monoclinic, P21/nMo Kα
a = 3.6944 (4) ŵ = 0.13 mm1
b = 17.527 (3) ÅT = 298 (2) K
c = 7.0520 (17) Å0.22 × 0.18 × 0.09 mm
β = 94.4670 (10)º
Data collection top
Bruker SMART CCD
diffractometer
807 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
657 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.020
2199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03573 parameters
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
807 reflectionsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2702 (4)0.99272 (7)0.7168 (2)0.0381 (4)
H1A0.34041.02400.63320.046*
H1B0.17631.00980.81630.046*
N20.0498 (4)0.77481 (8)1.00884 (19)0.0330 (4)
H20.01620.72881.04600.040*
N30.1784 (4)0.79443 (7)0.84073 (18)0.0329 (4)
N40.0595 (4)0.89955 (8)1.01228 (18)0.0349 (4)
O10.4402 (3)0.88844 (6)0.55202 (16)0.0386 (4)
C10.3067 (4)0.91813 (8)0.6923 (2)0.0289 (4)
C20.1793 (4)0.87021 (8)0.8491 (2)0.0271 (4)
C30.0168 (5)0.83716 (9)1.1079 (2)0.0360 (4)
H30.10480.83701.22790.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0594 (10)0.0241 (8)0.0333 (8)0.0011 (6)0.0202 (7)0.0017 (5)
N20.0449 (9)0.0220 (7)0.0331 (8)0.0010 (5)0.0098 (6)0.0056 (5)
N30.0434 (8)0.0250 (8)0.0314 (7)0.0006 (5)0.0093 (6)0.0010 (5)
N40.0494 (9)0.0259 (8)0.0310 (8)0.0004 (6)0.0145 (6)0.0004 (5)
O10.0566 (8)0.0267 (6)0.0347 (7)0.0030 (5)0.0176 (5)0.0001 (5)
C10.0339 (9)0.0259 (9)0.0274 (8)0.0006 (6)0.0055 (6)0.0007 (6)
C20.0307 (8)0.0243 (8)0.0268 (8)0.0016 (6)0.0052 (6)0.0009 (6)
C30.0495 (10)0.0292 (9)0.0308 (8)0.0012 (7)0.0131 (7)0.0013 (7)
Geometric parameters (Å, °) top
N1—C11.3270 (19)N3—C21.3294 (19)
N1—H1A0.8600N4—C31.326 (2)
N1—H1B0.8600N4—C21.366 (2)
N2—C31.330 (2)O1—C11.2524 (18)
N2—N31.3553 (19)C1—C21.493 (2)
N2—H20.8600C3—H30.9300
C1—N1—H1A120.0O1—C1—C2121.15 (14)
C1—N1—H1B120.0N1—C1—C2114.62 (14)
H1A—N1—H1B120.0N3—C2—N4114.43 (13)
C3—N2—N3110.03 (13)N3—C2—C1121.94 (13)
C3—N2—H2125.0N4—C2—C1123.62 (14)
N3—N2—H2125.0N4—C3—N2110.81 (15)
C2—N3—N2102.40 (13)N4—C3—H3124.6
C3—N4—C2102.33 (13)N2—C3—H3124.6
O1—C1—N1124.23 (15)
C3—N2—N3—C20.33 (17)N1—C1—C2—N3176.10 (15)
N2—N3—C2—N40.05 (17)O1—C1—C2—N4174.46 (15)
N2—N3—C2—C1179.30 (13)N1—C1—C2—N44.7 (2)
C3—N4—C2—N30.23 (18)C2—N4—C3—N20.43 (18)
C3—N4—C2—C1179.00 (14)N3—N2—C3—N40.50 (19)
O1—C1—C2—N34.7 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.213.065 (2)173
N1—H1B···N4ii0.862.223.010 (2)154
N2—H2···O1iii0.862.072.909 (2)163
N2—H2···N3iii0.862.543.055 (2)120
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) x−1/2, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.213.065 (2)173
N1—H1B···N4ii0.862.223.010 (2)154
N2—H2···O1iii0.862.072.909 (2)163
N2—H2···N3iii0.862.543.055 (2)120
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) x−1/2, −y+3/2, z+1/2.
Acknowledgements top

This work was supported by the Adult–Young Science Foundation of Guangxi Province (0447009), P. R. China.

references
References top

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Crespo, L., Sanclimens, G., Pons, M., Giralt, E., Royo, M. & Albericio, F. (2005). Chem. Rev. 105, 1663–1681.

Malinauskas, A., Niaura, G. & Bloxham, S. (2000). J. Colloid Interface Sci. 230, 122–127.

Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.