organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[5-(3-Pyrid­yl)-2H-tetra­zol-2-ylmeth­yl]benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 28 March 2008; accepted 7 April 2008; online 3 May 2008)

In the title compound, C14H10N6, the pyridine and tetra­zole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 0.86 (9)°. The benzene ring makes a dihedral angle of 70.55 (6)° with the tetra­zole ring.

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Arp et al. (2000[Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.]); Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N6

  • Mr = 262.28

  • Triclinic, [P \overline 1]

  • a = 8.0452 (16) Å

  • b = 8.7081 (17) Å

  • c = 10.171 (2) Å

  • α = 94.61 (3)°

  • β = 104.95 (3)°

  • γ = 111.11 (3)°

  • V = 630.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.4 × 0.35 × 0.35 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.968

  • 6638 measured reflections

  • 2882 independent reflections

  • 2063 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.123

  • S = 1.04

  • 2882 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002). We report here the crystal structure of the title compound, 4-((5-(pyridin-3-yl)-2H-tetrazol-2-yl)methyl)benzonitrile.

There are three rings in the title compound (Fig. 1). The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 0.86 (0.09) °.The benzene ring makes a dihedral angle of 70.55 (0.06) ° with the tetrazole ring owing to the methylene bridge which forces the two rings to be twisted twisted from each other. In the pyridine ring, the C1=N1 and C5=N1 bond distance of 1.322 and 1.332Å conforms to the value for a C=N double bond, while the C14—N6 bond length of 1.140 Å conforms to the value for a CN bond. The bond distances and bond angles of the tetrazole rings are within the usual ranges (Wang et al., 2005; Arp et al., 2000; Hu et al., 2007).

Related literature top

For use of tetrazole derivatives in coordination chemisty, see: Arp et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Experimental top

4-((5-(pyridin-3-yl)-2H-tetrazol-2-yl)methyl)benzonitrile (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
4-[5-(3-Pyridyl)-2H-tetrazol-2-ylmethyl]benzonitrile top
Crystal data top
C14H10N6Z = 2
Mr = 262.28F(000) = 272
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0452 (16) ÅCell parameters from 2882 reflections
b = 8.7081 (17) Åθ = 3.4–27.5°
c = 10.171 (2) ŵ = 0.09 mm1
α = 94.61 (3)°T = 293 K
β = 104.95 (3)°Block, colourless
γ = 111.11 (3)°0.4 × 0.35 × 0.35 mm
V = 630.3 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
2882 independent reflections
Radiation source: fine-focus sealed tube2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.962, Tmax = 0.968l = 1313
6638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.0983P]
where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H10N6γ = 111.11 (3)°
Mr = 262.28V = 630.3 (3) Å3
Triclinic, P1Z = 2
a = 8.0452 (16) ÅMo Kα radiation
b = 8.7081 (17) ŵ = 0.09 mm1
c = 10.171 (2) ÅT = 293 K
α = 94.61 (3)°0.4 × 0.35 × 0.35 mm
β = 104.95 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2882 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2063 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.968Rint = 0.035
6638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2882 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1058 (3)0.1591 (2)0.5558 (2)0.0572 (5)
H10.02530.25120.58010.069*
C20.2506 (3)0.0395 (2)0.65976 (19)0.0573 (5)
H20.26610.04970.75200.069*
C30.3732 (2)0.0965 (2)0.62507 (17)0.0492 (4)
H30.47360.17900.69360.059*
C40.3447 (2)0.10834 (19)0.48717 (15)0.0379 (3)
C50.1926 (2)0.0186 (2)0.39132 (18)0.0503 (4)
H50.17170.01090.29830.060*
C60.4708 (2)0.24879 (19)0.44434 (15)0.0389 (4)
C70.6451 (3)0.4856 (2)0.2136 (2)0.0558 (5)
H7A0.71760.60530.24540.067*
H7B0.53090.46980.14200.067*
C80.7564 (2)0.4087 (2)0.15309 (17)0.0443 (4)
C90.9485 (2)0.4701 (2)0.21250 (18)0.0493 (4)
H91.00700.55780.28880.059*
C101.0544 (2)0.4029 (2)0.16004 (17)0.0474 (4)
H101.18350.44450.20110.057*
C110.9677 (2)0.2733 (2)0.04600 (16)0.0417 (4)
C120.7746 (2)0.2088 (2)0.01356 (17)0.0513 (4)
H120.71620.12010.08920.062*
C130.6696 (2)0.2767 (2)0.03990 (18)0.0523 (4)
H130.54030.23400.00000.063*
C141.0826 (2)0.2107 (2)0.01146 (17)0.0490 (4)
N10.0737 (2)0.15148 (18)0.42275 (17)0.0583 (4)
N20.45326 (18)0.26697 (17)0.31385 (13)0.0448 (3)
N30.59763 (19)0.41048 (17)0.32955 (14)0.0455 (3)
N40.6996 (2)0.47768 (19)0.45939 (16)0.0551 (4)
N50.61961 (19)0.37565 (18)0.53498 (14)0.0514 (4)
N61.1781 (2)0.1676 (2)0.05615 (16)0.0654 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0591 (11)0.0495 (10)0.0713 (13)0.0216 (9)0.0306 (10)0.0206 (9)
C20.0666 (12)0.0641 (12)0.0495 (10)0.0281 (10)0.0255 (9)0.0203 (9)
C30.0496 (10)0.0522 (10)0.0430 (9)0.0188 (8)0.0125 (8)0.0065 (7)
C40.0371 (8)0.0419 (8)0.0386 (8)0.0188 (7)0.0144 (7)0.0053 (6)
C50.0526 (10)0.0491 (10)0.0444 (9)0.0150 (8)0.0159 (8)0.0054 (7)
C60.0354 (8)0.0438 (9)0.0394 (8)0.0169 (7)0.0140 (7)0.0029 (7)
C70.0618 (11)0.0595 (11)0.0698 (12)0.0333 (10)0.0402 (10)0.0299 (9)
C80.0468 (9)0.0490 (9)0.0487 (9)0.0224 (8)0.0255 (8)0.0201 (8)
C90.0491 (10)0.0486 (10)0.0475 (9)0.0146 (8)0.0186 (8)0.0044 (8)
C100.0364 (8)0.0534 (10)0.0496 (9)0.0144 (8)0.0144 (8)0.0074 (8)
C110.0406 (9)0.0491 (9)0.0384 (8)0.0182 (7)0.0154 (7)0.0109 (7)
C120.0438 (9)0.0598 (11)0.0427 (9)0.0165 (8)0.0093 (8)0.0009 (8)
C130.0371 (9)0.0664 (11)0.0541 (10)0.0197 (8)0.0157 (8)0.0137 (9)
C140.0450 (9)0.0571 (10)0.0426 (9)0.0189 (8)0.0125 (8)0.0064 (8)
N10.0565 (9)0.0442 (8)0.0663 (10)0.0107 (7)0.0201 (8)0.0074 (7)
N20.0430 (8)0.0487 (8)0.0437 (8)0.0157 (6)0.0188 (6)0.0089 (6)
N30.0428 (8)0.0474 (8)0.0531 (8)0.0184 (7)0.0246 (7)0.0121 (7)
N40.0447 (8)0.0538 (9)0.0591 (9)0.0095 (7)0.0194 (7)0.0059 (7)
N50.0437 (8)0.0523 (8)0.0502 (8)0.0097 (7)0.0162 (7)0.0055 (7)
N60.0581 (10)0.0839 (12)0.0611 (10)0.0351 (9)0.0227 (8)0.0040 (9)
Geometric parameters (Å, º) top
C1—N11.322 (2)C7—H7B0.9700
C1—C21.369 (3)C8—C91.382 (2)
C1—H10.9300C8—C131.389 (3)
C2—C31.381 (3)C9—C101.377 (2)
C2—H20.9300C9—H90.9300
C3—C41.380 (2)C10—C111.383 (2)
C3—H30.9300C10—H100.9300
C4—C51.381 (2)C11—C121.389 (2)
C4—C61.461 (2)C11—C141.443 (2)
C5—N11.332 (2)C12—C131.380 (2)
C5—H50.9300C12—H120.9300
C6—N21.3265 (19)C13—H130.9300
C6—N51.348 (2)C14—N61.140 (2)
C7—N31.464 (2)N2—N31.3277 (19)
C7—C81.509 (2)N3—N41.315 (2)
C7—H7A0.9700N4—N51.322 (2)
N1—C1—C2123.89 (17)C9—C8—C7119.23 (16)
N1—C1—H1118.1C13—C8—C7121.38 (16)
C2—C1—H1118.1C10—C9—C8120.79 (16)
C1—C2—C3118.73 (17)C10—C9—H9119.6
C1—C2—H2120.6C8—C9—H9119.6
C3—C2—H2120.6C9—C10—C11119.63 (15)
C4—C3—C2119.00 (17)C9—C10—H10120.2
C4—C3—H3120.5C11—C10—H10120.2
C2—C3—H3120.5C10—C11—C12120.21 (15)
C3—C4—C5117.22 (15)C10—C11—C14118.62 (15)
C3—C4—C6121.38 (15)C12—C11—C14121.14 (15)
C5—C4—C6121.40 (14)C13—C12—C11119.73 (16)
N1—C5—C4124.61 (16)C13—C12—H12120.1
N1—C5—H5117.7C11—C12—H12120.1
C4—C5—H5117.7C12—C13—C8120.24 (16)
N2—C6—N5112.35 (14)C12—C13—H13119.9
N2—C6—C4124.60 (14)C8—C13—H13119.9
N5—C6—C4123.05 (14)N6—C14—C11177.31 (19)
N3—C7—C8111.58 (13)C1—N1—C5116.53 (16)
N3—C7—H7A109.3C6—N2—N3101.60 (13)
C8—C7—H7A109.3N4—N3—N2114.04 (13)
N3—C7—H7B109.3N4—N3—C7122.32 (15)
C8—C7—H7B109.3N2—N3—C7123.60 (15)
H7A—C7—H7B108.0N3—N4—N5106.02 (13)
C9—C8—C13119.38 (16)N4—N5—C6105.98 (13)

Experimental details

Crystal data
Chemical formulaC14H10N6
Mr262.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0452 (16), 8.7081 (17), 10.171 (2)
α, β, γ (°)94.61 (3), 104.95 (3), 111.11 (3)
V3)630.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.35 × 0.35
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.962, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6638, 2882, 2063
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.04
No. of reflections2882
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds