organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1022-o1023

(E)-2-[1-(1-Benzo­thio­phen-3-yl)ethyl­­idene]hydrazinecarbo­thio­amide methanol hemisolvate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and bDepartment of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
*Correspondence e-mail: farina@ukm.my

(Received 23 April 2008; accepted 2 May 2008; online 10 May 2008)

The asymmetric unit of the title compound, C11H11N3S2·0.5CH4O, contains four thio­semicarbazone mol­ecules and two methanol solvent mol­ecules. Each hydrazinecarbothio­amide mol­ecule adopts an E configuration with respect to the C=N double bond and is stabilized by an intra­molecular N—H⋯N hydrogen bond, resulting in an S(5) ring motif. In the crystal structure, an extensive network of N—H⋯O, N—H⋯N, O—H⋯S and N—H⋯S hydrogen bonds and weak C—H⋯O, C—H⋯N and C—H⋯S contacts together with an S⋯S [3.5958 (14) Å] and a C—H⋯π inter­action form a three-dimensional network.

Related literature

For related structures, see: de Lima et al. (2002[Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct. 604, 287-291.]); Işık et al. (2006[Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491-o493.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al., (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3S2·0.5CH4O

  • Mr = 265.38

  • Monoclinic, P 21 /c

  • a = 18.9438 (12) Å

  • b = 17.7076 (11) Å

  • c = 15.4145 (10) Å

  • β = 107.238 (3)°

  • V = 4938.5 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 92 (2) K

  • 0.31 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.777, Tmax = 0.947

  • 65034 measured reflections

  • 10871 independent reflections

  • 8171 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.203

  • S = 1.03

  • 10871 reflections

  • 655 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.71 e Å−3

  • Δρmin = −2.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3N2⋯N1A 0.843 (10) 2.29 (4) 2.641 (4) 105 (3)
N3B—H3N3⋯N1B 0.838 (10) 2.21 (4) 2.617 (4) 110 (3)
N3C—H3N5⋯N1C 0.842 (10) 2.22 (5) 2.543 (4) 102 (4)
N3D—H3N7⋯N1D 0.841 (10) 2.29 (5) 2.643 (4) 105 (4)
N3A—H3N1⋯S2Bi 0.839 (10) 2.500 (14) 3.325 (3) 168 (4)
N3B—H3N4⋯S2Aii 0.839 (10) 2.62 (2) 3.367 (3) 149 (4)
N2B—H2NB⋯S2Aiii 0.839 (10) 2.585 (13) 3.412 (3) 169 (4)
N3C—H3N6⋯S2Aiv 0.840 (10) 2.76 (4) 3.352 (3) 129 (4)
N3C—H3N6⋯N3Bv 0.840 (10) 2.72 (3) 3.468 (5) 149 (5)
N2C—H2NC⋯S2Cvi 0.842 (10) 2.60 (2) 3.392 (3) 158 (4)
N3D—H3N8⋯S2Aiv 0.840 (10) 2.738 (15) 3.563 (3) 168 (4)
N3D—H3N7⋯O1S 0.841 (10) 2.26 (3) 2.967 (6) 142 (4)
O1S—H1S⋯S2Cvi 0.84 2.64 3.471 (5) 169
O2S—H2S⋯S2Dvii 0.84 2.97 3.389 (6) 113
C3A—H3A⋯S2Aiv 0.95 2.97 3.762 (4) 142
C10A—H10A⋯S2Bviii 0.98 2.91 3.613 (3) 129
C2B—H2B⋯O1Six 0.95 2.36 3.282 (7) 163
C2S—H2S1⋯N2Dvii 0.98 2.74 3.266 (9) 115
C10B—H10F⋯Cgx 0.98 2.91 3.594 (4) 129
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (viii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ix) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (x) -x, -y+1, -z. Cg is the centroid of C1B–C6B.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Structures similar to the title compound, (I), have been reported including the thiosemicarbazone derived from 2-acetylthiophene (Lima et al., 2002); and a pryazoline derivative (Işık et al., 2006).

The asymmetric unit of (I) contains four molecules, labeled A—D (Figs 1—4) and two methanol solvate molecules, with the complete assemblage shown in Fig. 5. Each molecule adopts an E configuration with respect to the C=N bond and bond distances and angles are normal (Allen et al., 1987). Intramolecular N3—H···N1 hydrogen bonds (Table 1) form between each of the the NH2 groups and the imine N atoms generating S(5) ring motifs (Bernstein et al., 1995). These contribute to the planarity of the molecules.

In the crystal of (I), N2—H2···S2 hydrogen bonds generate centrosymmetric R22(8) rings in molecules A—C. For molecule D, C2S—H2S1···S2D hydrogen bonding to a methanol solvate within the asymmetric unit obviates such an interaction. Other N—H···O, N—H···N, O—H···S and N—H···S hydrogen bonds together with weak C—H···O, C—H···N and C—H···S contacts, an S···S interaction (d(S1D···S1Bi) = 3.5958 (14) Å; i = x, 3/2 - y, -1/2 + z) and a C10B—H10F···Cgii interaction (ii = -x, 1 - y, -z; Cg is the centroid of the C1B···C6B ring) form a complex three dimensional network (Fig 6).

Related literature top

For related structures, see: de Lima et al. (2002); Işık et al. (2006). For reference structural data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al., (1995). Cg is the centroid of C1B–C6B.

Experimental top

A 1:1 mixture of 2-acetylbenzothiophene and thiosemicarbazide was heated under reflux in ethanol for 2 h. The solid product which separated upon cooling was filtered and recrystallized from a 1:1 mixture of acetonitrile and methanol to afford colourless, blocks of (I) in 68% yield (m.p. 483–485 K).

Refinement top

The C-bound H atoms were placed geometrically (C—H = 0.95-0.98Å) and refined as riding with Uiso=1.2Ueq(C) of 1.5Ueq(methyl C).

The N-bound H atoms were located in a difference map and refined with a distance restraint of N—H = 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(N) (carrier).

The highest residual electron density peak is 0.07 Å from O2S and the deepest hole is 0.04Å from C2S suggesting the possibility of unresolved disorder in this methanol solvate molecule.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of molecule A in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The structure of molecule B in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.
[Figure 3] Fig. 3. The structure of molecule C in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.
[Figure 4] Fig. 4. The structure of molecule D in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.
[Figure 5] Fig. 5. The asymmetric unit of (I) with intermolecular hydrogen bonds drawn as dashed lines.
[Figure 6] Fig. 6. Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.
(E)-2-[1-(1-Benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide methanol hemisolvate top
Crystal data top
C11H11N3S2·0.5(CH4O)F(000) = 2224
Mr = 265.38Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8980 reflections
a = 18.9438 (12) Åθ = 2.3–25.6°
b = 17.7076 (11) ŵ = 0.42 mm1
c = 15.4145 (10) ÅT = 92 K
β = 107.238 (3)°Block, colourless
V = 4938.5 (5) Å30.31 × 0.20 × 0.13 mm
Z = 16
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10871 independent reflections
Radiation source: fine-focus sealed tube8171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω scansθmax = 27.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2424
Tmin = 0.777, Tmax = 0.947k = 2222
65034 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1068P)2 + 8.4506P]
where P = (Fo2 + 2Fc2)/3
10871 reflections(Δ/σ)max = 0.001
655 parametersΔρmax = 1.71 e Å3
12 restraintsΔρmin = 2.31 e Å3
Crystal data top
C11H11N3S2·0.5(CH4O)V = 4938.5 (5) Å3
Mr = 265.38Z = 16
Monoclinic, P21/cMo Kα radiation
a = 18.9438 (12) ŵ = 0.42 mm1
b = 17.7076 (11) ÅT = 92 K
c = 15.4145 (10) Å0.31 × 0.20 × 0.13 mm
β = 107.238 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10871 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
8171 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.947Rint = 0.086
65034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06712 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.71 e Å3
10871 reflectionsΔρmin = 2.31 e Å3
655 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.40620 (18)0.50684 (18)0.8528 (2)0.0201 (7)
C2A0.36631 (19)0.44650 (19)0.8029 (2)0.0241 (7)
H2A0.37460.43000.74800.029*
C3A0.3144 (2)0.41176 (19)0.8364 (2)0.0254 (7)
H3A0.28720.37000.80460.030*
C4A0.3010 (2)0.4368 (2)0.9163 (3)0.0263 (8)
H4A0.26430.41250.93700.032*
C5A0.3402 (2)0.4960 (2)0.9651 (3)0.0252 (7)
H5A0.33090.51241.01930.030*
C6A0.39438 (18)0.53217 (18)0.9341 (2)0.0212 (7)
S1A0.47650 (5)0.55720 (5)0.82797 (6)0.0235 (2)
C7A0.44278 (18)0.59319 (19)0.9744 (2)0.0224 (7)
H7A0.44220.61761.02910.027*
C8A0.48976 (18)0.61239 (18)0.9258 (2)0.0200 (7)
C9A0.54827 (18)0.66957 (18)0.9473 (2)0.0207 (7)
C10A0.56188 (18)0.71682 (19)1.0314 (2)0.0223 (7)
H10A0.61080.70511.07290.033*
H10B0.52410.70581.06140.033*
H10C0.55960.77041.01500.033*
N1A0.58542 (15)0.67430 (16)0.8893 (2)0.0213 (6)
N2A0.64370 (16)0.72396 (16)0.9091 (2)0.0211 (6)
H2NA0.659 (2)0.743 (2)0.9613 (13)0.025*
C11A0.67880 (18)0.73726 (18)0.8465 (2)0.0194 (7)
S2A0.75517 (5)0.79377 (5)0.87472 (6)0.02159 (19)
N3A0.65198 (17)0.70631 (19)0.7655 (2)0.0261 (6)
H3N10.676 (2)0.714 (2)0.729 (2)0.031*
H3N20.6187 (17)0.6733 (18)0.758 (3)0.031*
C1B0.1144 (2)0.9732 (2)0.6666 (2)0.0259 (7)
C2B0.1682 (2)1.0138 (2)0.7312 (3)0.0377 (10)
H2B0.16761.01650.79260.045*
C3B0.2225 (2)1.0503 (2)0.7030 (3)0.0347 (9)
H3B0.25941.07870.74580.042*
C4B0.2239 (2)1.0461 (2)0.6135 (3)0.0295 (8)
H4B0.26141.07200.59590.035*
C5B0.1714 (2)1.0047 (2)0.5495 (3)0.0267 (8)
H5B0.17301.00150.48860.032*
C6B0.11558 (18)0.96745 (18)0.5761 (2)0.0213 (7)
S1B0.04048 (5)0.92419 (5)0.68465 (6)0.0294 (2)
C7B0.05600 (19)0.92149 (19)0.5224 (2)0.0227 (7)
H7B0.04840.91070.46000.027*
C8B0.01121 (18)0.89489 (18)0.5715 (2)0.0203 (7)
C9B0.05345 (18)0.84574 (18)0.5407 (2)0.0217 (7)
C10B0.0764 (2)0.8167 (2)0.4454 (2)0.0269 (8)
H10D0.07630.76140.44610.040*
H10E0.04170.83490.41380.040*
H10F0.12620.83490.41370.040*
N1B0.08527 (15)0.83003 (16)0.6022 (2)0.0212 (6)
N2B0.14681 (16)0.78420 (16)0.5770 (2)0.0216 (6)
H2NB0.166 (2)0.768 (2)0.5243 (13)0.026*
C11B0.17783 (18)0.76294 (19)0.6424 (2)0.0202 (7)
S2B0.25346 (5)0.70679 (5)0.61499 (6)0.0227 (2)
N3B0.14553 (16)0.78669 (17)0.7263 (2)0.0233 (6)
H3N30.1059 (13)0.811 (2)0.735 (3)0.028*
H3N40.165 (2)0.770 (2)0.765 (2)0.028*
C1C0.3583 (2)0.7371 (2)0.6860 (2)0.0258 (7)
C2C0.4354 (2)0.7437 (2)0.7138 (3)0.0297 (8)
H2C0.46610.70020.72290.036*
C3C0.4653 (2)0.8154 (2)0.7275 (3)0.0323 (9)
H3C0.51750.82140.74660.039*
C4C0.4199 (2)0.8795 (2)0.7138 (3)0.0351 (9)
H4C0.44190.92810.72430.042*
C5C0.3439 (2)0.8733 (2)0.6853 (3)0.0351 (9)
H5C0.31380.91720.67600.042*
C6C0.3117 (2)0.8011 (2)0.6700 (2)0.0266 (8)
S1C0.30752 (5)0.65375 (5)0.66624 (7)0.0281 (2)
C7C0.2349 (2)0.7803 (2)0.6387 (3)0.0287 (8)
H7C0.19550.81580.62340.034*
C8C0.2248 (2)0.70426 (19)0.6336 (2)0.0244 (7)
C9C0.1548 (2)0.6635 (2)0.6066 (2)0.0258 (7)
C10C0.0836 (2)0.7064 (2)0.5745 (3)0.0319 (9)
H10G0.07590.72300.51170.048*
H10H0.08570.75060.61350.048*
H10I0.04260.67370.57730.048*
N1C0.16139 (17)0.59049 (17)0.6156 (2)0.0297 (7)
N2C0.09860 (18)0.54666 (18)0.5948 (2)0.0346 (8)
H2NC0.0583 (14)0.559 (3)0.556 (3)0.042*
C11C0.1060 (2)0.4744 (2)0.6250 (3)0.0298 (8)
S2C0.03402 (6)0.41383 (6)0.60223 (8)0.0448 (3)
N3C0.17357 (19)0.45564 (18)0.6749 (2)0.0322 (8)
H3N50.2098 (18)0.485 (2)0.688 (3)0.050 (15)*
H3N60.184 (3)0.4118 (12)0.696 (3)0.051 (15)*
C1D0.1294 (2)0.7575 (2)0.3394 (3)0.0292 (8)
C2D0.0537 (2)0.7729 (3)0.3080 (3)0.0398 (10)
H2D0.01810.73400.30210.048*
C3D0.0326 (3)0.8473 (3)0.2858 (3)0.0445 (11)
H3D0.01840.85930.26360.053*
C4D0.0844 (3)0.9040 (3)0.2953 (3)0.0412 (10)
H4D0.06820.95430.27980.049*
C5D0.1592 (2)0.8893 (2)0.3268 (3)0.0347 (9)
H5D0.19400.92910.33340.042*
C6D0.1832 (2)0.8146 (2)0.3492 (2)0.0277 (8)
S1D0.16977 (5)0.66977 (5)0.37222 (7)0.0311 (2)
C7D0.2567 (2)0.7850 (2)0.3818 (2)0.0272 (8)
H7D0.30000.81490.39170.033*
C8D0.2576 (2)0.7092 (2)0.3971 (2)0.0252 (7)
C9D0.32188 (19)0.6605 (2)0.4331 (2)0.0245 (7)
C10D0.3983 (2)0.6910 (2)0.4466 (3)0.0341 (9)
H10J0.42620.68850.51120.051*
H10K0.39510.74360.42610.051*
H10L0.42340.66080.41130.051*
N1D0.30772 (17)0.59253 (17)0.4530 (2)0.0291 (7)
N2D0.36755 (19)0.54664 (19)0.4909 (3)0.0376 (8)
H2ND0.4088 (15)0.560 (3)0.486 (4)0.060 (17)*
C11D0.3565 (2)0.4790 (2)0.5254 (3)0.0313 (8)
S2D0.43168 (7)0.42374 (7)0.57328 (9)0.0476 (3)
N3D0.28874 (19)0.45965 (18)0.5210 (2)0.0317 (7)
H3N70.2536 (17)0.489 (2)0.496 (3)0.038*
H3N80.284 (3)0.4170 (13)0.542 (3)0.038 (13)*
O1S0.1306 (3)0.4894 (3)0.4258 (4)0.0888 (14)
H1S0.09440.51870.41860.133*
C1S0.1058 (5)0.4166 (4)0.4115 (5)0.087 (2)
H1S10.11500.39070.47000.130*
H1S20.13210.39030.37430.130*
H1S30.05270.41660.37990.130*
O2S0.5431 (3)0.5968 (3)0.6341 (4)0.0867 (12)
H2S0.56370.62790.60840.130*
C2S0.5875 (4)0.5453 (4)0.6686 (5)0.0867 (12)
H2S10.56900.49720.63900.130*
H2S20.59250.54170.73360.130*
H2S30.63570.55650.66040.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0172 (16)0.0190 (15)0.0232 (16)0.0036 (12)0.0044 (13)0.0020 (13)
C2A0.0233 (18)0.0233 (17)0.0233 (17)0.0026 (13)0.0034 (14)0.0008 (14)
C3A0.0215 (17)0.0193 (16)0.0299 (18)0.0008 (13)0.0009 (14)0.0008 (14)
C4A0.0233 (18)0.0225 (17)0.0321 (19)0.0027 (14)0.0066 (15)0.0042 (14)
C5A0.0221 (17)0.0248 (17)0.0305 (18)0.0023 (13)0.0106 (14)0.0021 (14)
C6A0.0184 (16)0.0195 (15)0.0250 (17)0.0019 (13)0.0051 (13)0.0008 (13)
S1A0.0239 (4)0.0254 (4)0.0230 (4)0.0015 (3)0.0099 (3)0.0025 (3)
C7A0.0177 (16)0.0219 (16)0.0264 (17)0.0003 (13)0.0048 (13)0.0024 (14)
C8A0.0181 (16)0.0184 (15)0.0220 (16)0.0021 (12)0.0036 (13)0.0009 (13)
C9A0.0183 (16)0.0207 (15)0.0246 (17)0.0035 (13)0.0087 (13)0.0047 (13)
C10A0.0161 (16)0.0240 (16)0.0264 (17)0.0022 (13)0.0058 (13)0.0026 (14)
N1A0.0154 (13)0.0234 (14)0.0245 (14)0.0005 (11)0.0052 (11)0.0016 (11)
N2A0.0171 (14)0.0252 (14)0.0227 (14)0.0016 (11)0.0084 (11)0.0004 (12)
C11A0.0165 (15)0.0199 (15)0.0217 (16)0.0059 (12)0.0055 (12)0.0045 (13)
S2A0.0189 (4)0.0245 (4)0.0226 (4)0.0021 (3)0.0080 (3)0.0015 (3)
N3A0.0196 (15)0.0372 (17)0.0234 (15)0.0058 (13)0.0094 (12)0.0016 (13)
C1B0.0258 (18)0.0249 (17)0.0278 (18)0.0029 (14)0.0094 (14)0.0011 (14)
C2B0.041 (2)0.042 (2)0.030 (2)0.0145 (19)0.0110 (18)0.0093 (18)
C3B0.030 (2)0.033 (2)0.040 (2)0.0115 (16)0.0085 (17)0.0105 (17)
C4B0.0217 (18)0.0255 (18)0.044 (2)0.0058 (14)0.0135 (16)0.0048 (16)
C5B0.0233 (18)0.0245 (17)0.035 (2)0.0019 (14)0.0126 (15)0.0027 (15)
C6B0.0189 (16)0.0187 (15)0.0256 (17)0.0002 (12)0.0055 (13)0.0002 (13)
S1B0.0309 (5)0.0340 (5)0.0245 (4)0.0113 (4)0.0102 (4)0.0034 (4)
C7B0.0190 (16)0.0217 (16)0.0270 (17)0.0013 (13)0.0061 (13)0.0008 (14)
C8B0.0190 (16)0.0177 (15)0.0236 (16)0.0005 (12)0.0051 (13)0.0003 (13)
C9B0.0186 (16)0.0203 (16)0.0256 (17)0.0032 (13)0.0056 (13)0.0015 (13)
C10B0.0220 (18)0.0335 (19)0.0258 (18)0.0078 (15)0.0080 (14)0.0050 (15)
N1B0.0161 (14)0.0225 (14)0.0252 (14)0.0016 (11)0.0068 (11)0.0015 (11)
N2B0.0172 (14)0.0250 (14)0.0227 (14)0.0032 (11)0.0061 (11)0.0004 (12)
C11B0.0160 (15)0.0221 (16)0.0228 (16)0.0048 (12)0.0062 (12)0.0022 (13)
S2B0.0205 (4)0.0264 (4)0.0220 (4)0.0052 (3)0.0075 (3)0.0001 (3)
N3B0.0171 (14)0.0313 (16)0.0217 (14)0.0048 (12)0.0060 (11)0.0023 (12)
C1C0.0257 (18)0.0245 (17)0.0251 (17)0.0020 (14)0.0045 (14)0.0001 (14)
C2C0.0250 (19)0.0319 (19)0.0292 (19)0.0023 (15)0.0036 (15)0.0008 (16)
C3C0.0253 (19)0.039 (2)0.031 (2)0.0068 (16)0.0054 (16)0.0047 (17)
C4C0.038 (2)0.0288 (19)0.036 (2)0.0118 (17)0.0081 (17)0.0033 (17)
C5C0.038 (2)0.0220 (18)0.042 (2)0.0034 (16)0.0062 (18)0.0031 (16)
C6C0.0262 (19)0.0250 (17)0.0275 (18)0.0027 (14)0.0061 (14)0.0033 (14)
S1C0.0214 (4)0.0215 (4)0.0368 (5)0.0010 (3)0.0014 (4)0.0024 (4)
C7C0.0283 (19)0.0264 (18)0.0300 (19)0.0002 (15)0.0065 (15)0.0014 (15)
C8C0.0240 (18)0.0226 (17)0.0244 (17)0.0028 (14)0.0035 (14)0.0041 (14)
C9C0.0237 (18)0.0235 (17)0.0267 (18)0.0004 (14)0.0019 (14)0.0020 (14)
C10C0.0204 (18)0.0278 (19)0.041 (2)0.0020 (14)0.0009 (16)0.0064 (16)
N1C0.0202 (15)0.0247 (15)0.0375 (18)0.0022 (12)0.0019 (13)0.0025 (13)
N2C0.0241 (17)0.0233 (15)0.045 (2)0.0010 (13)0.0070 (14)0.0090 (14)
C11C0.030 (2)0.0226 (17)0.0310 (19)0.0027 (15)0.0001 (15)0.0013 (15)
S2C0.0349 (6)0.0298 (5)0.0523 (7)0.0090 (4)0.0136 (5)0.0164 (5)
N3C0.0283 (17)0.0222 (16)0.0359 (18)0.0032 (13)0.0060 (14)0.0041 (14)
C1D0.028 (2)0.0323 (19)0.0278 (18)0.0034 (15)0.0088 (15)0.0008 (15)
C2D0.027 (2)0.054 (3)0.040 (2)0.0070 (19)0.0124 (17)0.008 (2)
C3D0.036 (2)0.057 (3)0.042 (2)0.021 (2)0.0135 (19)0.009 (2)
C4D0.050 (3)0.037 (2)0.043 (2)0.016 (2)0.023 (2)0.0097 (19)
C5D0.043 (2)0.0285 (19)0.036 (2)0.0057 (17)0.0164 (18)0.0034 (17)
C6D0.030 (2)0.0279 (18)0.0256 (18)0.0026 (15)0.0094 (15)0.0015 (15)
S1D0.0210 (5)0.0279 (5)0.0415 (5)0.0019 (4)0.0045 (4)0.0037 (4)
C7D0.0275 (19)0.0286 (18)0.0246 (18)0.0000 (14)0.0064 (14)0.0024 (14)
C8D0.0223 (17)0.0237 (17)0.0275 (18)0.0039 (14)0.0041 (14)0.0005 (14)
C9D0.0198 (17)0.0278 (18)0.0239 (17)0.0037 (14)0.0033 (13)0.0030 (14)
C10D0.0218 (19)0.0304 (19)0.046 (2)0.0019 (15)0.0044 (17)0.0099 (18)
N1D0.0234 (16)0.0246 (15)0.0361 (17)0.0020 (12)0.0038 (13)0.0047 (13)
N2D0.0237 (17)0.0310 (17)0.057 (2)0.0019 (14)0.0092 (16)0.0149 (16)
C11D0.032 (2)0.0236 (18)0.036 (2)0.0032 (15)0.0071 (16)0.0038 (16)
S2D0.0374 (6)0.0426 (6)0.0628 (8)0.0165 (5)0.0150 (5)0.0240 (6)
N3D0.0286 (18)0.0218 (15)0.045 (2)0.0031 (13)0.0112 (15)0.0087 (14)
O1S0.089 (4)0.094 (4)0.089 (3)0.009 (3)0.035 (3)0.003 (3)
C1S0.111 (6)0.074 (5)0.080 (5)0.010 (4)0.034 (4)0.018 (4)
O2S0.099 (3)0.064 (2)0.097 (3)0.013 (2)0.030 (2)0.002 (2)
C2S0.099 (3)0.064 (2)0.097 (3)0.013 (2)0.030 (2)0.002 (2)
Geometric parameters (Å, º) top
C1A—C2A1.400 (5)C3C—H3C0.9500
C1A—C6A1.410 (5)C4C—C5C1.379 (6)
C1A—S1A1.737 (3)C4C—H4C0.9500
C2A—C3A1.384 (5)C5C—C6C1.406 (5)
C2A—H2A0.9500C5C—H5C0.9500
C3A—C4A1.400 (5)C6C—C7C1.439 (5)
C3A—H3A0.9500S1C—C8C1.744 (4)
C4A—C5A1.373 (5)C7C—C8C1.359 (5)
C4A—H4A0.9500C7C—H7C0.9500
C5A—C6A1.407 (5)C8C—C9C1.458 (5)
C5A—H5A0.9500C9C—N1C1.303 (5)
C6A—C7A1.434 (5)C9C—C10C1.499 (5)
S1A—C8A1.751 (3)C10C—H10G0.9800
C7A—C8A1.366 (5)C10C—H10H0.9800
C7A—H7A0.9500C10C—H10I0.9800
C8A—C9A1.465 (5)N1C—N2C1.376 (4)
C9A—N1A1.294 (4)N2C—C11C1.355 (5)
C9A—C10A1.501 (5)N2C—H2NC0.842 (10)
C10A—H10A0.9800C11C—N3C1.326 (5)
C10A—H10B0.9800C11C—S2C1.687 (4)
C10A—H10C0.9800N3C—H3N50.842 (10)
N1A—N2A1.373 (4)N3C—H3N60.840 (10)
N2A—C11A1.346 (4)C1D—C2D1.396 (5)
N2A—H2NA0.841 (10)C1D—C6D1.412 (5)
C11A—N3A1.319 (4)C1D—S1D1.740 (4)
C11A—S2A1.706 (3)C2D—C3D1.390 (6)
N3A—H3N10.839 (10)C2D—H2D0.9500
N3A—H3N20.843 (10)C3D—C4D1.382 (7)
C1B—C2B1.395 (5)C3D—H3D0.9500
C1B—C6B1.405 (5)C4D—C5D1.379 (6)
C1B—S1B1.739 (4)C4D—H4D0.9500
C2B—C3B1.390 (6)C5D—C6D1.408 (5)
C2B—H2B0.9500C5D—H5D0.9500
C3B—C4B1.390 (6)C6D—C7D1.432 (5)
C3B—H3B0.9500S1D—C8D1.739 (4)
C4B—C5B1.386 (5)S1D—S1Bi3.5958 (14)
C4B—H4B0.9500C7D—C8D1.362 (5)
C5B—C6B1.407 (5)C7D—H7D0.9500
C5B—H5B0.9500C8D—C9D1.461 (5)
C6B—C7B1.438 (5)C9D—N1D1.290 (5)
S1B—C8B1.746 (3)C9D—C10D1.500 (5)
C7B—C8B1.376 (5)C10D—H10J0.9800
C7B—H7B0.9500C10D—H10K0.9800
C8B—C9B1.462 (5)C10D—H10L0.9800
C9B—N1B1.296 (5)N1D—N2D1.376 (4)
C9B—C10B1.495 (5)N2D—C11D1.352 (5)
C10B—H10D0.9800N2D—H2ND0.842 (10)
C10B—H10E0.9800C11D—N3D1.311 (5)
C10B—H10F0.9800C11D—S2D1.705 (4)
N1B—N2B1.379 (4)N3D—H3N70.841 (10)
N2B—C11B1.362 (4)N3D—H3N80.840 (10)
N2B—H2NB0.839 (10)O1S—C1S1.367 (8)
C11B—N3B1.325 (4)O1S—H1S0.8400
C11B—S2B1.692 (3)C1S—H1S10.9800
N3B—H3N30.838 (10)C1S—H1S20.9800
N3B—H3N40.839 (10)C1S—H1S30.9800
C1C—C2C1.399 (5)O2S—C2S1.248 (8)
C1C—C6C1.413 (5)O2S—H2S0.8400
C1C—S1C1.738 (4)C2S—H2S10.9800
C2C—C3C1.381 (5)C2S—H2S20.9800
C2C—H2C0.9500C2S—H2S30.9800
C3C—C4C1.401 (6)
C2A—C1A—C6A121.9 (3)C4C—C3C—H3C119.5
C2A—C1A—S1A126.5 (3)C5C—C4C—C3C121.3 (4)
C6A—C1A—S1A111.5 (2)C5C—C4C—H4C119.3
C3A—C2A—C1A117.5 (3)C3C—C4C—H4C119.3
C3A—C2A—H2A121.3C4C—C5C—C6C119.0 (4)
C1A—C2A—H2A121.3C4C—C5C—H5C120.5
C2A—C3A—C4A121.4 (3)C6C—C5C—H5C120.5
C2A—C3A—H3A119.3C5C—C6C—C1C118.9 (3)
C4A—C3A—H3A119.3C5C—C6C—C7C129.4 (4)
C5A—C4A—C3A120.9 (3)C1C—C6C—C7C111.7 (3)
C5A—C4A—H4A119.5C1C—S1C—C8C91.05 (17)
C3A—C4A—H4A119.5C8C—C7C—C6C112.6 (3)
C4A—C5A—C6A119.5 (3)C8C—C7C—H7C123.7
C4A—C5A—H5A120.3C6C—C7C—H7C123.7
C6A—C5A—H5A120.3C7C—C8C—C9C127.4 (3)
C5A—C6A—C1A118.7 (3)C7C—C8C—S1C113.1 (3)
C5A—C6A—C7A129.2 (3)C9C—C8C—S1C119.5 (3)
C1A—C6A—C7A112.1 (3)N1C—C9C—C8C114.2 (3)
C1A—S1A—C8A91.19 (16)N1C—C9C—C10C125.9 (3)
C8A—C7A—C6A112.7 (3)C8C—C9C—C10C119.8 (3)
C8A—C7A—H7A123.6C9C—C10C—H10G109.5
C6A—C7A—H7A123.6C9C—C10C—H10H109.5
C7A—C8A—C9A128.3 (3)H10G—C10C—H10H109.5
C7A—C8A—S1A112.5 (3)C9C—C10C—H10I109.5
C9A—C8A—S1A119.1 (3)H10G—C10C—H10I109.5
N1A—C9A—C8A114.7 (3)H10H—C10C—H10I109.5
N1A—C9A—C10A124.9 (3)C9C—N1C—N2C119.1 (3)
C8A—C9A—C10A120.4 (3)C11C—N2C—N1C117.3 (3)
C9A—C10A—H10A109.5C11C—N2C—H2NC117 (3)
C9A—C10A—H10B109.5N1C—N2C—H2NC124 (3)
H10A—C10A—H10B109.5N3C—C11C—N2C114.8 (3)
C9A—C10A—H10C109.5N3C—C11C—S2C122.9 (3)
H10A—C10A—H10C109.5N2C—C11C—S2C122.3 (3)
H10B—C10A—H10C109.5C11C—N3C—H3N5124 (4)
C9A—N1A—N2A117.0 (3)C11C—N3C—H3N6122 (4)
C11A—N2A—N1A119.2 (3)H3N5—N3C—H3N6114 (5)
C11A—N2A—H2NA120 (3)C2D—C1D—C6D122.1 (4)
N1A—N2A—H2NA120 (3)C2D—C1D—S1D126.4 (3)
N3A—C11A—N2A118.2 (3)C6D—C1D—S1D111.5 (3)
N3A—C11A—S2A123.0 (3)C3D—C2D—C1D117.4 (4)
N2A—C11A—S2A118.8 (3)C3D—C2D—H2D121.3
C11A—N3A—H3N1116 (3)C1D—C2D—H2D121.3
C11A—N3A—H3N2119 (3)C4D—C3D—C2D121.3 (4)
H3N1—N3A—H3N2124 (4)C4D—C3D—H3D119.3
C2B—C1B—C6B121.5 (3)C2D—C3D—H3D119.3
C2B—C1B—S1B126.5 (3)C5D—C4D—C3D121.5 (4)
C6B—C1B—S1B111.9 (3)C5D—C4D—H4D119.2
C3B—C2B—C1B117.9 (4)C3D—C4D—H4D119.2
C3B—C2B—H2B121.0C4D—C5D—C6D119.2 (4)
C1B—C2B—H2B121.0C4D—C5D—H5D120.4
C2B—C3B—C4B121.3 (4)C6D—C5D—H5D120.4
C2B—C3B—H3B119.4C5D—C6D—C1D118.4 (4)
C4B—C3B—H3B119.4C5D—C6D—C7D129.8 (4)
C5B—C4B—C3B120.9 (4)C1D—C6D—C7D111.8 (3)
C5B—C4B—H4B119.5C8D—S1D—C1D90.87 (18)
C3B—C4B—H4B119.5C8D—S1D—S1Bi137.93 (13)
C4B—C5B—C6B118.9 (4)C1D—S1D—S1Bi92.50 (13)
C4B—C5B—H5B120.5C8D—C7D—C6D112.5 (3)
C6B—C5B—H5B120.5C8D—C7D—H7D123.8
C1B—C6B—C5B119.3 (3)C6D—C7D—H7D123.8
C1B—C6B—C7B111.8 (3)C7D—C8D—C9D127.8 (3)
C5B—C6B—C7B128.9 (3)C7D—C8D—S1D113.3 (3)
C1B—S1B—C8B91.17 (17)C9D—C8D—S1D118.8 (3)
C8B—C7B—C6B112.6 (3)N1D—C9D—C8D115.6 (3)
C8B—C7B—H7B123.7N1D—C9D—C10D124.3 (3)
C6B—C7B—H7B123.7C8D—C9D—C10D120.1 (3)
C7B—C8B—C9B128.3 (3)C9D—C10D—H10J109.5
C7B—C8B—S1B112.5 (3)C9D—C10D—H10K109.5
C9B—C8B—S1B119.2 (3)H10J—C10D—H10K109.5
N1B—C9B—C8B114.7 (3)C9D—C10D—H10L109.5
N1B—C9B—C10B125.7 (3)H10J—C10D—H10L109.5
C8B—C9B—C10B119.7 (3)H10K—C10D—H10L109.5
C9B—C10B—H10D109.5C9D—N1D—N2D116.7 (3)
C9B—C10B—H10E109.5C11D—N2D—N1D119.1 (3)
H10D—C10B—H10E109.5C11D—N2D—H2ND123 (4)
C9B—C10B—H10F109.5N1D—N2D—H2ND117 (4)
H10D—C10B—H10F109.5N3D—C11D—N2D118.3 (3)
H10E—C10B—H10F109.5N3D—C11D—S2D123.5 (3)
C9B—N1B—N2B117.2 (3)N2D—C11D—S2D118.2 (3)
C11B—N2B—N1B117.9 (3)C11D—N3D—H3N7120 (3)
C11B—N2B—H2NB118 (3)C11D—N3D—H3N8116 (3)
N1B—N2B—H2NB125 (3)H3N7—N3D—H3N8124 (5)
N3B—C11B—N2B117.4 (3)C1S—O1S—H1S109.5
N3B—C11B—S2B122.8 (3)O1S—C1S—H1S1109.5
N2B—C11B—S2B119.8 (3)O1S—C1S—H1S2109.5
C11B—N3B—H3N3116 (3)H1S1—C1S—H1S2109.5
C11B—N3B—H3N4115 (3)O1S—C1S—H1S3109.5
H3N3—N3B—H3N4129 (4)H1S1—C1S—H1S3109.5
C2C—C1C—C6C121.8 (3)H1S2—C1S—H1S3109.5
C2C—C1C—S1C126.7 (3)C2S—O2S—H2S109.5
C6C—C1C—S1C111.5 (3)O2S—C2S—H2S1109.5
C3C—C2C—C1C117.9 (4)O2S—C2S—H2S2109.5
C3C—C2C—H2C121.1H2S1—C2S—H2S2109.5
C1C—C2C—H2C121.1O2S—C2S—H2S3109.5
C2C—C3C—C4C121.0 (4)H2S1—C2S—H2S3109.5
C2C—C3C—H3C119.5H2S2—C2S—H2S3109.5
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3N2···N1A0.84 (1)2.29 (4)2.641 (4)105 (3)
N3B—H3N3···N1B0.84 (1)2.21 (4)2.617 (4)110 (3)
N3C—H3N5···N1C0.84 (1)2.22 (5)2.543 (4)102 (4)
N3D—H3N7···N1D0.84 (1)2.29 (5)2.643 (4)105 (4)
N3A—H3N1···S2Bii0.84 (1)2.50 (1)3.325 (3)168 (4)
N3B—H3N4···S2Aiii0.84 (1)2.62 (2)3.367 (3)149 (4)
N2B—H2NB···S2Aiv0.84 (1)2.59 (1)3.412 (3)169 (4)
N3C—H3N6···S2Av0.84 (1)2.76 (4)3.352 (3)129 (4)
N3C—H3N6···N3Bvi0.84 (1)2.72 (3)3.468 (5)149 (5)
N2C—H2NC···S2Cvii0.84 (1)2.60 (2)3.392 (3)158 (4)
N3D—H3N8···S2Av0.84 (1)2.74 (2)3.563 (3)168 (4)
N3D—H3N7···O1S0.84 (1)2.26 (3)2.967 (6)142 (4)
O1S—H1S···S2Cvii0.842.643.471 (5)169
O2S—H2S···S2Dviii0.842.973.389 (6)113
C3A—H3A···S2Av0.952.973.762 (4)142
C10A—H10A···S2Bix0.982.913.613 (3)129
C2B—H2B···O1Sx0.952.363.282 (7)163
C2S—H2S1···N2Dviii0.982.743.266 (9)115
C10B—H10F···Cgxi0.982.913.594 (4)129
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y+3/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x, y1/2, z+3/2; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y+3/2, z+1/2; (x) x, y+3/2, z+1/2; (xi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H11N3S2·0.5(CH4O)
Mr265.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)92
a, b, c (Å)18.9438 (12), 17.7076 (11), 15.4145 (10)
β (°) 107.238 (3)
V3)4938.5 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.31 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.777, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
65034, 10871, 8171
Rint0.086
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.203, 1.03
No. of reflections10871
No. of parameters655
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.71, 2.31

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3N2···N1A0.843 (10)2.29 (4)2.641 (4)105 (3)
N3B—H3N3···N1B0.838 (10)2.21 (4)2.617 (4)110 (3)
N3C—H3N5···N1C0.842 (10)2.22 (5)2.543 (4)102 (4)
N3D—H3N7···N1D0.841 (10)2.29 (5)2.643 (4)105 (4)
N3A—H3N1···S2Bi0.839 (10)2.500 (14)3.325 (3)168 (4)
N3B—H3N4···S2Aii0.839 (10)2.62 (2)3.367 (3)149 (4)
N2B—H2NB···S2Aiii0.839 (10)2.585 (13)3.412 (3)169 (4)
N3C—H3N6···S2Aiv0.840 (10)2.76 (4)3.352 (3)129 (4)
N3C—H3N6···N3Bv0.840 (10)2.72 (3)3.468 (5)149 (5)
N2C—H2NC···S2Cvi0.842 (10)2.60 (2)3.392 (3)158 (4)
N3D—H3N8···S2Aiv0.840 (10)2.738 (15)3.563 (3)168 (4)
N3D—H3N7···O1S0.841 (10)2.26 (3)2.967 (6)142 (4)
O1S—H1S···S2Cvi0.842.643.471 (5)169
O2S—H2S···S2Dvii0.842.973.389 (6)113
C3A—H3A···S2Aiv0.952.973.762 (4)142
C10A—H10A···S2Bviii0.982.913.613 (3)129
C2B—H2B···O1Six0.952.363.282 (7)163
C2S—H2S1···N2Dvii0.982.743.266 (9)115
C10B—H10F···Cgx0.982.913.594 (4)129
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x, y1/2, z+3/2; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y+3/2, z+1/2; (ix) x, y+3/2, z+1/2; (x) x, y+1, z.
 

Acknowledgements

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant UKM-ST-01-FRGS0022-2006. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationIşık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct. 604, 287–291.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1022-o1023
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds