organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl-1,3,5-tris­­(morpholino­meth­yl)benzene

aNorthwest Agriculture and Forestry University, Yangling 712100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn, lyhxxjbm@126.com

(Received 25 January 2008; accepted 1 April 2008; online 3 May 2008)

In the title compound, C24H39N3O3, the H atoms of the methyl groups are disordered over two positions, with site-occupation factors fixed at 0.5. The three morpholino groups are arranged in an asymmetrical fashion with respect to the anchoring mesitylene ring and adopt chair conformations. Inter­molecular C—H⋯π inter­actions link the mol­ecules into a one-dimensional chain structure.

Related literature

For related literature, see: Blackman (2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]); Nakai et al. (2003[Nakai, H., Tang, Y. J., Gantzel, P. & Meyer, K. (2003). Chem. Commun. pp. 24-25.]); Van der Made & Van der Made (1993[Van der Made, A. W. & Van der Made, R. H. (1993). J. Org. Chem. 58, 1262-1263.]); Zeng & Zimmerman (1997[Zeng, F. & Zimmerman, S. C. (1997). Chem. Rev. 97, 1681-1712.]).

[Scheme 1]

Experimental

Crystal data
  • C24H39N3O3

  • Mr = 417.58

  • Monoclinic, P 21 /c

  • a = 11.0139 (10) Å

  • b = 24.131 (2) Å

  • c = 9.2941 (8) Å

  • β = 108.2330 (10)°

  • V = 2346.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.49 × 0.37 × 0.34 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.974

  • 16860 measured reflections

  • 4350 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.03

  • 4350 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.97 2.90 3.731 (2) 144
C7—H7BCg1ii 0.97 2.80 3.528 (2) 132
Symmetry codes: (i) -x, -y, -z+2; (ii) -x, -y, -z+1. Cg1 is the centroid of the benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tripodal ligands based on nitrogen heterocycles have been widely employed in many areas of inorganic chemistry(Blackman, 2005). For example, tripodal ligands with an arene core have been found to be one of the most useful organic building blocks in construction of metal-organic frameworks(MOFs)(Zeng, et al., 1997). Herein we report the synthesis,characterization and crystal structure of the title tripodal ligand.

A view of the molecular structure of the title compound is given in Fig.1. A l l the bond distances and angles are within normal ranges, the C(morpholino-1-ylmethyl)-N distances [1.4669 (19)- 1.4676 (19) Å] are similar to those of the related complex [1.464 (2)- 1.467 (2) Å] (Nakai, et al., 2003). The C(methyl and morpholino-1-ylmethyl)atoms and benzene ring are approximately coplanar, the three morpholino groups are arranged in an asymmetrical fashion with respect to the anchoring mesitylene ring and adopt chair conformations. Fig. 2 shows that in the crystal there exist two types of intermolecular CH-π interactions [H11B—Cg(-x, -y, 2-z) = 2.804Å and H7B—Cg(-x, -y, 1-z) = 2.904 Å; Cg is the centroid of the benzene ring], which are attributed to construct the one-dimension chain structure of the title compound.

Related literature top

For related literature, see: Blackman (2005); Nakai et al. (2003); Van der Made & Van der Made (1993); Zeng & Zimmerman (1997).

Experimental top

1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene was synthesized according to the reported procedurewas (Van der Made, et al., 1993). Morpholine (9 mmol) and NaH (27 mmol) were dissolved in dry dioxane (25 ml) and the solution was stirred for 2 h at room temperature, then 1,3,5-tris(bromomethyl)-2,4,6- trimethylbenzene (3 mmol)was added.The resultant solution was heated to reflux for 6 h, removal of solvent resulted in a white powder that was recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as colorless crystals suitable for single-crystal X-ray diffraction (yield 65%; m.p 410–412 K). Analysis found: C 69.15, H 9.22, N 10.25%; requires: C 69.03, H 9.41, N 10.06%. IR data (v_max/ cm-1): 2851, 2804, 1452, 1345, 1115, 998, 907, 863. NMR δ(H) 2.43(9H,s), 2.46(12H,s), 3.55(6H,s), 3.63(12H,s). MS-ESI+ [m/z]: 418.4(M+H).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), or 0.96 Å (methyl CH3), and O—H = 0.82 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq (CH or NH) or Uiso(H) = 1.5Ueq(CH3 or OH). The hydrogen atoms of methyl groups are disordered over two positions, with a 1:1 occupancy ratio.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown using 30% probability ellipsoids. Only one position of the disordered methyl hydrogen atoms are shown.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the infinite chain of molecules formed by the CH-π interactions. H atoms not involved in CH-π interactions have been omitted for clarity.
2,4,6-Trimethyl-1,3,5-tris(morpholinomethyl)benzene top
Crystal data top
C24H39N3O3F(000) = 912
Mr = 417.58Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0139 (10) ÅCell parameters from 6077 reflections
b = 24.131 (2) Åθ = 2.5–28.1°
c = 9.2941 (8) ŵ = 0.08 mm1
β = 108.233 (1)°T = 291 K
V = 2346.2 (4) Å3Block, colourless
Z = 40.49 × 0.37 × 0.34 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4350 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.963, Tmax = 0.974k = 2928
16860 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.061P)2 + 0.5317P]
where P = (Fo2 + 2Fc2)/3
4350 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H39N3O3V = 2346.2 (4) Å3
Mr = 417.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0139 (10) ŵ = 0.08 mm1
b = 24.131 (2) ÅT = 291 K
c = 9.2941 (8) Å0.49 × 0.37 × 0.34 mm
β = 108.233 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3409 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.019
16860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
4350 reflectionsΔρmin = 0.17 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.47311 (11)0.13824 (5)0.54089 (16)0.0666 (4)
O20.46925 (15)0.21500 (6)1.12778 (16)0.0820 (4)
O30.11437 (19)0.24231 (5)0.84017 (19)0.0984 (6)
N10.25289 (11)0.07200 (5)0.56752 (14)0.0428 (3)
N20.33067 (12)0.13735 (5)0.90381 (14)0.0437 (3)
N30.06308 (13)0.12834 (5)0.87425 (15)0.0481 (3)
C10.02514 (13)0.03908 (6)0.65905 (15)0.0377 (3)
C20.08664 (13)0.07108 (5)0.69121 (16)0.0381 (3)
C30.19919 (13)0.05277 (5)0.80117 (16)0.0373 (3)
C40.19841 (13)0.00444 (5)0.88471 (16)0.0391 (3)
C50.08374 (13)0.02549 (5)0.85949 (16)0.0380 (3)
C60.02704 (13)0.00860 (6)0.74496 (16)0.0383 (3)
C70.14249 (14)0.05271 (6)0.52502 (16)0.0449 (4)
H7A0.11970.08110.46420.054*
H7B0.16710.01990.46240.054*
C80.08791 (17)0.12500 (7)0.6081 (2)0.0544 (4)
H8A0.17150.14130.64430.082*0.50
H8B0.02640.15000.62590.082*0.50
H8C0.06660.11780.50150.082*0.50
H8D0.00480.13150.53680.082*0.50
H8E0.14990.12270.55520.082*0.50
H8F0.10980.15490.67960.082*0.50
C90.32124 (14)0.08548 (6)0.81870 (18)0.0441 (4)
H9A0.39400.06230.86960.053*
H9B0.32630.09400.71870.053*
C100.32062 (15)0.01643 (7)0.9995 (2)0.0551 (4)
H10A0.30290.04971.04600.083*0.50
H10B0.35330.01131.07590.083*0.50
H10C0.38290.02410.94940.083*0.50
H10D0.38980.00811.00150.083*0.50
H10E0.33940.05300.97160.083*0.50
H10F0.30990.01761.09810.083*0.50
C110.07458 (16)0.07542 (6)0.95527 (18)0.0463 (4)
H11A0.15010.07661.04370.056*
H11B0.00090.07090.99030.056*
C120.14914 (15)0.04149 (6)0.7153 (2)0.0541 (4)
H12A0.13450.07260.78310.081*0.50
H12B0.17610.05450.61260.081*0.50
H12C0.21450.01830.73150.081*0.50
H12D0.21550.02430.63500.081*0.50
H12E0.17390.04240.80550.081*0.50
H12F0.13550.07860.68660.081*0.50
C130.37183 (15)0.06447 (7)0.4433 (2)0.0557 (4)
H13A0.38150.02590.41270.067*
H13B0.37000.08660.35690.067*
C140.48270 (17)0.08214 (8)0.4958 (3)0.0687 (5)
H14A0.56200.07660.41420.082*
H14B0.48520.05900.58030.082*
C150.35579 (17)0.14720 (8)0.6582 (2)0.0615 (5)
H15A0.35600.12620.74710.074*
H15B0.34830.18620.68540.074*
C160.24239 (15)0.13020 (6)0.61083 (19)0.0481 (4)
H16A0.23850.15280.52600.058*
H16B0.16430.13610.69400.058*
C170.43157 (18)0.17266 (7)0.8820 (2)0.0610 (5)
H17A0.41250.18110.77520.073*
H17B0.51250.15300.91510.073*
C180.4424 (2)0.22552 (8)0.9701 (2)0.0802 (6)
H18A0.51000.24810.95460.096*
H18B0.36290.24600.93290.096*
C190.3719 (2)0.18151 (8)1.1505 (2)0.0746 (6)
H19A0.29140.20141.11710.090*
H19B0.39130.17391.25770.090*
C200.35830 (18)0.12758 (7)1.06520 (19)0.0548 (4)
H20A0.43680.10651.10290.066*
H20B0.28980.10601.08220.066*
C210.18365 (18)0.14662 (7)0.8563 (2)0.0583 (4)
H21A0.24640.15190.95520.070*
H21B0.21560.11840.80300.070*
C220.1652 (2)0.20017 (8)0.7689 (3)0.0819 (7)
H22A0.10760.19400.66740.098*
H22B0.24660.21230.76060.098*
C230.0016 (3)0.22429 (8)0.8599 (3)0.0983 (8)
H23A0.03440.25320.91030.118*
H23B0.06410.21790.76150.118*
C240.0157 (2)0.17187 (7)0.9519 (3)0.0706 (5)
H24A0.06520.16070.96380.085*
H24B0.07620.17811.05180.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0535 (7)0.0607 (8)0.0796 (9)0.0192 (6)0.0119 (6)0.0079 (6)
O20.1027 (11)0.0632 (8)0.0669 (9)0.0336 (8)0.0078 (8)0.0112 (7)
O30.1412 (15)0.0329 (7)0.1057 (12)0.0187 (8)0.0165 (11)0.0031 (7)
N10.0403 (7)0.0374 (6)0.0435 (7)0.0050 (5)0.0026 (5)0.0000 (5)
N20.0441 (7)0.0375 (6)0.0465 (7)0.0053 (5)0.0100 (6)0.0001 (5)
N30.0563 (8)0.0282 (6)0.0533 (8)0.0020 (5)0.0077 (6)0.0027 (5)
C10.0403 (8)0.0338 (7)0.0366 (7)0.0064 (6)0.0084 (6)0.0055 (6)
C20.0435 (8)0.0328 (7)0.0367 (7)0.0034 (6)0.0106 (6)0.0026 (6)
C30.0401 (8)0.0313 (7)0.0394 (8)0.0018 (6)0.0107 (6)0.0053 (6)
C40.0409 (8)0.0314 (7)0.0410 (8)0.0046 (6)0.0074 (6)0.0037 (6)
C50.0453 (8)0.0274 (7)0.0401 (8)0.0033 (6)0.0117 (6)0.0038 (6)
C60.0388 (8)0.0313 (7)0.0436 (8)0.0024 (6)0.0108 (6)0.0076 (6)
C70.0450 (8)0.0455 (8)0.0384 (8)0.0043 (6)0.0047 (6)0.0054 (6)
C80.0579 (10)0.0461 (9)0.0549 (10)0.0020 (7)0.0116 (8)0.0113 (7)
C90.0418 (8)0.0413 (8)0.0480 (9)0.0017 (6)0.0124 (7)0.0014 (6)
C100.0475 (9)0.0420 (8)0.0644 (11)0.0031 (7)0.0010 (8)0.0068 (8)
C110.0560 (9)0.0341 (8)0.0470 (9)0.0000 (6)0.0135 (7)0.0000 (6)
C120.0465 (9)0.0391 (8)0.0721 (11)0.0027 (7)0.0121 (8)0.0037 (8)
C130.0426 (9)0.0508 (9)0.0622 (11)0.0019 (7)0.0003 (8)0.0053 (8)
C140.0437 (10)0.0677 (12)0.0866 (14)0.0008 (8)0.0086 (9)0.0056 (10)
C150.0647 (11)0.0527 (10)0.0638 (11)0.0154 (8)0.0155 (9)0.0023 (8)
C160.0492 (9)0.0409 (8)0.0482 (9)0.0018 (7)0.0065 (7)0.0026 (7)
C170.0642 (11)0.0580 (10)0.0578 (10)0.0192 (8)0.0148 (9)0.0045 (8)
C180.1019 (16)0.0556 (11)0.0723 (13)0.0325 (11)0.0117 (12)0.0004 (10)
C190.1005 (16)0.0594 (11)0.0640 (12)0.0135 (11)0.0257 (11)0.0139 (9)
C200.0662 (11)0.0467 (9)0.0513 (9)0.0085 (8)0.0183 (8)0.0014 (7)
C210.0679 (11)0.0450 (9)0.0562 (10)0.0109 (8)0.0113 (9)0.0005 (8)
C220.1139 (18)0.0472 (11)0.0763 (14)0.0241 (11)0.0178 (13)0.0038 (10)
C230.120 (2)0.0357 (10)0.125 (2)0.0137 (12)0.0169 (17)0.0026 (11)
C240.0800 (13)0.0394 (9)0.0888 (14)0.0077 (9)0.0214 (11)0.0096 (9)
Geometric parameters (Å, º) top
O1—C141.411 (2)C10—H10E0.9600
O1—C151.423 (2)C10—H10F0.9600
O2—C191.410 (2)C11—H11A0.9700
O2—C181.424 (2)C11—H11B0.9700
O3—C231.415 (3)C12—H12A0.9600
O3—C221.420 (3)C12—H12B0.9600
N1—C161.4555 (19)C12—H12C0.9600
N1—C131.4612 (19)C12—H12D0.9600
N1—C71.4669 (19)C12—H12E0.9600
N2—C201.453 (2)C12—H12F0.9600
N2—C171.464 (2)C13—C141.511 (3)
N2—C91.4670 (19)C13—H13A0.9700
N3—C211.458 (2)C13—H13B0.9700
N3—C241.460 (2)C14—H14A0.9700
N3—C111.4676 (19)C14—H14B0.9700
C1—C61.404 (2)C15—C161.505 (2)
C1—C21.404 (2)C15—H15A0.9700
C1—C71.5241 (19)C15—H15B0.9700
C2—C31.408 (2)C16—H16A0.9700
C2—C81.515 (2)C16—H16B0.9700
C3—C41.403 (2)C17—C181.500 (3)
C3—C91.523 (2)C17—H17A0.9700
C4—C51.409 (2)C17—H17B0.9700
C4—C101.518 (2)C18—H18A0.9700
C5—C61.4054 (19)C18—H18B0.9700
C5—C111.520 (2)C19—C201.507 (2)
C6—C121.511 (2)C19—H19A0.9700
C7—H7A0.9700C19—H19B0.9700
C7—H7B0.9700C20—H20A0.9700
C8—H8A0.9600C20—H20B0.9700
C8—H8B0.9600C21—C221.506 (2)
C8—H8C0.9600C21—H21A0.9700
C8—H8D0.9600C21—H21B0.9700
C8—H8E0.9600C22—H22A0.9700
C8—H8F0.9600C22—H22B0.9700
C9—H9A0.9700C23—C241.505 (3)
C9—H9B0.9700C23—H23A0.9700
C10—H10A0.9600C23—H23B0.9700
C10—H10B0.9600C24—H24A0.9700
C10—H10C0.9600C24—H24B0.9700
C10—H10D0.9600
C14—O1—C15109.82 (13)H12A—C12—H12B109.5
C19—O2—C18109.45 (15)C6—C12—H12C109.5
C23—O3—C22110.11 (16)H12A—C12—H12C109.5
C16—N1—C13108.21 (12)H12B—C12—H12C109.5
C16—N1—C7112.33 (12)C6—C12—H12D109.5
C13—N1—C7111.20 (12)H12A—C12—H12D141.1
C20—N2—C17108.33 (13)H12B—C12—H12D56.3
C20—N2—C9112.00 (12)H12C—C12—H12D56.3
C17—N2—C9110.53 (13)C6—C12—H12E109.5
C21—N3—C24108.54 (13)H12A—C12—H12E56.3
C21—N3—C11112.74 (13)H12B—C12—H12E141.1
C24—N3—C11111.04 (13)H12C—C12—H12E56.3
C6—C1—C2119.84 (13)H12D—C12—H12E109.5
C6—C1—C7118.80 (13)C6—C12—H12F109.5
C2—C1—C7121.22 (13)H12A—C12—H12F56.3
C1—C2—C3119.75 (13)H12B—C12—H12F56.3
C1—C2—C8120.73 (13)H12C—C12—H12F141.1
C3—C2—C8119.52 (13)H12D—C12—H12F109.5
C4—C3—C2120.40 (13)H12E—C12—H12F109.5
C4—C3—C9121.99 (13)N1—C13—C14108.98 (15)
C2—C3—C9117.52 (13)N1—C13—H13A109.9
C3—C4—C5119.64 (13)C14—C13—H13A109.9
C3—C4—C10120.48 (13)N1—C13—H13B109.9
C5—C4—C10119.87 (13)C14—C13—H13B109.9
C6—C5—C4119.85 (13)H13A—C13—H13B108.3
C6—C5—C11118.19 (13)O1—C14—C13111.93 (15)
C4—C5—C11121.94 (13)O1—C14—H14A109.2
C1—C6—C5120.29 (13)C13—C14—H14A109.2
C1—C6—C12119.83 (13)O1—C14—H14B109.2
C5—C6—C12119.87 (13)C13—C14—H14B109.2
N1—C7—C1114.26 (12)H14A—C14—H14B107.9
N1—C7—H7A108.7O1—C15—C16111.83 (15)
C1—C7—H7A108.7O1—C15—H15A109.2
N1—C7—H7B108.7C16—C15—H15A109.2
C1—C7—H7B108.7O1—C15—H15B109.2
H7A—C7—H7B107.6C16—C15—H15B109.2
C2—C8—H8A109.5H15A—C15—H15B107.9
C2—C8—H8B109.5N1—C16—C15110.03 (14)
H8A—C8—H8B109.5N1—C16—H16A109.7
C2—C8—H8C109.5C15—C16—H16A109.7
H8A—C8—H8C109.5N1—C16—H16B109.7
H8B—C8—H8C109.5C15—C16—H16B109.7
C2—C8—H8D109.5H16A—C16—H16B108.2
H8A—C8—H8D141.1N2—C17—C18110.69 (16)
H8B—C8—H8D56.3N2—C17—H17A109.5
H8C—C8—H8D56.3C18—C17—H17A109.5
C2—C8—H8E109.5N2—C17—H17B109.5
H8A—C8—H8E56.3C18—C17—H17B109.5
H8B—C8—H8E141.1H17A—C17—H17B108.1
H8C—C8—H8E56.3O2—C18—C17111.44 (16)
H8D—C8—H8E109.5O2—C18—H18A109.3
C2—C8—H8F109.5C17—C18—H18A109.3
H8A—C8—H8F56.3O2—C18—H18B109.3
H8B—C8—H8F56.3C17—C18—H18B109.3
H8C—C8—H8F141.1H18A—C18—H18B108.0
H8D—C8—H8F109.5O2—C19—C20111.81 (17)
H8E—C8—H8F109.5O2—C19—H19A109.3
N2—C9—C3114.27 (12)C20—C19—H19A109.3
N2—C9—H9A108.7O2—C19—H19B109.3
C3—C9—H9A108.7C20—C19—H19B109.3
N2—C9—H9B108.7H19A—C19—H19B107.9
C3—C9—H9B108.7N2—C20—C19110.91 (14)
H9A—C9—H9B107.6N2—C20—H20A109.5
C4—C10—H10A109.5C19—C20—H20A109.5
C4—C10—H10B109.5N2—C20—H20B109.5
H10A—C10—H10B109.5C19—C20—H20B109.5
C4—C10—H10C109.5H20A—C20—H20B108.0
H10A—C10—H10C109.5N3—C21—C22110.32 (16)
H10B—C10—H10C109.5N3—C21—H21A109.6
C4—C10—H10D109.5C22—C21—H21A109.6
H10A—C10—H10D141.1N3—C21—H21B109.6
H10B—C10—H10D56.3C22—C21—H21B109.6
H10C—C10—H10D56.3H21A—C21—H21B108.1
C4—C10—H10E109.5O3—C22—C21111.68 (18)
H10A—C10—H10E56.3O3—C22—H22A109.3
H10B—C10—H10E141.1C21—C22—H22A109.3
H10C—C10—H10E56.3O3—C22—H22B109.3
H10D—C10—H10E109.5C21—C22—H22B109.3
C4—C10—H10F109.5H22A—C22—H22B107.9
H10A—C10—H10F56.3O3—C23—C24111.9 (2)
H10B—C10—H10F56.3O3—C23—H23A109.2
H10C—C10—H10F141.1C24—C23—H23A109.2
H10D—C10—H10F109.5O3—C23—H23B109.2
H10E—C10—H10F109.5C24—C23—H23B109.2
N3—C11—C5113.58 (12)H23A—C23—H23B107.9
N3—C11—H11A108.8N3—C24—C23108.98 (18)
C5—C11—H11A108.8N3—C24—H24A109.9
N3—C11—H11B108.8C23—C24—H24A109.9
C5—C11—H11B108.8N3—C24—H24B109.9
H11A—C11—H11B107.7C23—C24—H24B109.9
C6—C12—H12A109.5H24A—C24—H24B108.3
C6—C12—H12B109.5
C6—C1—C2—C35.1 (2)C4—C3—C9—N2105.37 (15)
C7—C1—C2—C3170.54 (13)C2—C3—C9—N277.97 (16)
C6—C1—C2—C8175.31 (13)C21—N3—C11—C575.51 (16)
C7—C1—C2—C89.0 (2)C24—N3—C11—C5162.43 (14)
C1—C2—C3—C43.6 (2)C6—C5—C11—N372.68 (17)
C8—C2—C3—C4176.80 (13)C4—C5—C11—N3108.64 (15)
C1—C2—C3—C9173.10 (12)C16—N1—C13—C1459.13 (18)
C8—C2—C3—C96.48 (19)C7—N1—C13—C14177.05 (14)
C2—C3—C4—C50.8 (2)C15—O1—C14—C1357.6 (2)
C9—C3—C4—C5177.38 (13)N1—C13—C14—O159.8 (2)
C2—C3—C4—C10177.94 (14)C14—O1—C15—C1656.5 (2)
C9—C3—C4—C101.4 (2)C13—N1—C16—C1558.77 (17)
C3—C4—C5—C63.7 (2)C7—N1—C16—C15178.10 (12)
C10—C4—C5—C6175.03 (14)O1—C15—C16—N158.12 (18)
C3—C4—C5—C11174.93 (12)C20—N2—C17—C1856.39 (19)
C10—C4—C5—C116.3 (2)C9—N2—C17—C18179.45 (14)
C2—C1—C6—C52.2 (2)C19—O2—C18—C1758.3 (2)
C7—C1—C6—C5173.55 (12)N2—C17—C18—O258.7 (2)
C2—C1—C6—C12177.06 (13)C18—O2—C19—C2057.9 (2)
C7—C1—C6—C127.2 (2)C17—N2—C20—C1955.92 (19)
C4—C5—C6—C12.2 (2)C9—N2—C20—C19178.08 (15)
C11—C5—C6—C1176.48 (12)O2—C19—C20—N258.3 (2)
C4—C5—C6—C12178.50 (13)C24—N3—C21—C2258.08 (19)
C11—C5—C6—C122.8 (2)C11—N3—C21—C22178.46 (14)
C16—N1—C7—C179.92 (16)C23—O3—C22—C2156.2 (2)
C13—N1—C7—C1158.63 (13)N3—C21—C22—O357.3 (2)
C6—C1—C7—N171.62 (16)C22—O3—C23—C2457.9 (3)
C2—C1—C7—N1112.69 (15)C21—N3—C24—C2358.8 (2)
C20—N2—C9—C373.86 (16)C11—N3—C24—C23176.75 (17)
C17—N2—C9—C3165.24 (13)O3—C23—C24—N359.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.972.903.731 (2)144
C7—H7B···Cg1ii0.972.803.528 (2)132
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H39N3O3
Mr417.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.0139 (10), 24.131 (2), 9.2941 (8)
β (°) 108.233 (1)
V3)2346.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.37 × 0.34
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16860, 4350, 3409
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.03
No. of reflections4350
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.972.9043.731 (2)143.8
C7—H7B···Cg1ii0.972.8043.528 (2)131.9
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the Henan Innovation Project For University Prominent Research Talents (No. 2005 KYCX021) and the Natural Science Foundation of Henan Province.

References

First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNakai, H., Tang, Y. J., Gantzel, P. & Meyer, K. (2003). Chem. Commun. pp. 24–25.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Made, A. W. & Van der Made, R. H. (1993). J. Org. Chem. 58, 1262–1263.  CrossRef CAS Web of Science Google Scholar
First citationZeng, F. & Zimmerman, S. C. (1997). Chem. Rev. 97, 1681–1712.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds