organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2-[4-(di­methyl­amino)benzyl­­idene]hydrazine­carboxyl­ate at 123 K

aResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 7 May 2008; accepted 9 May 2008; online 14 May 2008)

The approximately planar molecule of the title compound, C11H15N3O2, is in an E configuration with respect to the N=C double bond. An inter­molecular N—H⋯O hydrogen bond links the mol­ecules into a one-dimensional chain propagating in the [010] direction.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]). For a related structure, see: Shi & Yuan (2006[Shi, X.-F. & Yuan, C.-C. (2006). Acta Cryst. E62, o3290-o3291.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2

  • Mr = 221.26

  • Orthorhombic, P b c a

  • a = 13.051 (3) Å

  • b = 9.838 (2) Å

  • c = 18.637 (4) Å

  • V = 2392.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • 0.29 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.981

  • 19378 measured reflections

  • 2111 independent reflections

  • 1592 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.11

  • 2111 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 2.16 2.976 (2) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for many years due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). As a further investigation of this type of material, the crystal structure of the title compound, C11H15N3O2, (I), is described here.

All the nonhydrogen atoms are coplanar to within ±0.1429 (14)Å (Fig. 1) in (I). The molecule is in an E conformation with respect to the N=C double bond. The bond lengths and angles of the C=N—N(H)—C groups are similar to those in related compounds (Shi et al., 2006).

An intermolecular N—H···O hydrogen bond (Table 1) links the molecules into a one-dimensional chain aligned along the b direction (Fig. 2).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987). For a related structure, see: Shi & Yuan (2006).

Experimental top

4-(Dimethylamino)benzaldehyde (14.9 g, 0.1 mol) and methyl hydrazinecarboxylate (9.0 g, 0.1 mol) were dissolved in stirred methanol (50 ml) and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 452–454 K).

Refinement top

The H atoms were geometrically placed (C—H = 0.93-0.96Å, N—H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The crystal packing in (II), viewed approximately down the a axis with hydrogen bonds indicated by dashed lines.
(E)-Methyl 2-[4-(dimethylamino)benzylidene]hydrazinecarboxylate top
Crystal data top
C11H15N3O2F(000) = 944
Mr = 221.26Dx = 1.228 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2111 reflections
a = 13.051 (3) Åθ = 2.2–25.0°
b = 9.838 (2) ŵ = 0.09 mm1
c = 18.637 (4) ÅT = 123 K
V = 2392.9 (9) Å3Block, colourless
Z = 80.29 × 0.26 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
2111 independent reflections
Radiation source: fine-focus sealed tube1592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1515
Tmin = 0.979, Tmax = 0.981k = 1111
19378 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.3078P]
where P = (Fo2 + 2Fc2)/3
2111 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H15N3O2V = 2392.9 (9) Å3
Mr = 221.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.051 (3) ŵ = 0.09 mm1
b = 9.838 (2) ÅT = 123 K
c = 18.637 (4) Å0.29 × 0.26 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
2111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1592 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.038
19378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.11Δρmax = 0.23 e Å3
2111 reflectionsΔρmin = 0.27 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.27645 (11)0.23338 (15)0.56388 (7)0.0539 (4)
C90.29967 (13)0.13610 (19)0.60663 (9)0.0546 (5)
H90.28970.04690.59160.066*
O20.17803 (10)0.22366 (12)0.38955 (6)0.0610 (4)
N30.23964 (12)0.19224 (14)0.49757 (7)0.0554 (4)
H30.23630.10720.48710.067*
O10.20751 (10)0.40732 (12)0.45884 (7)0.0656 (4)
C30.42170 (14)0.20049 (17)0.81830 (9)0.0536 (4)
C80.34112 (13)0.16094 (17)0.67786 (9)0.0513 (4)
C50.40355 (14)0.31063 (17)0.77132 (10)0.0567 (5)
H50.41820.39860.78650.068*
C100.20925 (12)0.28641 (17)0.44977 (9)0.0492 (4)
N10.45818 (14)0.22037 (16)0.88679 (9)0.0725 (5)
C70.36472 (13)0.29041 (18)0.70360 (10)0.0542 (4)
H70.35380.36520.67410.065*
C60.35985 (14)0.05251 (18)0.72400 (10)0.0593 (5)
H60.34530.03520.70850.071*
C40.39921 (15)0.07084 (18)0.79189 (10)0.0621 (5)
H40.41110.00460.82080.075*
C110.14121 (16)0.30910 (19)0.33264 (10)0.0667 (5)
H11A0.12160.25380.29250.100*
H11B0.19450.37070.31830.100*
H11C0.08300.35990.34910.100*
C10.48056 (19)0.1055 (2)0.93250 (11)0.0833 (7)
H1A0.50570.13730.97790.125*
H1B0.53160.04940.91010.125*
H1C0.41930.05340.93980.125*
C20.48463 (18)0.3522 (2)0.91387 (11)0.0787 (6)
H2A0.50900.34390.96230.118*
H2B0.42520.40980.91300.118*
H2C0.53740.39120.88450.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0641 (9)0.0466 (9)0.0509 (9)0.0017 (6)0.0001 (7)0.0056 (7)
C90.0610 (10)0.0438 (10)0.0590 (11)0.0027 (8)0.0039 (8)0.0028 (8)
O20.0838 (9)0.0425 (7)0.0568 (8)0.0004 (6)0.0117 (6)0.0050 (6)
N30.0736 (10)0.0383 (8)0.0544 (9)0.0020 (6)0.0048 (7)0.0056 (6)
O10.0912 (9)0.0344 (7)0.0713 (9)0.0016 (6)0.0085 (7)0.0070 (6)
C30.0545 (10)0.0476 (10)0.0588 (11)0.0041 (7)0.0009 (8)0.0036 (8)
C80.0537 (9)0.0449 (9)0.0555 (11)0.0020 (7)0.0052 (8)0.0011 (8)
C50.0671 (11)0.0407 (10)0.0622 (11)0.0004 (8)0.0026 (9)0.0013 (8)
C100.0564 (9)0.0376 (9)0.0537 (10)0.0007 (7)0.0042 (8)0.0053 (7)
N10.0990 (13)0.0545 (10)0.0639 (10)0.0029 (9)0.0233 (9)0.0063 (8)
C70.0626 (10)0.0429 (9)0.0571 (11)0.0038 (8)0.0000 (8)0.0074 (8)
C60.0717 (11)0.0401 (9)0.0660 (12)0.0005 (8)0.0003 (9)0.0013 (8)
C40.0780 (12)0.0444 (10)0.0639 (12)0.0062 (9)0.0030 (9)0.0113 (8)
C110.0797 (13)0.0577 (12)0.0628 (12)0.0020 (9)0.0115 (10)0.0015 (9)
C10.0978 (16)0.0752 (15)0.0768 (14)0.0021 (12)0.0256 (12)0.0202 (11)
C20.0936 (15)0.0716 (14)0.0708 (13)0.0055 (11)0.0135 (11)0.0009 (12)
Geometric parameters (Å, º) top
N2—C91.282 (2)N1—C21.434 (3)
N2—N31.386 (2)N1—C11.445 (2)
C9—C81.454 (2)C7—H70.9300
C9—H90.9300C6—C41.377 (3)
O2—C101.344 (2)C6—H60.9300
O2—C111.436 (2)C4—H40.9300
N3—C101.345 (2)C11—H11A0.9600
N3—H30.8600C11—H11B0.9600
O1—C101.202 (2)C11—H11C0.9600
C3—N11.376 (2)C1—H1A0.9600
C3—C41.398 (2)C1—H1B0.9600
C3—C51.413 (2)C1—H1C0.9600
C8—C61.392 (2)C2—H2A0.9600
C8—C71.395 (2)C2—H2B0.9600
C5—C71.374 (3)C2—H2C0.9600
C5—H50.9300
C9—N2—N3114.71 (15)C8—C7—H7119.0
N2—C9—C8122.00 (16)C4—C6—C8122.19 (17)
N2—C9—H9119.0C4—C6—H6118.9
C8—C9—H9119.0C8—C6—H6118.9
C10—O2—C11116.70 (13)C6—C4—C3121.41 (16)
C10—N3—N2119.44 (14)C6—C4—H4119.3
C10—N3—H3120.3C3—C4—H4119.3
N2—N3—H3120.3O2—C11—H11A109.5
N1—C3—C4121.92 (16)O2—C11—H11B109.5
N1—C3—C5121.59 (16)H11A—C11—H11B109.5
C4—C3—C5116.49 (16)O2—C11—H11C109.5
C6—C8—C7116.64 (16)H11A—C11—H11C109.5
C6—C8—C9120.04 (16)H11B—C11—H11C109.5
C7—C8—C9123.32 (16)N1—C1—H1A109.5
C7—C5—C3121.32 (16)N1—C1—H1B109.5
C7—C5—H5119.3H1A—C1—H1B109.5
C3—C5—H5119.3N1—C1—H1C109.5
O1—C10—O2124.50 (16)H1A—C1—H1C109.5
O1—C10—N3126.45 (16)H1B—C1—H1C109.5
O2—C10—N3109.03 (14)N1—C2—H2A109.5
C3—N1—C2122.56 (16)N1—C2—H2B109.5
C3—N1—C1120.36 (17)H2A—C2—H2B109.5
C2—N1—C1116.83 (17)N1—C2—H2C109.5
C5—C7—C8121.95 (16)H2A—C2—H2C109.5
C5—C7—H7119.0H2B—C2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.162.976 (2)157
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H15N3O2
Mr221.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)13.051 (3), 9.838 (2), 18.637 (4)
V3)2392.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
19378, 2111, 1592
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.11
No. of reflections2111
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.162.976 (2)157
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the financial support of Zhejiang University of Technology, China.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F. & Yuan, C.-C. (2006). Acta Cryst. E62, o3290–o3291.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds