organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­droxy­ethyl)-N-(tri­cyclo­[3.3.1.13,7]dec-2-yl)benzamide

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: govenderthav@ukzn.ac.za

(Received 23 April 2008; accepted 6 May 2008; online 10 May 2008)

The title adamantane derivative, C19H25NO2, was synthesized as part of a study into potential anti­tuberculosis agents. The adamantane skeleton displays shorter than normal C—C bond lengths ranging between 1.5230 (15) and 1.5329 (16) Å. The structure displays O—H⋯O hydrogen bonding and an inter­digitated layered packing structure with distinct hydro­philic and hydro­phobic regions.

Related literature

For related literature, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Jacobson et al. (1987[Jacobson, A. R., Makris, A. N. & Sayre, L. M. (1987). J. Org. Chem, 52, 2592-2594.]); Lee et al., (2003[Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172-187.])

[Scheme 1]

Experimental

Crystal data
  • C19H25NO2

  • Mr = 299.40

  • Monoclinic, P 21 /c

  • a = 11.4248 (3) Å

  • b = 16.0902 (4) Å

  • c = 8.7211 (2) Å

  • β = 107.9030 (10)°

  • V = 1525.55 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.44 × 0.33 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 19272 measured reflections

  • 3684 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.12

  • 3684 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 1.96 2.7735 (12) 164
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Adamantane derivatives have been the subject of much investigation as potential anti-tubercolosis compounds (Bogatcheva et al., 2006, Lee et al., 2003). The novel compound (I) was also synthesized in order to investigate the biological activities of cage amino-alcohol compounds as potential anti-tuberculosis agents. The molecule (I) consists of a polycyclic (lipophilic) hydrocarbon skeleton with polar amine and hydroxyl units (Fig. 1).

The molecule exhibits some C—C bonds that are significantly shorter than the expected C—C bond length of 1.54 Å. These bonds range between 1.5230 (15) Å for C7—C8 to 1.5329 (16) Å for C1—C8 in the adamantane skeleton.

The structure exhibits intermolecular hydrogen bonding interactions between O1 and O2 of adjacent molecules (Fig. 2). There is also a complex network of short contacts between the molecules which result in an interdigitated, layered structure showing distinct hydrophilic and hydrophobic regions (Fig. 2). The hydrophobic region consists of the adamantane skeleton while the hydrophilic layer consists of the polar amine and hydroxyl units.

Related literature top

For related literature, see: Bogatcheva et al. (2006); Jacobson et al. (1987); Lee et al., (2003)

Experimental top

To a stirred solution of 2-(tricyclo[3.3.1.13,7]dec-2-ylamino)-ethanol (1 g, 5.1 mmol) in dichloromethane (30 ml) was added dropwise over 45 minutes a solution of benzoyl chloride (590ul, 5.1 mmol) dissolved in 50 ml of dichloromethane under a nitrogen atmosphere at zero degrees using an external ice salt bath. The reaction was allowed to stir overnight (Jacobson et al., 1987) and then filtered to remove the HCl salt and the solvent was removed in vacuo. The mixture was re-crystallized from methanol to obtain the title compound (I) (0.91 g, 60%) as a colourless microcrystalline solid.

Refinement top

Hydrogen atoms were first located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99 Å (CH2), 1.00 Å (Methine CH), 0.95 Å (Ar—CH) or 0.84 Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH2 and CH), or 1.5 (OH) times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Diagram of the packing viewed down the c axis showing the layered structure and intermolecular hydrogen bonding. Hydrogen atoms have been omitted for clarity.
N-(2-Hydroxyethyl)-N-(tricyclo[3.3.1.13,7]dec-2-yl)benzamide top
Crystal data top
C19H25NO2F(000) = 648
Mr = 299.40Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5317 reflections
a = 11.4248 (3) Åθ = 2.3–28.2°
b = 16.0902 (4) ŵ = 0.08 mm1
c = 8.7211 (2) ÅT = 173 K
β = 107.903 (1)°Block, colourless
V = 1525.55 (7) Å30.44 × 0.33 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2861 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ϕ and ω scansh = 1515
19272 measured reflectionsk = 2121
3684 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
3684 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H25NO2V = 1525.55 (7) Å3
Mr = 299.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4248 (3) ŵ = 0.08 mm1
b = 16.0902 (4) ÅT = 173 K
c = 8.7211 (2) Å0.44 × 0.33 × 0.16 mm
β = 107.903 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2861 reflections with I > 2σ(I)
19272 measured reflectionsRint = 0.050
3684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.12Δρmax = 0.29 e Å3
3684 reflectionsΔρmin = 0.22 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26872 (10)0.12522 (7)0.22178 (13)0.0191 (2)
H10.27970.13960.33690.023*
C20.32356 (10)0.03827 (6)0.21268 (13)0.0170 (2)
H20.41450.04140.26560.020*
C30.30029 (10)0.01726 (7)0.03325 (13)0.0179 (2)
H30.33220.03980.02390.021*
C40.16309 (10)0.02106 (7)0.06201 (14)0.0215 (3)
H4A0.15120.00680.17620.026*
H4B0.11720.01980.01770.026*
C50.11394 (11)0.10846 (7)0.05095 (14)0.0226 (3)
H50.02440.11090.11280.027*
C60.18444 (11)0.17132 (7)0.12046 (14)0.0250 (3)
H6A0.15220.22790.11430.030*
H6B0.17280.15830.23520.030*
C70.32164 (11)0.16808 (7)0.02533 (14)0.0220 (3)
H70.36780.20920.07070.026*
C80.33836 (11)0.18828 (7)0.15074 (14)0.0212 (3)
H8A0.30710.24490.15920.025*
H8B0.42690.18690.21260.025*
C90.13223 (11)0.12772 (7)0.12635 (14)0.0225 (3)
H9A0.09860.18350.13620.027*
H9B0.08720.08640.17090.027*
C100.36964 (10)0.08045 (7)0.03724 (13)0.0210 (3)
H10A0.45860.07780.02230.025*
H10B0.35860.06680.15150.025*
C110.27216 (11)0.11302 (7)0.24168 (14)0.0206 (3)
H11A0.22820.11530.12460.025*
H11B0.22660.14820.29720.025*
C120.40094 (11)0.14766 (7)0.27306 (14)0.0242 (3)
H12A0.39640.20320.22260.029*
H12B0.44900.11070.22430.029*
C130.29089 (10)0.01541 (7)0.45859 (13)0.0206 (3)
C140.22837 (11)0.07451 (7)0.54113 (13)0.0206 (2)
C150.10237 (11)0.08725 (8)0.48552 (15)0.0264 (3)
H150.05420.06070.38960.032*
C160.04662 (12)0.13882 (9)0.56983 (16)0.0316 (3)
H160.03990.14680.53240.038*
C170.11626 (12)0.17845 (8)0.70758 (15)0.0299 (3)
H170.07800.21490.76350.036*
C180.24153 (12)0.16534 (7)0.76451 (15)0.0270 (3)
H180.28950.19230.86010.032*
C190.29721 (11)0.11306 (7)0.68239 (14)0.0231 (3)
H190.38330.10340.72290.028*
N10.27326 (8)0.02630 (5)0.29804 (11)0.0183 (2)
O10.46035 (8)0.15413 (6)0.44118 (10)0.0311 (2)
H1A0.52190.12260.46760.047*
O20.34988 (8)0.04282 (5)0.53714 (10)0.0301 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (6)0.0194 (5)0.0167 (5)0.0003 (4)0.0081 (5)0.0023 (4)
C20.0180 (5)0.0183 (5)0.0157 (5)0.0021 (4)0.0064 (4)0.0004 (4)
C30.0201 (6)0.0183 (5)0.0166 (5)0.0001 (4)0.0075 (4)0.0018 (4)
C40.0212 (6)0.0250 (6)0.0177 (6)0.0035 (5)0.0052 (5)0.0039 (4)
C50.0161 (6)0.0281 (6)0.0217 (6)0.0016 (5)0.0030 (5)0.0006 (5)
C60.0282 (7)0.0261 (6)0.0199 (6)0.0028 (5)0.0060 (5)0.0034 (5)
C70.0244 (6)0.0218 (6)0.0214 (6)0.0014 (5)0.0094 (5)0.0032 (5)
C80.0235 (6)0.0186 (5)0.0218 (6)0.0019 (5)0.0071 (5)0.0007 (4)
C90.0208 (6)0.0240 (6)0.0248 (6)0.0013 (5)0.0102 (5)0.0015 (5)
C100.0193 (6)0.0269 (6)0.0183 (6)0.0003 (5)0.0082 (5)0.0000 (5)
C110.0237 (6)0.0178 (5)0.0220 (6)0.0031 (4)0.0094 (5)0.0016 (4)
C120.0251 (6)0.0211 (6)0.0282 (7)0.0004 (5)0.0109 (5)0.0004 (5)
C130.0208 (6)0.0225 (6)0.0182 (6)0.0011 (5)0.0054 (5)0.0010 (4)
C140.0248 (6)0.0206 (6)0.0183 (5)0.0017 (5)0.0097 (5)0.0022 (4)
C150.0242 (6)0.0327 (7)0.0222 (6)0.0018 (5)0.0070 (5)0.0008 (5)
C160.0248 (7)0.0387 (7)0.0349 (7)0.0082 (5)0.0142 (6)0.0039 (6)
C170.0386 (8)0.0254 (6)0.0340 (7)0.0043 (6)0.0233 (6)0.0009 (5)
C180.0368 (7)0.0234 (6)0.0246 (6)0.0045 (5)0.0150 (6)0.0028 (5)
C190.0226 (6)0.0248 (6)0.0233 (6)0.0002 (5)0.0091 (5)0.0002 (5)
N10.0212 (5)0.0171 (5)0.0178 (5)0.0024 (4)0.0078 (4)0.0006 (4)
O10.0250 (5)0.0372 (5)0.0302 (5)0.0001 (4)0.0070 (4)0.0092 (4)
O20.0386 (5)0.0317 (5)0.0189 (4)0.0140 (4)0.0072 (4)0.0028 (4)
Geometric parameters (Å, º) top
C1—C91.5258 (15)C9—H9B0.9900
C1—C81.5329 (16)C10—H10A0.9900
C1—C21.5450 (15)C10—H10B0.9900
C1—H11.0000C11—N11.4783 (14)
C2—N11.4922 (14)C11—C121.5174 (16)
C2—C31.5420 (15)C11—H11A0.9900
C2—H21.0000C11—H11B0.9900
C3—C101.5293 (15)C12—O11.4175 (14)
C3—C41.5330 (15)C12—H12A0.9900
C3—H31.0000C12—H12B0.9900
C4—C51.5283 (16)C13—O21.2319 (13)
C4—H4A0.9900C13—N11.3632 (14)
C4—H4B0.9900C13—C141.4996 (16)
C5—C91.5270 (16)C14—C151.3858 (16)
C5—C61.5295 (17)C14—C191.3876 (16)
C5—H51.0000C15—C161.3867 (18)
C6—C71.5325 (16)C15—H150.9500
C6—H6A0.9900C16—C171.3766 (19)
C6—H6B0.9900C16—H160.9500
C7—C81.5230 (15)C17—C181.3793 (18)
C7—C101.5280 (16)C17—H170.9500
C7—H71.0000C18—C191.3804 (16)
C8—H8A0.9900C18—H180.9500
C8—H8B0.9900C19—H190.9500
C9—H9A0.9900O1—H1A0.8400
C9—C1—C8109.43 (9)C1—C9—H9A109.6
C9—C1—C2111.00 (9)C5—C9—H9A109.6
C8—C1—C2108.03 (9)C1—C9—H9B109.6
C9—C1—H1109.5C5—C9—H9B109.6
C8—C1—H1109.5H9A—C9—H9B108.1
C2—C1—H1109.5C7—C10—C3110.19 (9)
N1—C2—C3112.39 (9)C7—C10—H10A109.6
N1—C2—C1112.35 (9)C3—C10—H10A109.6
C3—C2—C1107.73 (9)C7—C10—H10B109.6
N1—C2—H2108.1C3—C10—H10B109.6
C3—C2—H2108.1H10A—C10—H10B108.1
C1—C2—H2108.1N1—C11—C12112.21 (9)
C10—C3—C4108.99 (9)N1—C11—H11A109.2
C10—C3—C2108.25 (9)C12—C11—H11A109.2
C4—C3—C2111.70 (9)N1—C11—H11B109.2
C10—C3—H3109.3C12—C11—H11B109.2
C4—C3—H3109.3H11A—C11—H11B107.9
C2—C3—H3109.3O1—C12—C11110.06 (10)
C5—C4—C3109.69 (9)O1—C12—H12A109.6
C5—C4—H4A109.7C11—C12—H12A109.6
C3—C4—H4A109.7O1—C12—H12B109.6
C5—C4—H4B109.7C11—C12—H12B109.6
C3—C4—H4B109.7H12A—C12—H12B108.2
H4A—C4—H4B108.2O2—C13—N1123.49 (10)
C9—C5—C4108.18 (9)O2—C13—C14118.37 (10)
C9—C5—C6110.02 (10)N1—C13—C14118.02 (10)
C4—C5—C6109.57 (10)C15—C14—C19119.26 (11)
C9—C5—H5109.7C15—C14—C13121.52 (10)
C4—C5—H5109.7C19—C14—C13119.08 (10)
C6—C5—H5109.7C14—C15—C16120.01 (12)
C5—C6—C7109.79 (9)C14—C15—H15120.0
C5—C6—H6A109.7C16—C15—H15120.0
C7—C6—H6A109.7C17—C16—C15120.22 (12)
C5—C6—H6B109.7C17—C16—H16119.9
C7—C6—H6B109.7C15—C16—H16119.9
H6A—C6—H6B108.2C16—C17—C18120.05 (12)
C8—C7—C10109.21 (9)C16—C17—H17120.0
C8—C7—C6109.21 (10)C18—C17—H17120.0
C10—C7—C6108.86 (9)C17—C18—C19119.94 (12)
C8—C7—H7109.8C17—C18—H18120.0
C10—C7—H7109.8C19—C18—H18120.0
C6—C7—H7109.8C18—C19—C14120.48 (11)
C7—C8—C1110.27 (9)C18—C19—H19119.8
C7—C8—H8A109.6C14—C19—H19119.8
C1—C8—H8A109.6C13—N1—C11116.51 (9)
C7—C8—H8B109.6C13—N1—C2117.71 (9)
C1—C8—H8B109.6C11—N1—C2117.16 (9)
H8A—C8—H8B108.1C12—O1—H1A109.5
C1—C9—C5110.23 (9)
C9—C1—C2—N167.42 (12)C4—C3—C10—C760.22 (11)
C8—C1—C2—N1172.61 (9)C2—C3—C10—C761.46 (11)
C9—C1—C2—C356.91 (12)N1—C11—C12—O165.78 (12)
C8—C1—C2—C363.06 (11)O2—C13—C14—C15121.39 (13)
N1—C2—C3—C10172.53 (9)N1—C13—C14—C1554.82 (15)
C1—C2—C3—C1063.16 (11)O2—C13—C14—C1954.31 (15)
N1—C2—C3—C467.48 (11)N1—C13—C14—C19129.49 (11)
C1—C2—C3—C456.83 (11)C19—C14—C15—C160.74 (18)
C10—C3—C4—C559.62 (12)C13—C14—C15—C16176.43 (11)
C2—C3—C4—C559.94 (12)C14—C15—C16—C170.94 (19)
C3—C4—C5—C960.20 (12)C15—C16—C17—C181.6 (2)
C3—C4—C5—C659.75 (12)C16—C17—C18—C190.61 (19)
C9—C5—C6—C758.95 (12)C17—C18—C19—C141.08 (18)
C4—C5—C6—C759.87 (12)C15—C14—C19—C181.75 (17)
C5—C6—C7—C859.44 (12)C13—C14—C19—C18177.55 (11)
C5—C6—C7—C1059.72 (12)O2—C13—N1—C11144.02 (12)
C10—C7—C8—C159.05 (12)C14—C13—N1—C1139.99 (14)
C6—C7—C8—C159.90 (12)O2—C13—N1—C22.93 (16)
C9—C1—C8—C759.43 (12)C14—C13—N1—C2173.06 (9)
C2—C1—C8—C761.54 (11)C12—C11—N1—C1380.57 (12)
C8—C1—C9—C558.41 (12)C12—C11—N1—C266.57 (12)
C2—C1—C9—C560.73 (12)C3—C2—N1—C13178.49 (9)
C4—C5—C9—C161.06 (12)C1—C2—N1—C1359.80 (13)
C6—C5—C9—C158.61 (12)C3—C2—N1—C1131.75 (13)
C8—C7—C10—C358.96 (12)C1—C2—N1—C11153.46 (9)
C6—C7—C10—C360.20 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.841.962.7735 (12)164
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H25NO2
Mr299.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.4248 (3), 16.0902 (4), 8.7211 (2)
β (°) 107.903 (1)
V3)1525.55 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.44 × 0.33 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19272, 3684, 2861
Rint0.050
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.12
No. of reflections3684
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 1999), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.841.962.7735 (12)163.6
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory, University of the Witwatersrand, for his assistance in the acquisition of the crystallographic data. This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, the University of KwaZulu–Natal and Aspen Pharmacare.

References

First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJacobson, A. R., Makris, A. N. & Sayre, L. M. (1987). J. Org. Chem, 52, 2592–2594.  CrossRef CAS Web of Science Google Scholar
First citationLee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds