

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$K_{0.8}Ag_{0.2}Nb_4O_9AsO_4$

Rym Ben Amor, Mohamed Faouzi Zid* et Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis - El-Manar, 2092 El-Manar, Tunis, Tunisie Correspondence e-mail: faouzi.zid@fst.rnu.tn

Recu le 2 mai 2008: accepté le 20 mai 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (As–O) = 0.004 Å; disorder in main residue; R factor = 0.024; wR factor = 0.067; data-to-parameter ratio = 11.8.

The title compound, potassium silver tetraniobium nonaoxide arsenate, K_{0.8}Ag_{0.2}Nb₄O₉AsO₄, was prepared by a solid-state reaction at 1183 K. The structure consists of infinite $(Nb_2AsO_{14})_n$ chains parallel to the b axis and cross-linked by corner sharing via pairs of edge-sharing octahedra. Each pair links together four infinite chains to form a threedimensional framework. The K⁺ and Ag⁺ ions partially occupy several independent close positions in the interconnected cavities delimited by the framework. K_{0.8}Ag_{0.2}Nb₄O₉AsO₄ is likely to exhibit fast alkali-ion mobility and ion-exchange properties. The Wyckoff symbols of special positions are as follows: one Nb 8e, one Nb 8g, As 4c, two K 8f, one Ag 8f, one Ag 4c, one O 8g, one O 4c.

Littérature associée

Pour le contexte général du travail et structures associées, voir: Ben Amor & Zid (2006); Benhamada et al. (1992); Bestaoui et al. (1998); Brown & Altermatt (1985); Haddad, Jouini & Ghedira (1988); Haddad, Jouini et al. (1988); Harrison et al. (1994); Ledain et al. (1997); Piffard et al. (1985); Zid et al. (1989, 1992, 1998, 2005).

Partie expérimentale

Données cristallines

K_{0.8}Ag_{0.2}Nb₄O₉AsO₄ $M_r = 707.41$ Orthorhombique, Cmcm a = 10.469 (2)Å b = 10.403 (2) Å c = 10.047 (1) Å

Collection des données

Diffractomètre Enraf-Nonius CAD-4 Correction d'absorption: ψ scan (North et al., 1968) $T_{\min} = 0.24, \ T_{\max} = 0.45$ 2162 réflexions mesurées

V = 1094.2 (3) Å³ Z = 4Radiation Mo Ka $\mu = 7.81 \text{ mm}^{-1}$ T = 298 (2) K $0.20 \times 0.14 \times 0.10 \text{ mm}$

803 réflexions independantes 751 réflexions avec $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ 2 réflexions de référence fréquence: 120 min

variation d'intensité: 0.9%

inorganic compounds

Affinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.024 \\ wR(F^2) &= 0.067 \end{split}$$
S = 1.13803 réflexions

68 paramètres $\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.64 \text{ e} \text{ Å}^{-3}$

Tableau 1 Paramètres géométriques (Å).

Nb1-O3 ⁱ	1.813 (3)	K1-O3	2.869 (6)
Nb1-O4	2.001 (3)	$K1 - O2^{iii}$	2.989 (6)
Nb1-O1	2.256 (2)	K2-O5 ^{iv}	2.48 (3)
Nb2-O4	1.849 (3)	K2-O3 ^{iv}	2.630 (9)
Nb2-O5	1.932 (2)	$K2 - O2^{v}$	2.70 (2)
Nb2-O3	2.122 (3)	Ag1-O5 ^{iv}	2.272 (11)
Nb2-O2	2.128 (4)	$Ag1-O2^{v}$	2.500 (10)
As1-O2 ⁱ	1.672 (4)	Ag2-O5 ^{iv}	2.188 (15)
As1-O1	1.707 (4)	Ag2-O2 ^v	2.386 (13)
K1-O3 ⁱⁱ	2.764 (5)		

Codes de symétrie : (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (ii) -x, -y, -z; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (iv) -x, -y, -z + 1; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Collection des données: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); affinement des paramètres de la maille: CAD-4 EXPRESS; réduction des données: XCAD4 (Harms & Wocadlo, 1995); programme(s) pour la solution de la structure: SHELXS97 (Sheldrick, 2008); programme(s) pour l'affinement de la structure: SHELXL97 (Sheldrick, 2008); graphisme moléculaire: DIAMOND (Brandenburg, 1998); logiciel utilisé pour préparer le matériel pour publication: WinGX (Farrugia, 1999).

Des documents complémentaires et figures concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: FJ2116).

Références

Ben Amor, R. & Zid, M. F. (2006). Acta Cryst. E62, i238-i240.

- Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1992). J. Solid State Chem. 101, 154-160.
- Bestaoui, N., Verbaere, A., Piffard, Y., Coulibaly, V. & Zah-letho, J. (1998). Eur. J. Solid State Inorg. Chem. 35, 473-482.
- Brandenburg, K. (1998). DIAMOND. Université de Bonn, Allemagne.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haddad, A., Jouini, T. & Ghedira, M. (1988). Acta Cryst. C44, 1155-1157.
- Haddad, A., Jouini, T., Piffard, Y. & Jouini, N. (1988). J. Solid State Chem. 77, 293-298

Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.

Harrison, W. T. A., Liano, C. S., Nenouff, T. M. & Stucky, G. D. J. (1994). J. Solid State Chem. 113, 367-372.

- Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1997). J. Solid State Chem. 129, 298-302.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 58, 253-256.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zid, M. F., Driss, A. & Jouini, T. (1998). J. Solid State Chem. 141, 500-507.
- Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46-i48.
- Zid, M. F., Jouini, T., Jouini, N. & Omezzine, M. (1989). J. Solid State Chem. 82, 14 - 20
- Zid, M. F., Jouini, T. & Piffard, Y. (1992). J. Solid State Chem. 99, 201-206.

supporting information

Acta Cryst. (2008). E64, i41 [doi:10.1107/S1600536808015225]

$K_{0.8}Ag_{0.2}Nb_4O_9AsO_4$

Rym Ben Amor, Mohamed Faouzi Zid et Ahmed Driss

S1. Comment

La recherche de nouveaux matériaux à charpentes mixtes formées d'octaèdres MO_6 (M = métal de transition) et de tétraèdres XO_4 (X = P, As) suscite un grand intérêt ces dernières années (Benhamada *et al.*, 1992; Harrison *et al.*, 1994; Zid *et al.*, 1998). En effet, la jonction entre ces polyèdres conduit à des composés à charpentes ouvertes présentant de nombreuses propriétés physico-chimiques intéressantes qui sont en relation directe avec leurs structures cristallines notamment: conduction ionique (Piffard *et al.*, 1985), échange d'ions (Haddad, Jouini & Ghedira, 1988) et parfois comme produits d'intercalation en catalyse hétérogène (Ledain *et al.*, 1997). C'est dans ce cadre que nous avons exploré les systèmes A–Nb–As–O (A = Cation monovalent) dans lesquels nous avons précédemment caractérisé les phases suivantes: K₃NbAs₂O₉ (Zid *et al.*, 1989), K₃NbP₂O₉ (Zid *et al.*, 1992) et Ag₃Nb₃As₂O₁₄ (Ben Amor *et al.*, 2006).

A fin d'augmenter la mobilité des cations en passant à une occupation partielle des sites dans la structure nous avons choisi d'introduire avec le cation alcalin un métal monovalent de transition Ag. Dans ce travail nous nous sommes intéressés en premier à la synthèse et l'étude structurale sur monocristal du matériau puis à l'étude de l'influence de l'introduction d'un métal de transition monovalent sur ces propriétés physiques notamment de conduction ionique. Le composé $K_{0.8}Ag_{0.2}Nb_4O_9AsO_4$ obtenu est de formulation et de symétrie similaires à celles de KNb₄O₉AsO₄ (Haddad, Jouini *et al.*, 1988) et NaNb₄O₉AsO₄ (Bestaoui *et al.*, 1998).

L'unité asymétrique du composé $K_{0.8}Ag_{0.2}Nb_4O_9AsO_4$ est construite au moyen d'un tétraèdre $As(1)O_4$ relié par mise en commun de sommets d'une part à deux octaèdres Nb(2)O₆ partageant un sommet et d'autre part à un groupement Nb(1)₂O₁₀ formé à partir d'une paire d'octaèdres Nb(1)O₆ partageant une arête (Fig. 1).

La structure du composé $K_{0.8}Ag_{0.2}Nb_4O_9AsO_4$ peut être décrite au moyen de chaînes infinies $(Nb(2)_2AsO_{14})_n$ de type $(Nb(2)O_6-Nb(2)O_6-As(1)O_4)$ disposées selon la direction [100], reliées entre elles par mise en commun de sommets avec des paires d'octaèdres $Nb(1)O_6$ partageant une arête. De plus, les atomes d'oxygène formant l'arête commune des paires appartiennent aussi aux tétraèdres AsO_4 . Notons qu'au sein de la charpente anionique $(Nb_4O_9AsO_4)^-$, les octaèdres $Nb(1)O_6$ et $Nb(2)O_6$ se lient par partage de sommets en developpant des cycles d'octaèdres (Fig. 2). Il en résulte ainsi une charpente tridimensionnelle possédant des canaux, à section hexagonale, communicants où résident les cations K⁺ et Ag⁺ (Fig. 3).

Le calcul des différentes valences des liaisons utilisant la formule empirique de Brown (Brown & Altermatt, 1985) vérifie bien les valeurs de charges des ions dans la phase étudiée.

La structure est iso-structurale à celle au potassium KNb₄O₉AsO₄ (Haddad, Jouini *et al.*, 1988), cependant la disposition des cations et leurs coordinences sont différentes. On remarque que dans le composé KNb₄O₉AsO₄ les ions occupent la même position spéciale 8f du groupe d'espace *Cmcm*, alors que dans la structure étudiée les ions occupent statistiquement plusieurs positions de part et d'autre de celle 8f ci-dessus indiquée (Fig. 3). Cette répartition des cations sur plusieurs positions pourrait conduire à une forte mobilité, par conséquent à un nouveau bon conducteur ionique (Zid *et al.*, 2005). Des mesures éléctriques moyennant un pont d'impédance complexe de type HP4192A seront réalisées dès l'obtention

d'une phase pure.

S2. Experimental

Les cristaux relatifs à K_{0.8}Ag_{0.2}Nb₄O₉AsO₄ ont été obtenus à partir d'un mélange formé des réactifs: Nb₂O₅ (Fluka, 72520), NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01-775), K₂CO₃ (Fluka, 60109) et AgNO₃ (Merk, 101510) pris dans les rapports molaires K:Ag:Nb:As égaux à 1:1:4:1. Le mélange, finement broyé, est préchauffé à l'air à 673 K en vue d'éliminer NH₃, H₂O, CO₂ et NO₂. Il est ensuite porté jusqu'à une température de synthèse proche de la fusion, 1183 K. Le mélange est alors abandonné à cette température pendant deux semaines pour favoriser la germination des cristaux. Le résidu final a subi en premier un refroidissement lent (5°/h) jusqu'à 1173 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux incolores, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau bouillante. Une analyse qualitative au M.E.B.E. de type FEI Quanta 200 confirme la présence des différents éléments chimiques attendus: As, Nb, K, Ag et l'oxygène.

S3. Refinement

L'analyse des Fouriers différences finales révèle l'existence de certains pics résiduels très proche des positions des ions K^+ . L'affinement de la structure a été donc mené lentement utilisant un par un les différents pics résiduels parus. Un affinement final a été réalisé, avec seulement quatre ions occupant statistiquement des positions proches avec un taux d'occupation globale vérifiant bien la condition de la neutralité électrique. Il conduit à un résultat très satisfaisant. Notons que dans le dernier affinement et à cause des taux d'occupation faibles des cations K(2), Ag(1) et Ag(2), nous avons choisi des agitations thermiques isotropes. Par ailleurs les ellipsoïdes sont mieux définies.

Figure 1

Unité asymétrique dans K_{0.8}Ag_{0.2}Nb₄O₉AsO₄.

Figure 2

Représentation d'un cycle formé par les octaèdres NbO₆ montrant les cavités élliptiques où logent les cations.

Figure 3

Projection de la stucture de K_{0.8}Ag_{0.2}Nb₄O₉AsO₄ selon c montrant les cavités où résident les cations.

Potassium silver tetraniobium nonaoxide arsenate

Crystal data

K_{0.8}Ag_{0.2}Nb₄O₉AsO₄ $M_r = 707.41$ Orthorhombic, *Cmcm* Hall symbol: -C 2c 2 a = 10.469 (2) Å b = 10.403 (2) Å c = 10.047 (1) Å V = 1094.2 (3) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.24, T_{\max} = 0.45$ 2162 measured reflections F(000) = 1302 $D_x = 4.294 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 12-16^{\circ}$ $\mu = 7.81 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.20 \times 0.14 \times 0.10 \text{ mm}$

803 independent reflections 751 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -1 \rightarrow 14$ $l = -13 \rightarrow 3$ 2 standard reflections every 120 min intensity decay: 0.9% Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 10.2211P]$
$wR(F^2) = 0.067$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
803 reflections	$\Delta \rho_{\rm max} = 0.90 \text{ e } \text{\AA}^{-3}$
68 parameters	$\Delta \rho_{\rm min} = -1.64 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0031 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nb1	0.17473 (4)	0.5000	0.0000	0.00668 (16)	
Nb2	0.17121 (4)	0.22837 (4)	0.2500	0.00689 (16)	
As1	0.0000	0.66228 (7)	0.2500	0.0081 (2)	
K1	0.0000	0.0628 (6)	-0.0585 (8)	0.0213 (10)	0.29
K2	0.0000	0.0484 (15)	0.871 (5)	0.024 (5)*	0.111 (15)
Ag1	0.0000	0.0492 (8)	0.682 (2)	0.021 (3)*	0.070 (6)
Ag2	0.0000	0.0513 (14)	0.7500	0.031 (5)*	0.064 (6)
O1	0.0000	0.5676 (4)	0.1112 (4)	0.0077 (7)	
O2	0.3722 (3)	0.2588 (4)	0.2500	0.0114 (8)	
O3	0.2170 (3)	0.0783 (3)	0.1151 (3)	0.0114 (5)	
O4	0.1491 (3)	0.3420 (3)	0.1103 (3)	0.0124 (6)	
05	0.0000	0.1590 (5)	0.2500	0.0112 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb1	0.0062 (2)	0.0079 (2)	0.0059 (3)	0.000	0.000	-0.00167 (15)
Nb2	0.0065 (2)	0.0056 (2)	0.0085 (3)	0.00101 (15)	0.000	0.000
As1	0.0069 (3)	0.0087 (4)	0.0086 (4)	0.000	0.000	0.000
K1	0.010 (2)	0.030 (3)	0.024 (3)	0.000	0.000	0.001 (2)
01	0.0081 (16)	0.0094 (16)	0.0057 (17)	0.000	0.000	-0.0051 (14)
O2	0.0039 (16)	0.0103 (18)	0.020 (2)	0.0024 (13)	0.000	0.000
O3	0.0111 (12)	0.0123 (12)	0.0110 (13)	0.0010 (11)	0.0026 (10)	-0.0036 (10)
O4	0.0119 (12)	0.0123 (13)	0.0130 (15)	-0.0001 (11)	-0.0003 (11)	0.0069 (11)
O5	0.006 (2)	0.012 (3)	0.016 (3)	0.000	0.000	0.000

Geometric parameters (Å, °)

Nb1—O3 ⁱ	1.813 (3)	K1—O3 ^{vii}	2.764 (5)	
Nb1—O3 ⁱⁱ	1.813 (3)	K1—O3 ^{viii}	2.764 (5)	
Nb104	2.001 (3)	K1—O3	2.869 (6)	
Nb1—O4 ⁱⁱⁱ	2.001 (3)	K1—O3 ^{ix}	2.869 (6)	
Nb1—O1 ^{iv}	2.256 (2)	$K1 - O2^{x}$	2.989 (6)	
Nb101	2.256 (2)	K2—O5 ^{xi}	2.48 (3)	
Nb2—O4 ^v	1.849 (3)	K2—O3 ^{xi}	2.630 (9)	
Nb2—O4	1.849 (3)	K2—O3 ^{xii}	2.630 (9)	
Nb2—O5	1.932 (2)	K2—O2 ^{xiii}	2.70 (2)	
Nb2—O3	2.122 (3)	K2—O2 ^{xiv}	2.70 (2)	
Nb2—O3 ^v	2.122 (3)	Ag1—O5 ^{xi}	2.272 (11)	
Nb2—O2	2.128 (4)	Ag1—O2 ^{xiii}	2.500 (10)	
As1—O2 ⁱ	1.672 (4)	Ag1—O2 ^{xiv}	2.500 (10)	
As1—O2 ^{vi}	1.672 (4)	Ag2—O5 ^{xi}	2.188 (15)	
As1—O1	1.707 (4)	Ag2—O2 ^{xiii}	2.386 (13)	
As1—O1 ^v	1.707 (4)	Ag2—O2 ^{xiv}	2.386 (13)	
O3 ⁱ —Nb1—O3 ⁱⁱ	102.60 (18)	O4 ^v —Nb2—O3	169.44 (12)	
O3 ⁱ —Nb1—O4	95.73 (12)	O4—Nb2—O3	90.79 (12)	
O3 ⁱⁱ —Nb1—O4	93.90 (12)	O5—Nb2—O3	86.27 (14)	
O3 ⁱ —Nb1—O4 ⁱⁱⁱ	93.90 (12)	O4 ^v —Nb2—O3 ^v	90.79 (12)	
O3 ⁱⁱ —Nb1—O4 ⁱⁱⁱ	95.73 (12)	O4—Nb2—O3 ^v	169.44 (12)	
O4—Nb1—O4 ⁱⁱⁱ	164.57 (17)	O5—Nb2—O3 ^v	86.27 (14)	
$O3^{i}$ —Nb1—O1 ^{iv}	164.38 (12)	O3—Nb2—O3 ^v	79.39 (16)	
O3 ⁱⁱ —Nb1—O1 ^{iv}	92.92 (12)	O4 ^v —Nb2—O2	91.67 (11)	
O4-Nb1-O1 ^{iv}	84.79 (13)	O4—Nb2—O2	91.67 (11)	
O4 ⁱⁱⁱ —Nb1—O1 ^{iv}	82.70 (13)	O5—Nb2—O2	166.61 (19)	
O3 ⁱ —Nb1—O1	92.92 (12)	O3—Nb2—O2	83.44 (11)	
O3 ⁱⁱ —Nb1—O1	164.38 (12)	O3 ^v —Nb2—O2	83.44 (11)	
04—Nb1—01	82.70 (13)	$O2^{i}$ —As1— $O2^{vi}$	106.2 (3)	
O4 ⁱⁱⁱ —Nb1—O1	84.79 (13)	O2 ⁱ —As1—O1	110.25 (10)	
O1 ^{iv} —Nb1—O1	71.64 (15)	O2 ^{vi} —As1—O1	110.25 (10)	
O4 ^v —Nb2—O4	98.72 (19)	O2 ⁱ —As1—O1 ^v	110.25 (10)	
O4 ^v —Nb2—O5	97.03 (14)	$O2^{vi}$ —As1—O1 ^v	110.25 (10)	
O4—Nb2—O5	97.03 (14)	O1—As1—O1 ^v	109.6 (3)	
	· /			

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) *x*, -*y*+1, -*z*; (iv) -*x*, -*y*+1, -*z*; (v) *x*, *y*, -*z*+1/2; (vi) *x*-1/2, *y*+1/2, *z*; (vii) -*x*, -*y*, -*z*; (viii) *x*, -*y*, -*z*; (ix) -*x*, *y*, *z*; (x) *x*-1/2, -*y*+1/2, -*z*; (xi) -*x*, -*y*, -*z*+1; (xiii) -*x*+1/2, -*y*+1/2, -*z*+1; (xiv) *x*-1/2, -*y*+1/2, -*z*+1.