organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Amino-5-bromo­pyridin-3-yl)­iminometh­yl]phenol

aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: mjzhangtju@163.com

(Received 21 March 2008; accepted 26 March 2008; online 10 May 2008)

In the mol­ecule of the title compound, C12H10BrN3O, the pyridine and benzene rings are oriented at a dihedral angle of 34.93 (3)°. Intra­molecular N—H⋯N and N—H⋯Br hydrogen bonds result in the formation of two non-planar five-membered rings. In the crystal structure, inter­molecular O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules to form a three-dimensional network.

Related literature

For general background, see: Liu et al. (2002[Liu, X.-L., Liu, Y.-H., Shi, Y.-C. & Jian, P.-M. (2002). Chin. J. Org. Chem. 22, 482-488.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrN3O

  • Mr = 292.14

  • Monoclinic, P 21 /n

  • a = 4.9607 (10) Å

  • b = 15.586 (3) Å

  • c = 14.906 (3) Å

  • β = 95.65 (3)°

  • V = 1146.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.57 mm−1

  • T = 113 (2) K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.717, Tmax = 0.814

  • 14191 measured reflections

  • 2739 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.02

  • 2739 reflections

  • 163 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.88 2.688 (3) 167
N3—H3A⋯Br1 0.877 (18) 2.72 (3) 3.125 (4) 110.0 (19)
N3—H3A⋯O1ii 0.877 (18) 2.54 (2) 2.967 (5) 111.0 (19)
N3—H3B⋯N2 0.889 (16) 2.28 (3) 2.700 (5) 109 (2)
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases, as substrates, are important organic intermediates. Their recent applications in asymmetric catalytic hydrogenation, asymmetric chemical reduction and oxidation and asymmetric alkylidation of carbon atom, as well as reactions with Lawessen regent are very active (Liu et al., 2002). We have recently synthesized the novel title compound, (I), and report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (N1/C1–C5) and B (C7–C12) are, of course, planar and the dihedral angle between them is A/B = 34.93 (3)°. The intramolecular N—H···N and N—H···Br hydrogen bonds (Table 1) result in the formation of two non-planar five-membered rings; C (N2/C4/C5/N3/H3B) and D (Br1/C1/C5/N3/H3A).

In the crystal structure, intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Liu et al. (2002).

Experimental top

5-bromopyridine-3,4-diamine (1.88 g, 10 mmol) was added to a solution of 4-hydroxybenzaldehyde (1.22 g, 10 mmol)in MeOH (50 ml). The solution was refluxed for 10 h, and then dried over magnesium sulfate, filtered and the volatiles were removed under reduced pressure. The crude product was further purified and recystallized from MeOH affording yellow crystals of (I) (yield; 70%).

Refinement top

H atoms (for NH2) were located in a difference synthesis and refined isotropically [N—H = 0.876 (10) and 0.889 (10) Å; Uiso(H) = 0.028 (8) and 0.027 (8) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
(E)-4-[(4-amino-5-bromopyridin-3-yl)iminomethyl]phenol top
Crystal data top
C12H10BrN3OF(000) = 584
Mr = 292.14Dx = 1.692 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3259 reflections
a = 4.9607 (10) Åθ = 1.9–27.8°
b = 15.586 (3) ŵ = 3.57 mm1
c = 14.906 (3) ÅT = 113 K
β = 95.65 (3)°Plate, yellow
V = 1146.9 (4) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2739 independent reflections
Radiation source: rotating anode2123 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 66
Tmin = 0.717, Tmax = 0.814k = 2020
14191 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.0115P]
where P = (Fo2 + 2Fc2)/3
2739 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.59 e Å3
Crystal data top
C12H10BrN3OV = 1146.9 (4) Å3
Mr = 292.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9607 (10) ŵ = 3.57 mm1
b = 15.586 (3) ÅT = 113 K
c = 14.906 (3) Å0.10 × 0.08 × 0.06 mm
β = 95.65 (3)°
Data collection top
Rigaku Saturn
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2123 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.814Rint = 0.053
14191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
2739 reflectionsΔρmin = 0.59 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22060 (6)0.579793 (19)0.40491 (2)0.03830 (14)
O11.2134 (4)0.29970 (11)0.18529 (12)0.0258 (4)
H11.27910.25150.18710.039*
N10.0149 (4)0.34708 (13)0.29398 (14)0.0207 (5)
N20.4754 (4)0.40060 (14)0.12855 (15)0.0214 (5)
N30.5400 (5)0.53733 (15)0.23987 (17)0.0263 (5)
C10.1953 (5)0.48149 (16)0.32940 (17)0.0213 (5)
C20.0159 (5)0.41727 (16)0.34483 (18)0.0220 (6)
H20.08860.42310.39300.026*
C30.1392 (5)0.34101 (15)0.22483 (17)0.0197 (5)
H30.12060.29210.18900.024*
C40.3231 (5)0.40235 (16)0.20351 (17)0.0199 (5)
C50.3553 (5)0.47740 (16)0.25818 (17)0.0202 (5)
C60.5619 (5)0.32877 (16)0.10100 (17)0.0209 (5)
H60.52000.27890.13100.025*
C70.7226 (5)0.32179 (16)0.02482 (17)0.0192 (5)
C80.7946 (5)0.39343 (16)0.02422 (18)0.0224 (6)
H80.73180.44740.00980.027*
C90.9575 (5)0.38505 (16)0.09363 (18)0.0232 (6)
H91.00210.43330.12570.028*
C101.0566 (5)0.30420 (16)0.11623 (17)0.0202 (5)
C110.9849 (5)0.23290 (16)0.06839 (17)0.0208 (5)
H111.04750.17890.08290.025*
C120.8202 (5)0.24182 (16)0.00099 (17)0.0213 (6)
H120.77360.19330.03240.026*
H3A0.508 (6)0.5891 (10)0.2593 (19)0.028 (8)*
H3B0.590 (5)0.5330 (19)0.1844 (9)0.027 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0515 (2)0.02764 (19)0.0375 (2)0.00060 (13)0.01289 (16)0.01098 (13)
O10.0335 (11)0.0214 (9)0.0253 (10)0.0049 (8)0.0168 (8)0.0036 (8)
N10.0210 (11)0.0234 (11)0.0186 (11)0.0013 (9)0.0061 (9)0.0025 (9)
N20.0192 (11)0.0245 (11)0.0212 (12)0.0001 (9)0.0060 (9)0.0012 (9)
N30.0292 (13)0.0188 (12)0.0321 (14)0.0044 (10)0.0090 (11)0.0002 (10)
C10.0241 (13)0.0191 (12)0.0207 (13)0.0038 (10)0.0024 (11)0.0032 (10)
C20.0235 (14)0.0238 (13)0.0195 (13)0.0042 (11)0.0067 (11)0.0009 (11)
C30.0220 (13)0.0181 (12)0.0194 (13)0.0009 (10)0.0038 (10)0.0005 (10)
C40.0211 (13)0.0219 (12)0.0171 (13)0.0029 (10)0.0040 (10)0.0014 (10)
C50.0205 (13)0.0185 (12)0.0211 (13)0.0032 (10)0.0003 (10)0.0015 (10)
C60.0187 (13)0.0227 (13)0.0216 (13)0.0001 (10)0.0042 (10)0.0021 (11)
C70.0181 (12)0.0229 (13)0.0168 (13)0.0019 (10)0.0030 (10)0.0001 (10)
C80.0235 (13)0.0191 (12)0.0253 (14)0.0027 (11)0.0063 (11)0.0031 (11)
C90.0269 (14)0.0180 (12)0.0259 (14)0.0019 (11)0.0093 (11)0.0058 (11)
C100.0196 (13)0.0223 (12)0.0193 (13)0.0008 (10)0.0039 (10)0.0022 (10)
C110.0222 (13)0.0186 (12)0.0222 (13)0.0003 (10)0.0054 (11)0.0001 (10)
C120.0228 (13)0.0187 (12)0.0229 (14)0.0013 (10)0.0059 (11)0.0025 (10)
Geometric parameters (Å, º) top
Br1—C11.898 (2)C3—H30.9300
O1—C101.352 (3)C4—C51.426 (3)
O1—H10.8200C6—C71.455 (3)
N1—C21.331 (3)C6—H60.9300
N1—C31.346 (3)C7—C121.396 (3)
N2—C61.281 (3)C7—C81.400 (3)
N2—C41.409 (3)C8—C91.380 (4)
N3—C51.355 (3)C8—H80.9300
N3—H3A0.876 (10)C9—C101.406 (3)
N3—H3B0.889 (10)C9—H90.9300
C1—C21.374 (4)C10—C111.386 (3)
C1—C51.388 (4)C11—C121.387 (3)
C2—H20.9300C11—H110.9300
C3—C41.380 (3)C12—H120.9300
C10—O1—H1109.5N2—C6—C7122.8 (2)
C2—N1—C3116.9 (2)N2—C6—H6118.6
C6—N2—C4119.6 (2)C7—C6—H6118.6
C5—N3—H3A115 (2)C12—C7—C8117.8 (2)
C5—N3—H3B113.1 (19)C12—C7—C6119.7 (2)
H3A—N3—H3B117 (3)C8—C7—C6122.4 (2)
C2—C1—C5121.5 (2)C9—C8—C7120.9 (2)
C2—C1—Br1119.7 (2)C9—C8—H8119.5
C5—C1—Br1118.76 (19)C7—C8—H8119.5
N1—C2—C1122.9 (2)C8—C9—C10120.6 (2)
N1—C2—H2118.5C8—C9—H9119.7
C1—C2—H2118.5C10—C9—H9119.7
N1—C3—C4124.5 (2)O1—C10—C11123.1 (2)
N1—C3—H3117.8O1—C10—C9118.0 (2)
C4—C3—H3117.8C11—C10—C9118.8 (2)
C3—C4—N2126.0 (2)C10—C11—C12120.2 (2)
C3—C4—C5118.4 (2)C10—C11—H11119.9
N2—C4—C5115.5 (2)C12—C11—H11119.9
N3—C5—C1124.8 (2)C11—C12—C7121.6 (2)
N3—C5—C4119.4 (2)C11—C12—H12119.2
C1—C5—C4115.8 (2)C7—C12—H12119.2
C3—N1—C2—C10.2 (4)N2—C4—C5—C1176.8 (2)
C5—C1—C2—N10.7 (4)C4—N2—C6—C7179.3 (2)
Br1—C1—C2—N1179.2 (2)N2—C6—C7—C12177.2 (2)
C2—N1—C3—C40.4 (4)N2—C6—C7—C80.1 (4)
N1—C3—C4—N2175.8 (2)C12—C7—C8—C90.2 (4)
N1—C3—C4—C50.4 (4)C6—C7—C8—C9177.1 (2)
C6—N2—C4—C335.7 (4)C7—C8—C9—C100.5 (4)
C6—N2—C4—C5148.0 (2)C8—C9—C10—O1179.5 (2)
C2—C1—C5—N3178.7 (2)C8—C9—C10—C110.8 (4)
Br1—C1—C5—N32.9 (3)O1—C10—C11—C12179.1 (2)
C2—C1—C5—C40.7 (4)C9—C10—C11—C120.6 (4)
Br1—C1—C5—C4179.13 (17)C10—C11—C12—C70.1 (4)
C3—C4—C5—N3178.2 (2)C8—C7—C12—C110.5 (4)
N2—C4—C5—N35.1 (3)C6—C7—C12—C11176.9 (2)
C3—C4—C5—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.882.688 (3)167
N3—H3A···Br10.88 (2)2.72 (3)3.125 (4)110 (2)
N3—H3A···O1ii0.88 (2)2.54 (2)2.967 (5)111 (2)
N3—H3B···N20.89 (2)2.28 (3)2.700 (5)109 (2)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10BrN3O
Mr292.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)4.9607 (10), 15.586 (3), 14.906 (3)
β (°) 95.65 (3)
V3)1146.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.717, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
14191, 2739, 2123
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.02
No. of reflections2739
No. of parameters163
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.59

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.882.688 (3)167
N3—H3A···Br10.877 (18)2.72 (3)3.125 (4)110.0 (19)
N3—H3A···O1ii0.877 (18)2.54 (2)2.967 (5)111.0 (19)
N3—H3B···N20.889 (16)2.28 (3)2.700 (5)109 (2)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+2, y+1, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, X.-L., Liu, Y.-H., Shi, Y.-C. & Jian, P.-M. (2002). Chin. J. Org. Chem. 22, 482-488.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds